Research Article

Multiple Positive Solutions of a Second Order Nonlinear Semipositone m-Point Boundary Value Problem on Time Scales

Chengjun Yuan ${ }^{1,2}$ and Yongming Liu ${ }^{1}$
${ }^{1}$ Department of Mathematics, East China Normal University, Shanghai 200241, China
${ }^{2}$ School of Mathematics and Computer, Harbin University, Harbin, Heilongjiang 150086, China

Correspondence should be addressed to Chengjun Yuan, ycj7102@163.com
Received 28 April 2010; Revised 26 June 2010; Accepted 7 September 2010
Academic Editor: Allan C Peterson
Copyright © 2010 C. Yuan and Y. Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we study a general second-order m-point boundary value problem for nonlinear singular dynamic equation on time scales $u^{\Delta \nabla}(t)+a(t) u^{\Delta}(t)+b(t) u(t)+\lambda q(t) f(t, u(t))=0, t \in(0,1)_{\mathbb{T}}$, $u(\rho(0))=0, u(\sigma(1))=\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right)$. This paper shows the existence of multiple positive solutions if f is semipositone and superlinear. The arguments are based upon fixed-point theorems in a cone.

1. Introduction

In this paper, we consider the following dynamic equation on time scales:

$$
\begin{gather*}
u^{\Delta \nabla}(t)+a(t) u^{\Delta}(t)+b(t) u(t)+\lambda q(t) f(t, u(t))=0, \quad t \in(0,1)_{\mathbb{T}}, \\
u(\rho(0))=0, \quad u(\sigma(1))=\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right), \tag{1.1}
\end{gather*}
$$

where $\alpha_{i} \geq 0,0<\eta_{i}<\eta_{i+1}<1$; for all $i=1,2, \ldots, m-2 ; f, q, a$ and b satisfy
(C1) $q \in L$ is continuously and nonnegative function and there exists $t_{0} \in(\rho(0), \sigma(1))$ s.t. $q\left(t_{0}\right)>0, q(t)$ may be singular at $t=\rho(0), \sigma(1) ;$
(C2) $a \in C([0,1],[0,+\infty)), b \in C([0,1],(-\infty, 0])$.
In the past few years, the boundary value problems of dynamic equations on time scales have been studied by many authors (see [1-15] and references therein). Recently,
multiple-point boundary value problems on time scale have been studied, for instance, see [1-9].

In 2008, Lin and Du [2] studied the m-point boundary value problem for second-order dynamic equations on time scales:

$$
\begin{gather*}
u^{\Delta \nabla}(t)+f(t, u)=0, \quad t \in(0, T) \in \mathbb{T} \\
u(0)=0, \quad u(T)=\sum_{i=1}^{m-2} k_{i} u\left(\xi_{i}\right) \tag{1.2}
\end{gather*}
$$

where \mathbb{T} is a time scale. This paper deals with the existence of multiple positive solutions for second-order dynamic equations on time scales. By using Green's function and the LeggettWilliams fixed point theorem in an appropriate cone, the existence of at least three positive solutions of the problem is obtained.

In 2009, Topal and Yantir [1] studied the general second-order nonlinear m-point boundary value problems (1.1) with no singularities and the case. The authors deal with the determining the value of λ; the existences of multiple positive solutions of (1.1) are obtained by using the Krasnosel'skii and Legget-William fixed point theorems.

Motivated by the abovementioned results, we continue to study the general secondorder nonlinear m-point boundary value problem (1.1), but the nonlinear term may be singularity and semipositone.

In this paper, the nonlinear term f of (1.1) is suit to and semipositone and the superlinear case, we will prove our two existence results for problem (1.1) by using Krasnosel'skii fixed point theorem. This paper is organized as follows. In Section 2, starting with some preliminary lemmas, we state the Krasnosel'skii fixed point theorem. In Section 3, we give the main result which state the sufficient conditions for the m-point boundary value problem (1.1) to have existence of positive solutions.

2. Preliminaries

In this section, we state the preliminary information that we need to prove the main results. From Lemmas 2.1 and 2.3 in [1], we have the following lemma.

Lemma 2.1 (see [1]). Assuming that (C2) holds. Then the equations

$$
\begin{gather*}
\phi_{1}^{\Delta \nabla}(t)+a(t) \phi_{1}^{\Delta}(t)+b(t) \phi_{1}(t)=0, \quad t \in(0,1)_{\mathbb{T}}, \tag{2.1}\\
\phi_{1}(\rho(0))=0, \quad \phi_{1}(\sigma(1))=1, \\
\phi_{2}^{\Delta \nabla}(t)+a(t) \phi_{2}^{\Delta}(t)+b(t) \phi_{2}(t)=0, \quad t \in(0,1)_{\mathbb{T}}, \tag{2.2}\\
\phi_{2}(\rho(0))=1, \quad \phi_{2}(\sigma(1))=0
\end{gather*}
$$

have unique solutions ϕ_{1} and ϕ_{2}, respectively, and
(a) ϕ_{1} is strictly increasing on $[\rho(0), \sigma(1)]$,
(b) ϕ_{2} is strictly decreasing on $[\rho(0), \sigma(1)]$.

