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We give a Bäcklund transformation in a unified form for each member in the Burgers hierarchy. By
applying the Bäcklund transformation to the trivial solutions, we generate some solutions of the
Burgers hierarchy.

1. Introduction

Let

P−1 = 1, P0(u) = u, (1.1)

and for j ≥ 1, define the differential expressions Pj(u, . . . , ∂
j
xu) recursively as follows:

Pj

(
u, . . . , ∂

j
xu

)
= (u + ∂x)Pj−1

(
u, . . . , ∂

j−1
x u

)
. (1.2)

Then the Burgers hierarchy is defined by

ut = ∂xPj

(
u, . . . , ∂

j
xu

)
, j ≥ 1. (1.3)
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The first few members of the hierarchy (1.3) are

ut = 2uux + uxx, (1.4)

ut = 3u2 ux + 3u2
x + 3uuxx + uxxx, (1.5)

ut = 4u3ux + 12uu2
x + 6u2uxx + 10uxuxx + 4uuxxx + uxxxx, (1.6)

with (1.4) being just the Burgers equation.
There is much literature on the Burgers hierarchy. Olver [1] derived the hierarchy (1.3)

from the point of view of infinitely many symmetries. The work in [2] showed that the Cole-
Hopf transformation

w �−→ u =
wx

w
(1.7)

transforms solutions of the linear equation

wt = ∂
j+1
x w (1.8)

to that of (1.3). With the help of the Cole-Hopf transformation (1.9), Taflin [3] and Tasso
[4] showed, respectively, that the Burgers equation (1.4) and the second member (1.5) of
the hierarchy (1.3) can be written in the Hamiltonian form. More recently, Talukdar et al. [5]
constructed an appropriate Lagrangian by solving the inverse problem of variational calculus
and then Hamiltonized (1.5) to get the relevant Poisson structure. Furthermore, they pointed
out that their method is applicable to each member of (1.3). Pickering [6] proved explicitly
that each member of (1.3) passes the Weiss-Tabor-Carnevale Painlevé test.

This paper is devoted to the study of Bäcklund transformation for the Burgers
hierarchy. Bäcklund transformation was named after the Swedish mathematical physicist
and geometer Albert Victor Bäcklund(1845-1922), who found in 1883 [7], when studying the
surfaces of constant negative curvature, that the sine-Gordon equation

uxt = sinu (1.9)

has the following property: if u solves (1.9), then for an arbitrary non-zero constant λ, the
system on v

vx = ux − 2λ sin
u + v

2
,

vt = −ut +
2
λ
sin

u − v

2

(1.10)
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is integrable; moreover, v also solves (1.9). So (1.10) gives a transformation u �→ v, now
called Bäcklund transformation, which takes one solution of (1.9) into another. For example,
substituting the trivial solution u(x, t) ≡ 0 into (1.10) yields one-soliton solution:

v(x, t) = 4 arctan exp
(
α − λx − 1

λ
t

)
, (1.11)

where α is an arbitrary constant. By repeating this procedure one can get multiple-soliton
solutions. Some other nonlinear partial differential equations (PDEs), such as KdV equation
[8]

ut = 6uux + uxxx, (1.12)

modified KdV equation [9]

ut = u2ux + uxxx, (1.13)

Burgers equation (1.4) [10], and a generalized Burgers equation [11]

ut + b(t)uux + a(t)uxx = 0, (1.14)

also possess Bäcklund transformations. Now Bäcklund transformation has become a useful
tool for generating solutions to certain nonlinear PDEs. Much literature is devoted to
searching Bäcklund transformations for some nonlinear PDEs (see, e.g., [12–15]). In this
paper, we give a Bäcklund transformation for each member in the Burgers hierarchy. As an
application, by applying our Bäcklund transformation to the trivial solutions, we generate
some new solutions of (1.3).

2. Bäcklund Transformation

First, the differential expressions Pj have the following property.

Theorem 2.1. For an arbitrary constant λ, let

u = v +
vx

λ + v
. (2.1)

Then

Pj

(
u, . . . , ∂

j
xu

)
=

λPj

(
v, . . . , ∂

j
xv

)
+ Pj+1

(
v, . . . , ∂

j+1
x v

)

λ + v
, j ≥ 1. (2.2)
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Proof. We use induction to prove (2.2).
First, for j = 1,

P1(u, ux) = u2 + ux

=
(
v +

vx

λ + v

)2
+ vx − vx

2

(λ + v)2
+

vxx

λ + v

=
λ
(
v2 + vx

)
+ v3 + 3vvx + vxx

λ + v

=
λP1(v, vx) + P2(v, vx, vxx)

λ + v
.

