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A new concept of quasi slowly oscillating continuity is introduced. Furthermore, it is shown that
this kind of continuity implies ordinary continuity, but the converse is not always true.

1. Introduction

Firstly, some definitions and notations will be given in the following. Throughout this paper,
N will denote the set of all positive integers. We will use boldface letters x, y, z, . . . for
sequences x = (xn), y = (yn), and z = (zn), . . . of terms in R, the set of all real numbers.
Also, s and c will denote the set of all sequences of points in R and the set of all convergent
sequences of points in R, respectively.

A sequence x = (xn) of points in R is called statistically convergent [1] to an element �
of R if

lim
n→∞

1
n
|{k ≤ n : |xk − �| ≥ ε}| = 0, (1.1)

for every ε > 0, and this is denoted by st − limn→∞xn = �.
A sequence x = (xn) of points in R is slowly oscillating [2], denoted by x ∈ SO, if

lim
λ→ 1+

lim
n

max
n+1≤k≤[λn]

|xk − xn| = 0, (1.2)

where [λn] denotes the integer part of λn. This is equivalent to the following: xm − xn → 0
whenever 1 ≤ m/n → 1 as m,n → ∞. In terms of ε > 0 and δ, this is also equivalent to the
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case when for any given ε > 0, there exist δ = δ(ε) > 0 and the positive integer N = N(ε)
such that |xm − xn| < ε if n ≥ N(ε) and n ≤ m ≤ (1 + δ)n.

By a method of sequential convergence, or briefly a method, we mean a linear function
G defined on a sublinear space of s, denoted by cG(R), into R. A sequence x = (xn) is said
to be G-convergent [3] to � if x ∈ cG(R) and G(x) = �. In particular, lim denotes the limit
function lim x = limnxn on the linear space c. AmethodG is called regular if every convergent
sequence x = (xn) is G-convergent with G(x) = lim x. A method G is called subsequentially
convergent if whenever x is G-convergent with G(x) = �, then there is a subsequence (xnk)
of x with limkxnk = �. A function f is called G-continuous [3] if G(f(x)) = f(G(x)) for any
G-convergent sequence x. Here we note that for special G = st − lim, f is called statistically
continuous [3].

Our goal in this paper is to introduce a new concept of quasi slowly oscillating
continuity, which cannot be given by means of any G as in [3]. It is proved that quasi slowly
oscillating continuity implies ordinary and statistical continuities. We also introduce several
other types of continuities and a new type of compactness.

2. Slowly Oscillating Continuity

In [4], the concept of slowly oscillating continuity is defined in the sense that a function
f is slowly oscillating continuous, denoted by f ∈ SOC, if it transforms slowly oscillating
sequences to slowly oscillating sequences, that is, (f(xn)) is slowly oscillating whenever (xn)
is slowly oscillating.

We note that slowly oscillating continuity cannot be obtained by any sequential
method G.

In the following theorem, we prove that the set of slowly oscillating continuous
functions is a closed subset of the space of all continuous functions.

Theorem 2.1. The set of slowly oscillating continuous functions on a subset E of R is a closed subset
of the set of all continuous functions on E, that is, SOC(E) = SOC(E), where SOC(E) is the set of
all slowly oscillating continuous functions on E, and SOC(E) denotes the set of all cluster points of
SOC(E).

Proof. Let f be any element in the closure of SOC(E). Then there exists a sequence of points
in SOC(E) such that limk→∞fk = f . To show that f is slowly oscillating continuous, take any
slowly oscillating sequence (xn). Let ε > 0. Since (fk) converges to f , there exists a positive
integer N such that for all x ∈ E and for all n ≥ N, |f(x) − fn(x)| < ε/3. As fN is slowly
oscillating continuous, there exist a positive integer N1 ≥ N and a δ such that |fN(xn) −
fN(xm)| < ε/3 if n ≥ N1 and n ≤ m ≤ (1 + δ)n. Hence, for all n ≥ N1 and n ≤ m ≤ (1 + δ)n,

∣
∣f(xn) − f(xm)

∣
∣ ≤ ∣

∣f(xn) − fN(xn)
∣
∣ +

∣
∣fN(xn) − fN(xm)

∣
∣ +

∣
∣fN(xm) − f(xm)

∣
∣

≤ ε

3
+
ε

3
+
ε

3
= ε.