For the rest of the paper we need the following assumption:
(C3) $0<\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)<1$.
Lemma 2.2 (see [1]). Assuming that (C2) and (C3) hold. Let $y \in C[\rho(0), \sigma(1)]$. Then boundary value problem

$$
\begin{gather*}
x^{\Delta \nabla}(t)+a(t) x^{\Delta}(t)+b(t) x(t)+y(t)=0, \quad t \in(0,1)_{\mathbb{T}}, \\
x(\rho(0))=0, \quad x(\sigma(1))=\sum_{i=1}^{m-2} \alpha_{i} x\left(\eta_{i}\right) \tag{2.3}
\end{gather*}
$$

is equivalent to integral equation

$$
\begin{equation*}
x(t)=\int_{\rho(0)}^{\sigma(1)} H(t, s) p(s) y(s) \nabla s+A \phi_{1}(t) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
p(t)=e_{a}(\rho(t), \rho(0)), \quad A & =\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)} \sum_{i=1}^{m-2} \alpha_{i} \int_{\rho(0)}^{\sigma(1)} H\left(\eta_{i}, s\right) p(s) y(s) \nabla s, \tag{2.5}\\
H(t, s) & =\frac{1}{\phi_{1}^{\Delta}(\rho(0))} \begin{cases}\phi_{1}(s) \phi_{2}(t), & s \leq t, \\
\phi_{1}(t) \phi_{2}(s), & t \leq s .\end{cases} \tag{2.6}
\end{align*}
$$

Proof. First we show that the unique solution of (2.3) can be represented by (2.4). From Lemma 2.1, we know that the homogenous part of (2.3) has two linearly independent solution ϕ_{1} and ϕ_{2} since

$$
\left|\begin{array}{ll}
\phi_{1}(\rho(0)) & \phi_{1}^{\Delta}(\rho(0)) \tag{2.7}\\
\phi_{2}(\rho(0)) & \phi_{2}^{\Delta}(\rho(0))
\end{array}\right|=-\phi_{1}^{\Delta}(\rho(0)) \neq 0
$$

Now by the method of variations of constants, we can obtain the unique solution of (2.3) which can be represented by (2.4) where A and H are as in (2.5) and (2.6), respectively. Next we check the function defined in (2.4) is the solution of the boundary value problem (2.3). For this purpose we first show that (2.4) satisfies (2.3). From the definition of Green's function (2.6), we get

$$
\begin{equation*}
x(t)=\frac{1}{\phi_{1}^{\Delta}(\rho(0))}\left(\int_{\rho(0)}^{t} \phi_{1}(s) \phi_{2}(t) p(s) y(s) \nabla s+\int_{t}^{\sigma(1)} \phi_{1}(t) \phi_{2}(s) p(s) y(s) \nabla s\right)+A \phi_{1}(t) . \tag{2.8}
\end{equation*}
$$

Hence, the derivatives x^{Δ} and $x^{\Delta \nabla}$ are as follows:

$$
\begin{align*}
x^{\Delta}(t)= & \frac{1}{\phi_{1}^{\Delta}(\rho(0))}\left(\phi_{2}^{\Delta}(t) \int_{\rho(0)}^{t} \phi_{1}(s) p(s) y(s) \nabla s+\phi_{1}^{\Delta}(t) \int_{t}^{\sigma(1)} \phi_{2}(s) p(s) y(s) \nabla s\right)+A \phi_{1}^{\Delta}(t), \\
x^{\Delta \nabla}(t)= & \frac{1}{\phi_{1}^{\Delta}(\rho(0))}\left(\phi_{2}^{\Delta \nabla}(t) \int_{\rho(0)}^{\rho(t)} \phi_{1}(s) p(s) y(s) \nabla s+\phi_{2}^{\Delta}(t) \phi_{1}(t) p(t) y(t)\right. \\
& \left.\quad+\phi_{1}^{\Delta \nabla}(t) \int_{\rho(t)}^{\sigma(1)} \phi_{2}(s) p(s) y(s) \nabla s+\phi_{1}^{\Delta}(t) \phi_{2}(t) p(t) y(t)\right)+A \phi_{1}^{\Delta \nabla}(t) \tag{2.9}
\end{align*}
$$