(2.3)

So (2.2) is true for j = 1.
Next, fix a k > 1, and assume that (2.2) is true for j = k − 1. Then

Pk

(
u, . . . , ∂kxu

)
=
(
v +

vx

λ + v
+ ∂x

)
Pk−1

(
u, . . . , ∂k−1x u

)

=
(
v +

vx

λ + v
+ ∂x

)λPk−1
(
v, . . . , ∂k−1x v

)
+ Pk

(
v, . . . , ∂kxv

)

λ + v

=
(v + ∂x)

(
λPk−1

(
v, . . . , ∂k−1x v

)
+ Pk

(
v, . . . , ∂kxv

))

λ + v

=
λPk

(
v, . . . , ∂kxv

)
+ Pk+1

(
v, . . . , ∂k+1x v

)

λ + v
;

(2.4)

that is, (2.2) is valid for j = k.
Therefore, (2.2) is always true for j ≥ 1.

Now we state our main result.

Theorem 2.2. If u is a solution of (1.3), then the system on v

vx = (λ + v)(u − v),

vt = (λ + v)
j∑

k=0

(−λ)j−k
(
Pk

(
u, . . . , ∂kxu

)
− vPk−1

(
u, . . . , ∂k−1x u

)) (2.5)

is integrable; moreover, v also satisfies (1.3). Therefore, (2.5) defines a Bäcklund transformation u �→
v, in a unified form, for each member of the Burgers hierarchy (1.3).
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Proof. By (1.3) and (2.5)we have

vxt = (λ + v)(u − v)
j∑

k=0

(−λ)j−k
(
Pk

(
u, . . . , ∂kxu

)
− vPk−1

(
u, . . . , ∂k−1x u

))

+ (λ + v)∂xPj

(
v, . . . , ∂

j
xv

)

− (λ + v)2
j∑

k=0

(−λ)j−k
(
Pk

(
u, . . . , ∂kxu

)
− vPk−1

(
u, . . . , ∂k−1x u

))
,

(2.6)

vtx = (λ + v)(u − v)
j∑

k=0

(−λ)j−k
(
Pk

(
u, . . . , ∂kxu

)
− vPk−1

(
u, . . . , ∂k−1x u

))

+ (λ + v)
j∑

k=0

(−λ)j−k∂xPk

(
v, . . . , ∂

j
xv

)

− v(λ + v)
j−1∑
k=0

(−λ)j−1−k∂xPk

(
v, . . . , ∂

j
xv

)

− (λ + v)2(u − v)
j∑

k=0

(−λ)j−kPk−1
(
u, . . . , ∂kxu

)

= (λ + v)(u − v)
j∑

k=0

(−λ)j−k
(
Pk

(
u, . . . , ∂kxu

)
− vPk−1

(
u, . . . , ∂k−1x u

))

+ (λ + v)∂xPj

(
v, . . . , ∂

j
xv

)
− (λ + v)2

j−1∑
k=0

(−λ)j−1−k∂xPk

(
v, . . . , ∂

j
xv

)

− (λ + v)2(u − v)
j∑

k=0

(−λ)j−kPk−1
(
u, . . . , ∂kxu

)

= (λ + v)(u − v)
j∑

k=0

(−λ)j−k
(
Pk

(
u, . . . , ∂kxu

)
− vPk−1

(
u, . . . , ∂k−1x u

))

+ (λ + v)∂xPj

(
v, . . . , ∂

j
xv

)

− (λ + v)2
j∑

k=0

(−λ)j−k
(
Pk

(
u, . . . , ∂kxu

)
− vPk−1

(
u, . . . , ∂k−1x u

))
;

(2.7)

therefore vxt = vtx; that is, (2.5) is an integrable system associated with (1.3).
From the first equation of (2.5)we have

u = v +
vx

λ + v
. (2.8)
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So

P0(u) − v =
vx

λ + v
=

∂xP0(v)
λ + v

. (2.9)

On the other hand, by (2.2)

Pk

(
u, . . . , ∂kxu

)
− vPk−1

(
u, . . . , ∂k−1x u

)
=

λ∂xPk−1
(
v, . . . , ∂k−1x v

)
+ ∂xPk

(
v, . . . , ∂kxv

)

λ + v
, k ≥ 1.

(2.10)

Substituting (2.9) and (2.10) into the second equation of (2.5) yields

vt = ∂xPj

(
v, . . . , ∂

j
xv

)
; (2.11)

that is, v also satisfies the Burgers hierarchy (1.3).