(2.1)

This completes the proof of the theorem.

Corollary 2.2. The set of all slowly oscillating continuous functions on a subset E of R is a complete
subspace of the space of all continuous functions on E.
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Proof. The proof follows from Theorem 2.1.

The following theorem shows that on a slowly oscillating compact subset A of R,
slowly oscillating continuity implies uniform continuity.

Theorem 2.3. Let A be a slowly oscillating compact subset of R and let f : A → R be slowly
oscillating continuous on A. Then f is uniformly continuous on A.

Proof. Assume that f is not uniformly continuous on A. Then there exist ε0 and sequences
(xn) and (yn) in A such that

∣
∣xn − yn

∣
∣ < 1/n,

∣
∣f(xn) − f

(

yn

)∣
∣ ≥ ε0

(2.2)

for all n ∈ N. Since A is slowly oscillating compact, there is a slowly oscillating subsequence
(xnk) of (xn). It is clear that the corresponding sequence (ynk) is also slowly oscillating, since

∣
∣ynk − ynm

∣
∣ ≤ ∣

∣ynk − xnk

∣
∣ + |xnk − xnm | +

∣
∣xnm − ynm

∣
∣. (2.3)

If f is slowly oscillating continuous, then the sequences (f(xnk)) and (f(ynk)) are slowly
oscillating. By (2.2), this is not possible. Consequently, we obtain that if f is slowly oscillating
continuous on a slowly oscillating compact set A of R, then f is uniformly continuous
on A.

Corollary 2.4. For any regular subsequential method G, any slowly oscillating continuous function
is G-continuous.

3. Quasi slowly Oscillating Continuity

A sequence x = (xn) is called quasi slowly oscillating, denoted by x ∈ QSO, if (Δxn) =
(xn − xn+1) is a slowly oscillating sequence. The concept of slowly oscillating continuity [4]
suggests a new kind of continuity. A function f is quasi slowly oscillating continuous if it
transforms quasi slowly oscillating sequences to quasi slowly oscillating sequences, that is,
(f(xn)) is quasi slowly oscillating whenever (xn) is quasi slowly oscillating.

Notice that any slowly oscillating sequence is quasi slowly oscillating, but the converse
is not always true. Indeed, let (xn) be slowly oscillating. Hence, from the definition of slow
oscillation of a sequence and the line below

Δxn −Δxm = (xn − xm) − (xn+1 − xm+1), (3.1)

we immediately have that (xn) is quasi slowly oscillating. To see that the converse
is not true, we consider the following example. The sequence (xn) defined by xn =
∑n

k=1((1/k)
∑k

j=1(1/j)) is quasi slowly oscillating, but not slowly oscillating. We see that
composition of two quasi slowly oscillating continuous functions is quasi slowly oscillating
continuous. It is clear that the sum of two quasi slowly oscillating continuous functions is
quasi slowly oscillating continuous. The product of two quasi slowly oscillating continuous
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functions needs not be quasi slowly oscillating. For example, for the quasi slowly oscillating
continuous functions f and g defined by f(x) = x and g(x) = x, the function fg is not quasi
slowly oscillating. When both f and g are bounded and quasi slowly oscillating continuous,
we have the following theorem.

Theorem 3.1. If f and g are bounded quasi slowly oscillating continuous functions on a subset E of
R, then their product fg is quasi slowly oscillating continuous on E.

This follows from the definition of quasi slowly oscillating continuity.
In connection with slowly oscillating sequences, quasi slowly oscillating sequences,

and convergent sequences, the problem arises to investigate the following types of continuity
of functions on R.

(QSO-QSO) (xn) ∈ QSO ⇒ (f(xn)) ∈ QSO.

(QSO-c) (xn) ∈ QSO ⇒ (f(xn)) ∈ c.

(c-c) For each x0 in the domain of f , limn→∞f(xn) = f(x0) whenever limn→∞xn =
x0.