Replacing the derivatives in (2.3), we deduce that

$$
\begin{aligned}
& x^{\Delta \nabla}(t)+a(t) x^{\Delta}(t)+b(t) x(t) \\
&= A\left(\phi_{1}^{\Delta \nabla}(t)+a(t) \phi_{1}^{\Delta}(t)+b(t) \phi_{1}(t)\right) \\
&+\left(\frac{1}{\phi_{1}^{\Delta}(\rho(0))} \int_{\rho(0)}^{t} \phi_{1}(s) p(s) y(s) \nabla s\right)\left(\phi_{2}^{\Delta \nabla}(t)+a(t) \phi_{2}^{\Delta}(t)+b(t) \phi_{2}(t)\right) \\
&+\left(\frac{1}{\phi_{1}^{\Delta}(\rho(0))} \int_{t}^{\sigma(1)} \phi_{2}(s) p(s) y(s) \nabla s\right)\left(\phi_{1}^{\Delta \nabla}(t)+a(t) \phi_{1}^{\Delta}(t)+b(t) \phi_{1}(t)\right) \\
&+\frac{1}{\phi_{1}^{\Delta}(\rho(0))}\left(\phi_{2}^{\Delta \nabla}(t) \int_{t}^{\rho(t)} \phi_{1}(s) p(s) y(s) \nabla s+\phi_{1}^{\Delta \nabla}(t) \int_{\rho(t)}^{t} \phi_{2}(s) p(s) y(s) \nabla s\right) \\
&+\frac{1}{\phi_{1}^{\Delta}(\rho(0))}\left(\phi_{2}^{\Delta}(t) \phi_{1}(t)-\phi_{1}^{\Delta}(t) \phi_{2}(t)\right) p(t) y(t) \\
&= \frac{1}{\phi_{1}^{\Delta}(\rho(0))}\left(\phi_{2}^{\Delta \nabla}(t)(\rho(t)-t) \phi_{1}(t) p(t) y(t)-\phi_{1}^{\Delta \nabla}(t) \phi_{2}(t) p(t) y(t)\right. \\
&= \frac{1}{\phi_{1}^{\Delta}(\rho(0))} p(t) y(t)\left(\phi_{2}^{\Delta}(t) \phi_{1}(t)-\phi_{1}^{\Delta}(t) \phi_{2}(t)\right) \\
&=+\frac{1}{\phi_{1}^{\Delta}(\rho(0))} p(t) y(t)(\rho(t)-t)\left(\phi_{2}^{\Delta \nabla}(t) \phi_{1}(t)-\phi_{1}^{\Delta \nabla}(t) \phi_{2}(t)\right) \\
&=\left.\frac{1}{\phi_{1}^{\Delta}(\rho(0))} p(t) y(t)\left\{\left(\phi_{2}^{\Delta}(t) \phi_{1}(t)-\phi_{1}^{\Delta}(t) \phi_{2}(t)\right)+(\rho(t)-t)\left(\phi_{2}^{\Delta}(t) \phi_{1}(t)-\phi_{1}^{\Delta}(t) \phi_{2}(t)\right)\right)^{\nabla}\right\} \\
& \phi_{1}^{\Delta}(\rho(0)) \\
& 1 \\
&+t) y(t)\left(\phi_{2}^{\Delta}(\rho(t)) \phi_{1}(\rho(t))-\phi_{1}^{\Delta}(\rho(t)) \phi_{2}(\rho(t))\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{\phi_{1}^{\Delta}(\rho(0))} p(t) y(t) e_{\Theta a}(\rho(t), \rho(0))\left(-\phi_{1}^{\Delta}(\rho(0))\right) \\
& =-y(t) \tag{2.10}
\end{align*}
$$

Therefore the function defined in (2.4) satisfies (2.3). Further we obtain that the boundary value conditions are satisfied by (2.4). The first condition follows from (2.5) and (2.6) and Lemma 2.1. Now we verify the second boundary condition. Since

$$
\begin{equation*}
H(\sigma(1), s)=\frac{1}{\phi_{1}^{\Delta}(\rho(0))} \phi_{1}(s) \phi_{2}(\sigma(1))=0 \tag{2.11}
\end{equation*}
$$

we obtain that

$$
\begin{equation*}
x(\sigma(1))=\int_{\rho(0)}^{\sigma(1)} H(\sigma(1), s) p(s) y(s) \nabla s+A \phi_{1}(\sigma(1))=A . \tag{2.12}
\end{equation*}
$$

On the other hand, by using (2.5), we find that

$$
\begin{align*}
\sum_{i=1}^{m-2} \alpha_{i} x\left(\eta_{i}\right)= & \sum_{i=1}^{m-2} \alpha_{i}\left(\int_{\rho(0)}^{\sigma(1)} H\left(\eta_{i}, s\right) p(s) y(s) \nabla s+A \phi_{1}\left(\eta_{i}\right)\right) \\
= & \sum_{i=1}^{m-2} \alpha_{i}\left(\int_{\rho(0)}^{\sigma(1)} H\left(\eta_{i}, s\right) p(s) y(s) \nabla s\right. \tag{2.13}\\
& \left.+\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)} \sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right) \int_{\rho(0)}^{\sigma(1)} H\left(\eta_{i}, s\right) p(s) y(s) \nabla s\right) \\
= & \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)} \sum_{i=1}^{m-2} \alpha_{i} \int_{\rho(0)}^{\sigma(1)} H\left(\eta_{i}, s\right) p(s) y(s) \nabla s=A
\end{align*}
$$

Combining the two equations above finishes the proof.
Lemma 2.3. Green's function $H(t, s)$ has the following properties:

$$
\begin{equation*}
H(t, s) \leq H(t, t), \quad \frac{\phi_{1}^{\Delta}(\rho(0))}{\left\|\phi_{1}\right\|\left\|\phi_{2}\right\|} H(t, t) H(s, s) \leq H(t, s) \leq H(s, s), \quad H(t, t) \leq \phi_{1}(t) \frac{\left\|\phi_{2}\right\|}{\phi_{1}^{\Delta}(\rho(0))} \tag{2.14}
\end{equation*}
$$