3. Exact Solutions

In this section we always assume that λ is an arbitrary nonzero constant.
From a known solution u of (1.3), the first equation of (2.5) gives

v(x, t) =
e
∫
(λ+u)dx − λ

∫
e
∫
(λ+u)dxdx − λc(t)∫

e
∫
(λ+u)dxdx + c(t)

, (3.1)

with the “integration constant” c(t) satisfying a first-order ordinary differential equation
determined by the second equation of (2.5).

Example 3.1. Take the trivial solution u(x, t) ≡ 1 of (1.3). Then from (1.2) we have

Pj

(
u, . . . , ∂

j
xu

)
≡ 1 for j ≥ 1. (3.2)

So (2.5) becomes

vx = (λ + v)(1 − v),

vt =
(λ + v)(1 − v)

(
1 − (−λ)j+1

)

1 + λ
.

(3.3)

Solving (3.3) gives the following solution of (1.3):

v(x, t) =
e(1+λ)x+(1+(−1)

j λj+1)t + λec

e(1+λ)x+(1+(−1)
j λj+1)t − ec

, (3.4)

where c is an arbitrary constant.
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Note that (3.4) is a traveling wave solution.

Example 3.2. By the Cole-Hopf transformation (1.7),

u(x, t) =
1
x

(3.5)

is a solution of (1.3). Then from (1.2) we have

Pj

(
u, . . . , ∂

j
xu

)
≡ 0 for j ≥ 1. (3.6)

So (2.5) becomes

vx = (λ + v)
(
1
x
− v

)
,

vt = (λ + v)

(
(−λ)j

(
1
x
− v

)
− (−λ)j−1v

x

)
.

(3.7)

Solving (3.7) gives the following solution of (1.3):

v(x, t) =
λeλ(x+(−λ)

j t) + λec

(−1 + λx)eλ(x+(−λ)
j t) − ec

. (3.8)

Note that (3.8) is not a traveling wave solution.

Example 3.3. By the Cole-Hopf transformation (1.7),

u(x, t) =
2
x

(3.9)

is a solution of (1.3) for j ≥ 2. Then from (1.2)we have

P1(u, ux) =
2
x2

, Pj

(
u, . . . , ∂

j
xu

)
≡ 0 for j ≥ 2. (3.10)

So (2.5) becomes

vx = (λ + v)
(
2
x
− v

)
,

vt = (λ + v)

(
(−λ)j

(
2
x
− v

)
+ 2(−λ)j−1

(
1
x2

− v

x

)
− 2(−λ)j−2v

x2

)
.

(3.11)
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Solving (3.11) gives the following solution of (1.3) for j ≥ 2:

v(x, t) =
2λ(−1 + λx)eλ(x+(−λ)

j t) + λec

(2 − 2λx + λ2x2)eλ(x+(−λ)
j t) − ec

. (3.12)

Note that (3.12) is not a traveling wave solution.

Example 3.4. By the Cole-Hopf transformation (1.7),

u(x, t) =
3
x

(3.13)

is a solution of (1.3) for j ≥ 3. Then from (1.2)we have

P1(u, ux) =
6
x2

, P2(u, ux, uxx) =
6
x3

, Pj

(
u, . . . , ∂

j
xu

)
≡ 0 for j ≥ 3. (3.14)

So (2.5) becomes

vx = (λ + v)
(
3
x
− v

)
,

vt = (λ + v)

(
(−λ)j

(
3
x
− v

)
+ 3(−λ)j−1

(
2
x2

− v

x

)
+ 6(−λ)j−2

(
1
x3

− v

x2

)
− 6(−λ)j−3v

x3

)
.

(3.15)

Solving (3.15) gives the following solution of (1.3) for j ≥ 3:

v(x, t) =
3λ

(
2 − 2λx + λ2x2)eλ(x+(−λ)j t) + λec

(−6 + 6λx − 3λ2x2 + λ3x3)eλ(x+(−λ)
j t) − ec

. (3.16)

Note that (3.16) is not a traveling wave solution.

Remark 3.5. In general, for an arbitrary positive integer k,

u(x, t) =
k

x
(3.17)

is a solution of (1.3) for j ≥ k. Substituting (3.17) into (2.5) gives the following solution of
(1.3) for j ≥ k:

v(x, t) =

(
∂f

(
x, x2, . . . , xk

)
/∂x

)
eλ(x+(−λ)

j t) + λec

f
(
x, x2, . . . , xk

)
eλ(x+(−λ)

j t) − ec
, (3.18)
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where

f
(
x, x2, . . . , xk

)
= (−1)kk! + (−1)k−1k!λx + (−1)k−2 k!

2!
λ2x2 + · · · − kλk−1xk−1 + λkxk. (3.19)
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