(c-QSO) (xn) ∈ c ⇒ (f(xn)) ∈ QSO.

(QSO-SO) (xn) ∈ QSO ⇒ (f(xn)) ∈ SO.

(SO-QSO) (xn) ∈ SO ⇒ (f(xn)) ∈ QSO.

(u) is uniform continuity of f .

It is clear that (QSO-QSO) implies (SO-QSO), but (SO-QSO) needs not imply (QSO-QSO).
Also (QSO-c) implies (c-QSO) and (QSO-c) implies (c-c) and we see that (c-c) needs not
imply (QSO-c) since the identity function is an example. We also note that (u) implies (SO-
QSO).

Theorem 3.2. If f is quasi slowly oscillating continuous on R, then it is continuous in the ordinary
sense.

Proof. Let (xn) be any convergent sequence with limk→∞xk = x0. Then the sequence
(x1, x0, x2, x0, . . . , xn, x0, . . .) also converges to x0 and is quasi slowly oscillating. By the
hypothesis, the sequence (f(x1)−f(x0), f(x0)−f(x2), f(x2)−f(x0), f(x0)−f(x3), . . .) is slowly
oscillating. It follows from the definition of slow oscillation that limk→∞(f(xk) + f(xk+1)) =
2f(x0) and limk→∞(f(xk) − f(xk+1)) = 0. Hence, we have limk→∞f(xk) = f(x0). This
completes the proof.

Corollary 3.3. Any quasi slowly oscillating continuous function is G-continuous for any regular
subsequential method G.

Corollary 3.4. Any quasi slowly oscillating continuous function is statistically continuous.

It is well known that uniform limit of a sequence of continuous functions is continuous.
This is also true for quasi slowly oscillating continuity, that is, uniform limit of a sequence of
quasi slowly oscillating continuous functions is quasi slowly oscillating continuous.

Theorem 3.5. If (fn) is a sequence of quasi slowly oscillating continuous functions defined on a
subset E of R and let (fn) is uniformly convergent to a function f , then f is quasi slowly oscillating
continuous on E.
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Proof. Let (fn) be a sequence of quasi slowly oscillating continuous functions defined on a
subset E of R and (fn) be uniformly convergent to a function f . Let (xn) be a quasi slowly
oscillating sequence and ε > 0. As (fn) is uniformly convergent to f , there exists a positive
integer N such that |fn(x) − f(x)| < ε/5 for all x ∈ E whenever n ≥ N. Since fN is quasi
slowly oscillating continuous, there exist a δ > 0 and a positive integer N1 such that

∣
∣ΔfN(xm) −ΔfN(xn)

∣
∣ <

ε

5
(3.2)

for n ≥ N1(ε) and n ≤ m ≤ (1 + δ)n. Now for n ≥ N1(ε) and n ≤ m ≤ (1 + δ)n, we have

∣
∣Δf(xm) −Δf(xn)

∣
∣ ≤ ∣

∣f(xm) − fN(xm)
∣
∣ +

∣
∣fN(xm+1) − f(xm+1)

∣
∣

+
∣
∣fN(xn) − f(xn)

∣
∣ +

∣
∣f(xn+1) − fN(xn+1)

∣
∣

+
∣
∣fN(xm) − fN(xm+1) − fN(xn) + fN(xn+1)

∣
∣

≤ ε

5
+
ε

5
+
ε

5
+
ε

5
+
ε

5
= ε.

(3.3)

This completes the proof of the theorem.

Definition 3.6. A subset F of R is called slowly oscillating compact [4] if whenever x = (xn) is a
sequence of points in F, there is a slowly oscillating subsequence y = (ynk) of x.

Firstly, we see that quasi slowly oscillating compactness cannot be obtained by any
G-sequential compactness in the manner of [5].

We note that any compact subset of R is quasi slowly oscillating compact and any
subset of a quasi slowly oscillating compact subset of R is also quasi slowly oscillating
compact. Thus, intersection of two quasi slowly oscillating compact subsets of R is quasi
slowly oscillating compact. More generally any intersection of quasi slowly oscillating
compact subsets of R is quasi slowly oscillating compact.