Lemma 2.4. Assume that (C2) and (C3) hold. Let u be a solution of boundary value problem (1.1) if and only if u is a solution of the following integral equation:

$$
\begin{equation*}
u(t)=\int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s) f(s, u(s)) \nabla s \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
G(t, s)=H(t, s)+\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)} \sum_{i=1}^{m-2} \alpha_{i} H\left(\eta_{i}, s\right) \phi_{1}(t) \tag{2.16}
\end{equation*}
$$

The proofs of the Lemmas 2.3 and 2.4 can be obtained easily by Lemmas 2.1 and 2.2.
Lemma 2.5. Green's function $G(t, s)$ defined by (2.16) has the following properties:

$$
\begin{equation*}
C_{2} \phi_{1}(t) H(s, s) \leq G(t, s) \leq C_{1} H(s, s), \quad G(t, s) \leq C_{3} \phi_{1}(t), \tag{2.17}
\end{equation*}
$$

where

$$
\begin{gather*}
C_{1}=1+\frac{\left\|\phi_{1}\right\|}{1-\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)} \sum_{i=1}^{m-2} \alpha_{i}, \\
C_{2}=\frac{\phi_{1}^{\Delta}(\rho(0))}{\left\|\phi_{1}\right\|\left\|\phi_{2}\right\|} \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)} \sum_{i=1}^{m-2} \alpha_{i} H\left(\eta_{i}, \eta_{i}\right), \tag{2.18}\\
C_{3}=\frac{\left\|\phi_{2}\right\|}{\phi_{1}^{\Delta}(\rho(0))}+\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)} \sum_{i=1}^{m-2} \alpha_{i} H\left(\eta_{i}, \eta_{i}\right) .
\end{gather*}
$$

Proof. From Lemma 2.3, we have

$$
\begin{align*}
G(t, s) & \leq H(s, s)+\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)} \sum_{i=1}^{m-2} \alpha_{i} H(s, s)\left\|\phi_{1}\right\| \leq C_{1} H(s, s), \\
G(t, s) & \leq \frac{\left\|\phi_{2}\right\|}{\phi_{1}^{\Delta}(\rho(0))} \phi_{1}(t)+\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)} \sum_{i=1}^{m-2} \alpha_{i} H\left(\eta_{i}, \eta_{i}\right) \phi_{1}(t) \leq C_{3} \phi_{1}(t), \\
G(t, s) & \geq \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)} \sum_{i=1}^{m-2} \alpha_{i} H\left(\eta_{i}, s\right) \phi_{1}(t) \tag{2.19}\\
& \geq \frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i} \phi_{1}\left(\eta_{i}\right)} \sum_{i=1}^{m-2} \alpha_{i} \frac{\phi_{1}^{\Delta}(\rho(0))}{\left\|\phi_{1}\right\|\left\|\phi_{2}\right\|} H\left(\eta_{i}, \eta_{i}\right) H(s, s) \phi_{1}(t) \\
& \geq C_{2} \phi_{1}(t) H(s, s) .
\end{align*}
$$

The proof is complete.
The following theorems will play major role in our next analysis.

Theorem 2.6 (see [16]). Let X be a Banach space, and let $P \subset X$ be a cone in X. Let Ω_{1}, Ω_{2} be open subsets of X with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$, and let $S: P \rightarrow P$ be a completely continuous operator, such that, either
(1) $\|S w\| \leq\|w\|, w \in P \cap \partial \Omega_{1},\|S w\| \geq\|w\|, w \in P \cap \partial \Omega_{2}$, or
(2) $\|S w\| \geq\|w\|, w \in P \cap \partial \Omega_{1},\|S w\| \leq\|w\| w \in P \cap \partial \Omega_{2}$.

Then S has a fixed point in $P \cap \bar{\Omega}_{2} \backslash \Omega_{1}$.

3. Main Results

We make the following assumptions:
$\left(\mathrm{H}_{1}\right) f(t, u) \in C([\rho(0), \sigma(1)] \times[0,+\infty),(-\infty,+\infty))$, moreover there exists a function $g(t) \in L^{1}([\rho(0), \sigma(1)],(0,+\infty))$ such that $f(t, u) \geq-g(t)$, for any $t \in(\rho(0), \sigma(1))$, $u \in[0,+\infty)$.
$\left(\mathrm{H}_{1}^{*}\right) f(t, u) \in C((\rho(0), \sigma(1)) \times[0,+\infty),(-\infty,+\infty))$ may be singular at $t=\rho(0), \sigma(1)$, moreover there exists a function $g(t) \in L^{1}((\rho(0), \sigma(1)),(0,+\infty))$ such that $f(t, u) \geq$ $-g(t)$, for any $t \in(\rho(0), \sigma(1)), u \in[0,+\infty)$.
$\left(\mathrm{H}_{2}\right) f(t, 0)>0$, for $t \in[\rho(0), \sigma(1)]$.
$\left(\mathrm{H}_{3}\right)$ There exists $\left[\theta_{1}, \theta_{2}\right] \in(\rho(0), \sigma(1))$ such that $\lim _{u \uparrow+\infty} \min _{t \in\left[\theta_{1}, \theta_{2}\right]}(f(t, u) / u)=+\infty$.
$\left(\mathrm{H}_{4}\right) \int_{\rho(0)}^{\sigma(1)} H(s, s) p(s) q(s) f(s, z) \nabla s<+\infty$ for any $z \in[0, m], m>0$ is any constant.
In fact, we only consider the boundary value problem

$$
\begin{gather*}
x^{\Delta \nabla}(t)+a(t) x^{\Delta}(t)+b(t) x(t)+\lambda q(t)\left[f\left(t,[x(t)-v(t)]^{*}\right)+g(t)\right]=0, \quad \lambda>0, \\
x(\rho(0))=0, \quad x(\sigma(1))=\sum_{i=1}^{m-2} \alpha_{i} x\left(\eta_{i}\right) \tag{3.1}
\end{gather*}
$$

where

$$
y(t)^{*}= \begin{cases}y(t), & y(t) \geq 0 \tag{3.2}\\ 0, & y(t)<0\end{cases}
$$

and $v(t)=\lambda \int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s) g(s) \nabla s$, which is the solution of the boundary value problem

$$
\begin{gather*}
v^{\Delta \nabla}(t)+a(t) v^{\Delta}(t)+b(t) v(t)+\lambda q(t) g(t)=0, \\
v(\rho(0))=0, \quad v(\sigma(1))=\sum_{i=1}^{m-2} \alpha_{i} v\left(\eta_{i}\right) \tag{3.3}
\end{gather*}
$$

From Lemma 2.1, it is easy to verify that $v(t) \leq \lambda C_{0} \phi_{1}(t)$ and $C_{0}=C_{3} \int_{\rho(0)}^{\sigma(1)} q(s) g(s) \nabla s$.

We will show that there exists a solution x for boundary value problem (3.1) with $x(t) \geq v(t), t \in[\rho(0), \sigma(1)]$. If this is true, then $u(t)=x(t)-v(t)$ is a nonnegative solution (positive on $(\rho(0), \sigma(1)))$ of boundary value problem (3.1). Since for any $t \in(\rho(0), \sigma(1))$, from

$$
\begin{equation*}
(u(t)+v(t))^{\Delta \nabla}+a(t)(u(t)+v(t))^{\Delta}+b(t)(u(t)+v(t))=-\lambda q(t)[f(t, u)+g(t)] \tag{3.4}
\end{equation*}
$$

we have

$$
\begin{equation*}
u^{\Delta \nabla}(t)+a(t) u^{\Delta}(t)+b(t) u(t)=-\lambda q(t) f(t, u) \tag{3.5}
\end{equation*}
$$

As a result, we will concentrate our study on boundary value problem (3.1).
We note that $x(t)$ is a solution of (3.1) if and only if

$$
\begin{equation*}
x(t)=\lambda \int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s)\left(f\left(t,[x(t)-v(t)]^{*}\right)+g(t)\right) \nabla s \tag{3.6}
\end{equation*}
$$

For our constructions, we will consider the Banach space $X=C[\rho(0), \sigma(1)]$ equipped with standard norm $\|x\|=\max _{0 \leq t \leq 1}|x(t)|, x \in X$. We define a cone P by

$$
\begin{equation*}
P=\left\{x \in X \left\lvert\, x(t) \geq \frac{C_{2}}{C_{1}} \phi_{1}(t)\|x\|\right., t \in[\rho(0), \sigma(1)]\right\} \tag{3.7}
\end{equation*}
$$

where ϕ_{1} is defined by Lemma 2.1 (namely, ϕ_{1} is solution (2.1)). Define an integral operator $T: P \rightarrow X$ by

$$
\begin{equation*}
T x(t)=\lambda \int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s)\left(f\left(t,[x(t)-v(t)]^{*}\right)+g(t)\right) \nabla s \tag{3.8}
\end{equation*}
$$

Notice, from (3.8) and Lemma 2.5, we have $T x(t) \geq 0$ on $[0,1]$ for $x \in P$ and

$$
\begin{align*}
T x(t) & =\lambda \int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s)\left(f\left(t,[x(t)-v(t)]^{*}\right)+g(t)\right) \nabla s \\
& \leq C_{1} \lambda \int_{\rho(0)}^{\sigma(1)} H(s, s) p(s) q(s)\left(f\left(t,[x(t)-v(t)]^{*}\right)+g(t)\right) \nabla s, \tag{3.9}
\end{align*}
$$

then $\|T x\| \leq C_{1} \lambda \int_{\rho(0)}^{\sigma(1)} H(s, s) p(s) q(s)\left(f\left(t,[x(t)-v(t)]^{*}\right)+g(t)\right) \nabla s$.

On the other hand, we have

$$
\begin{align*}
T x(t) & =\lambda \int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s)\left(f\left(t,[x(t)-v(t)]^{*}\right)+g(t)\right) \nabla s \\
& \geq \lambda \int_{\rho(0)}^{\sigma(1)} C_{2} \phi_{1}(t) H(s, s) p(s) q(s)\left(f\left(t,[x(t)-v(t)]^{*}\right)+g(t)\right) \nabla s \tag{3.10}\\
& \geq \frac{C_{2}}{C_{1}} \phi_{1}(t) \lambda \int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s) q(s)\left(f\left(t,[x(t)-v(t)]^{*}\right)+g(t)\right) \nabla s \\
& \geq \frac{C_{2}}{C_{1}} \phi_{1}(t)\|T x\| .
\end{align*}
$$

Thus, $T(P) \subset P$. In addition, standard arguments show that $T(P) \subset P$ and T is a compact, and completely continuous.