We also note that for any regular subsequential methodG, anyG-sequentially compact
subset of R is quasi slowly oscillating compact.

Notice that the union of two quasi slowly oscillating compact subsets of R is quasi
slowly oscillating compact. We see that any finite union of quasi slowly oscillating compact
subsets of R is quasi slowly oscillating compact, but any union of quasi slowly oscillating
compact subsets of R is not always quasi slowly oscillating compact. For example, consider
the setsDn = {n} for n ∈ N. Then for each constant n ∈ N, the setDn is quasi slowly oscillating
compact, but

⋃∞
n=1 Dn = N is not quasi slowly oscillating compact.

Theorem 3.7. Let F be a quasi slowly oscillating compact subset of R and let f be a quasi slowly
oscillating continuous function. Then f(F) is quasi slowly oscillating compact.

Proof. Let y = (yn) be any sequence of points in f(F). Then there exists a sequence x = (xn)
such that yn = f(xn) for each n ∈ N. As F is quasi slowly oscillating compact, there exists
a quasi slowly oscillating subsequence z = (zk) = (xnk) of the sequence x. Since f is quasi
slowly oscillating continuous, f(z) = (f(zk)) = (f(xnk)) is quasi slowly oscillating. It follows
that f(F) is quasi slowly oscillating compact.

Corollary 3.8. Quasi slowly oscillating continuous image of any compact subset of R is compact.
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Theorem 3.9. The set of quasi slowly oscillating continuous functions on a subset E of R is a closed
subset of the set of all continuous functions on E, that is,QSOC(E) = SOC(E), whereQSOC(E) is
the set of all slowly oscillating continuous functions on E, andQSOC(E) denotes the set of all cluster
points of QSOC(E).

Proof. Let f be any element in the closure ofQSOC(E). Then there exists a sequence of points
in QSOC(E) such that limk→∞fk = f . To show that f is quasi slowly oscillating continuous,
take any quasi slowly oscillating sequence (xn). Let ε > 0. Since (fk) converges to f , there
exists a positive integer N such that for all x ∈ E and for all k ≥ N, |f(x) − fk(x)| < ε/5. As
fN is quasi slowly oscillating continuous, there exist a positive integer N1 ≥ N and a δ such
that |ΔfN(xn) −ΔfN(xm)| < ε/5 if n ≥ N1 and n ≤ m ≤ (1 + δ)n. Hence, for all n ≥ N1,

∣
∣Δf(xn) −Δf(xm)

∣
∣ ≤ ∣

∣Δf(xn) −ΔfN(xn)
∣
∣ +

∣
∣ΔfN(xn) −ΔfN(xm)

∣
∣ +

∣
∣ΔfN(xm) −Δf(xm)

∣
∣

=
∣
∣f(xn) − f(xn+1) − fN(xn) + fN(xn+1)

∣
∣ +

∣
∣ΔfN(xn) −ΔfN(xm)

∣
∣

+
∣
∣fN(xm) − fN(xm+1) − f(xm) + f(xm+1)

∣
∣

≤ ∣
∣f(xn) − fN(xn)

∣
∣ +

∣
∣fN(xn+1) − f(xn+1)

∣
∣ +

∣
∣ΔfN(xn) −ΔfN(xm)

∣
∣

+
∣
∣fN(xm) − f(xm)

∣
∣ +

∣
∣f(xm+1) − fN(xm+1)

∣
∣

≤ ε

5
+
ε

5
+
ε

5
+
ε

5
+
ε

5
= ε.

(3.4)

This completes the proof of the theorem.

Finally we note that the following further investigation problems arose.

Problem 1. For further study, we suggest to investigate quasi slowly oscillating sequences of
fuzzy points and quasi slowly oscillating continuity for the fuzzy functions. However, due to
the change in settings, the definitions and methods of proofs will not always be analogous to
those of the present work (see, e.g., [6]).

Problem 2. Investigate a theory in dynamical systems by introducing the following concept:
two dynamical systems are called pseudo conjugate if there is 1-1, onto, pseudo continuous
h, such that h−1 is Δ-pseudo continuous, and h commutes the mappings at each point x.
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