Theorem 3.1. Suppose that $\left(H_{1}\right)-\left(H_{2}\right)$ hold. Then there exists a constant $\bar{\lambda}>0$ such that, for any $0<\lambda \leq \bar{\lambda}$, boundary value problem (1.1) has at least one positive solution.

Proof. Fix $\delta \in(0,1)$. From $\left(\mathrm{H}_{2}\right)$, let $0<\varepsilon<1$ be such that

$$
\begin{equation*}
f(t, z) \geq \delta f(t, 0), \quad \text { for } \rho(0) \leq t \leq \sigma(1), \quad 0 \leq z \leq \varepsilon \tag{3.11}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
0<\lambda<\frac{\varepsilon}{2 c \bar{f}(\varepsilon)}:=\bar{\lambda} \tag{3.12}
\end{equation*}
$$

where $\bar{f}(\varepsilon)=\max _{\rho(0) \leq t \leq \sigma(1), 0 \leq z \leq \varepsilon}\{f(t, z)+g(t)\}$ and $c=C_{1} \int_{\rho(0)}^{\sigma(1)} H(s, s) p(s) q(s) \nabla s$. Since

$$
\begin{gather*}
\lim _{z \backslash 0} \frac{\bar{f}(z)}{z}=+\infty, \\
\frac{\bar{f}(\varepsilon)}{\varepsilon}<\frac{1}{2 c \lambda^{\prime}} \tag{3.13}
\end{gather*}
$$

there exists a $R_{0} \in(0, \varepsilon)$ such that

$$
\begin{equation*}
\frac{\bar{f}\left(R_{0}\right)}{R_{0}}=\frac{1}{2 c \lambda} . \tag{3.14}
\end{equation*}
$$

Let $x \in P$ and $v \in(0,1)$ be such that $x=v T(x)$, we claim that $\|x\| \neq R_{0}$. In fact

$$
\begin{align*}
\|T x(t)\| & \leq v \lambda \int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s) q(s)\left[f\left(s,[x(s)-v(s)]^{*}\right)+g(s)\right] \nabla s \\
& \leq \lambda \int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s) q(s)\left[f\left(s,[x(s)-v(s)]^{*}\right)+g(s)\right] \nabla s \\
& \leq \lambda \int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s) q(s) \max _{0 \leq s \leq 1 ; 0 \leq z \leq R_{0}}[f(s, z)+g(s)] \nabla s \tag{3.15}\\
& \leq \lambda \int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s) q(s) \bar{f}\left(R_{0}\right) \nabla s \\
& \leq \lambda c \bar{f}\left(R_{0}\right)
\end{align*}
$$

that is,

$$
\begin{equation*}
\frac{\bar{f}\left(R_{0}\right)}{R_{0}} \geq \frac{1}{c \lambda}>\frac{1}{2 c \lambda}=\frac{\bar{f}\left(R_{0}\right)}{R_{0}} \tag{3.16}
\end{equation*}
$$

which implies that $\|x\| \neq R_{0}$. Let $U=\left\{x \in P:\|x\|<R_{0}\right\}$. By nonlinear alternative of LeraySchauder type theorem, T has a fixed point $x \in \bar{U}$. Moreover, combing (3.8), (3.28), and $R_{0}<\varepsilon$, we obtain that

$$
\begin{align*}
x(t) & =\lambda \int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s)\left[f\left(s,[x(s)-v(s)]^{*}\right)+g(s)\right] \nabla s \\
& \geq \lambda \int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s)[\delta f(s, 0)+g(s)] \nabla s \\
& \geq \lambda\left[\delta \int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s) f(s, 0) \nabla s+\int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s) g(s) \nabla s\right] \tag{3.17}\\
& >\lambda \int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s) g(s) \nabla s \\
& =v(t) \text { for } t \in(\rho(0), \sigma(1)) .
\end{align*}
$$

Let $u(t)=x(t)-v(t)>0$. Then (1.1) has a positive solution u and $\|u\| \leq\|x\| \leq R_{0}<1$. This completes the proof of Theorem 3.1.

Theorem 3.2. Suppose that $\left(H_{1}^{*}\right)$ and $\left(H_{3}\right)-\left(H_{4}\right)$ hold. Then there exists a constant $\lambda^{*}>0$ such that, for any $0<\lambda \leq \lambda^{*}$, boundary value problem (1.1) has at least one positive solution.

Proof. Let $\Omega_{1}=\left\{x \in P:\|x\|<R_{1}\right\}$, where $R_{1}=\max \{1, r\}$ and $r=\left(C_{1} C_{3} / C_{2}\right) \int_{\rho(0)}^{\sigma(1)} q(s) g(s) \nabla s$. Choose

$$
\begin{equation*}
\lambda^{*}=\min \left\{1, R_{1}\left[C_{1} \int_{\rho(0)}^{\sigma(1)} H(s, s) p(s) q(s)\left[\max _{0 \leq z \leq R_{1}} f(s, z)+g(s)\right] \nabla s\right]^{-1}\right\} \tag{3.18}
\end{equation*}
$$

Then for any $x \in P \cap \partial \Omega_{1}$, then $\|x\|=R_{1}$ and $x(s)-v(s) \leq x(s) \leq\|x\|$, we have

$$
\begin{align*}
\|T x(t)\| & \leq \lambda \int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s) q(s)\left[f\left(s,[x(s)-v(s)]^{*}\right)+g(s)\right] \nabla s \\
& \leq \lambda \int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s) q(s)\left[f\left(s,[x(s)-v(s)]^{*}\right)+g(s)\right] \nabla s \tag{3.19}\\
& \leq \lambda C_{1} \int_{\rho(0)}^{\sigma(1)} H(s, s) p(s) q(s)\left[\max _{0 \leq z \leq R_{1}} f(s, z)+g(s)\right] \nabla s \\
& \leq R_{1}=\|x\| .
\end{align*}
$$

This implies that

$$
\begin{equation*}
\|T x\| \leq\|x\|, \quad x \in P \cap \partial \Omega_{1} . \tag{3.20}
\end{equation*}
$$

On the other hand, choose a constant $N>0$ such that

$$
\begin{equation*}
\frac{\lambda C_{2}^{2} N}{2 C_{1}} \int_{\theta_{1}}^{\theta_{2}} H(s, s) \phi_{1}(s) p(s) q(s) \nabla s \min _{\theta_{1} \leq t \leq \theta_{2}} \phi_{1}(t) \geq 1 . \tag{3.21}
\end{equation*}
$$

By assumption $\left(\mathrm{H}_{3}\right)$, for any $t \in\left[\theta_{1}, \theta_{2}\right]$, there exists a constant $B>0$ such that

$$
\begin{equation*}
\frac{f(t, z)}{z}>N, \quad \text { namely, } f(t, z)>N z, \quad \text { for } z>B \tag{3.22}
\end{equation*}
$$

Choose $R_{2}=\max \left\{R_{1}+1,2 \lambda r, 2 C_{1}(B+1) / C_{2} \min _{\theta_{1} \leq t \leq \theta_{2}} \phi_{1}(t)\right\}$, and let $\Omega_{2}=\left\{x \in P:\|x\|<R_{2}\right\}$, then for any $x \in P \cap \partial \Omega_{2}$, we have

$$
\begin{align*}
x(t)-v(t) & =x(t)-\lambda \int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s) g(s) \nabla s \\
& \geq x(t)-\lambda C_{3} \phi_{1}(t) \int_{\rho(0)}^{\sigma(1)} p(s) q(s) g(s) \nabla s \\
& \geq x(t)-\frac{C_{1} x(t)}{C_{2}\|x\|} \lambda C_{3} \int_{\rho(0)}^{\sigma(1)} p(s) q(s) g(s) \nabla s \tag{3.23}\\
& \geq x(t)-\frac{x(t)}{R_{2}} \lambda r \\
& \geq\left(1-\frac{\lambda r}{R_{2}}\right) x(t) \\
& \geq \frac{1}{2} x(t) \geq 0, \quad t \in[0,1] .
\end{align*}
$$

Then,

$$
\begin{align*}
\min _{\theta_{1} \leq t \leq \theta_{2}}\{x(t)-v(t)\} & \geq \min _{\theta_{1} \leq t \leq \theta_{2}}\left\{\frac{1}{2} x(t)\right\} \geq \min _{\theta_{1} \leq t \leq \theta_{2}}\left\{\frac{C_{2}}{2 C_{1}} \phi_{1}(t)\|x\|\right\} \tag{3.24}\\
& =\frac{R_{2} C_{2} \min _{\theta_{1} \leq t \leq \theta_{2}} \phi_{1}(t)}{2 C_{1}} \geq B+1>B .
\end{align*}
$$

Now,

$$
\begin{aligned}
\|T x(t)\| & \geq \max _{0 \leq t \leq 1} \lambda \int_{\rho(0)}^{\sigma(1)} C_{2} \phi_{1}(t) H(s, s) p(s) q(s)\left[f\left(s,[x(s)-v(s)]^{*}\right)+g(s)\right] \nabla s \\
& \geq \max _{0 \leq t \leq 1} \lambda C_{2} \phi_{1}(t) \int_{\rho(0)}^{\sigma(1)} H(s, s) p(s) q(s) f\left(s,[x(s)-v(s)]^{*}\right) \nabla s \\
& \geq \lambda C_{2} \min _{\theta_{1} \leq t \leq \theta_{2}} \phi_{1}(t) \int_{\theta_{1}}^{\theta_{2}} H(s, s) p(s) q(s) f(s, x(s)-v(s)) \nabla s \\
& \geq \lambda C_{2} \min _{\theta_{1} \leq t \leq \theta_{2}} \phi_{1}(t) \int_{\theta_{1}}^{\theta_{2}} H(s, s) p(s) q(s) N(x(s)-v(s)) \nabla s \\
& \geq \lambda C_{2} \min _{\theta_{1} \leq t \leq \theta_{2}} \phi_{1}(t) \int_{\theta_{1}}^{\theta_{2}} H(s, s) p(s) q(s) \frac{N}{2} x(s) \nabla s
\end{aligned}
$$

$$
\begin{align*}
& \geq \frac{1 C_{2}^{2} N}{2 C_{1}} \min _{\theta_{1} \leq t \leq \theta_{2}} \phi_{1}(t) \int_{\theta_{1}}^{\theta_{2}} H(s, s) p(s) q(s) \phi_{1}(s)\|x\| \nabla s \\
& \geq \frac{1 C_{2}^{2} N}{2 C_{1}} \min _{\theta_{1} \leq t \leq \theta_{2}} \phi_{1}(t) \int_{\theta_{1}}^{\theta_{2}} H(s, s) \phi_{1}(s) p(s) q(s) \nabla s\|x\| \\
& \geq\|x\| . \\
& \Longrightarrow\|T x\| \geq\|x\|, \quad x \in P \cap \partial \Omega_{2} . \tag{3.25}
\end{align*}
$$

Condition (2.1) of Krasnosel'skii's fixed-point theorem is satisfied. So T has a fixed point x with $R_{1} \leq\|x\|<R_{2}$ such that

$$
\begin{gather*}
x^{\Delta \nabla}(t)+a(t) x^{\Delta}(t)+b(t) x(t)=-\lambda q(s)\left(f\left(s,[x(s)-v(s)]^{*}\right)+g(s)\right), \quad 0<t<1, \\
x(\rho(0))=0, \quad x(\sigma(1))=\sum_{i=1}^{m-2} \alpha_{i} x\left(\eta_{i}\right) . \tag{3.26}
\end{gather*}
$$

Since $r<\|x\|$,

$$
\begin{align*}
x(t)-v(t) & \geq \frac{C_{2}}{C_{1}} \phi_{1}(t)\|x\|-\lambda \int_{\rho(0)}^{\sigma(1)} G(t, s) p(s) q(s) g(s) \nabla s \\
& \geq \frac{C_{2}}{C_{1}} \phi_{1}(t)\|x\|-\phi_{1}(t) \lambda C_{3} \int_{\rho(0)}^{\sigma(1)} p(s) q(s) g(s) \nabla s \\
& \geq \frac{C_{2}}{C_{1}} \phi_{1}(t)\|x\|-\frac{C_{2}}{C_{1}} \phi_{1}(t) \lambda r \tag{3.27}\\
& \geq \frac{C_{2}}{C_{1}} \phi_{1}(t) r-\frac{C_{2}}{C_{1}} \phi_{1}(t) \lambda r \\
& \geq(1-\lambda) \frac{C_{2}}{C_{1}} r \phi_{1}(t)>0 .
\end{align*}
$$

Let $u(t)=x(t)-v(t)$, then $u(t)$ is a positive solution of boundary value problem (1.1). This completes the proof of Theorem 3.2.

Since condition $\left(\mathrm{H}_{1}\right)$ implies conditions $\left(\mathrm{H}_{1}^{*}\right)$ and $\left(\mathrm{H}_{4}\right)$, and from proof of Theorems 3.1 and 3.2, we immediately have the following theorem.

Theorem 3.3. Suppose that $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then boundary value problem (1.1) has at least two positive solutions for $\lambda>0$ sufficiently small.

Proof. On the hand, fix $\delta \in(0,1)$. From $\left(\mathrm{H}_{2}\right)$, let $0<\varepsilon<\min \{1, r / 2\}$ be such that

$$
\begin{equation*}
f(t, z) \geq \delta f(t, 0), \quad \text { for } \rho(0) \leq t \leq \sigma(1), 0 \leq z \leq \varepsilon \tag{3.28}
\end{equation*}
$$

Choose

$$
\begin{equation*}
\frac{\varepsilon}{2 c \bar{f}(\varepsilon)}:=\bar{\lambda} \tag{3.29}
\end{equation*}
$$

where $\bar{f}(\varepsilon)=\max _{\rho(0) \leq t \leq \sigma(1), 0 \leq z \leq \varepsilon}\{f(t, z)+g(t)\}, c=C_{1} \int_{\rho(0)}^{\sigma(1)} H(s, s) p(s) q(s) \nabla s$, and $r=$ $\left(C_{1} C_{3} / C_{2}\right) \int_{\rho(0)}^{\sigma(1)} q(s) g(s) \nabla s$.

On the other hand, set $\Omega_{1}=\left\{x \in P:\|x\|<R_{1}\right\}$, where $R_{1}=1+r$. Choose

$$
\begin{equation*}
\lambda^{*}=\min \left\{1, R_{1}\left[C_{1} \int_{\rho(0)}^{\sigma(1)} H(s, s) p(s) q(s)\left[\max _{0 \leq z \leq R_{1}} f(s, z)+g(s)\right] \nabla s\right]^{-1}\right\} \tag{3.30}
\end{equation*}
$$

So, let

$$
\begin{equation*}
0<\lambda<\min \left\{\bar{\lambda}, \lambda^{*}\right\} \tag{3.31}
\end{equation*}
$$

From $0<\lambda<\min \left\{\bar{\lambda}, \lambda^{*}\right\}$, we have $0<\lambda<\bar{\lambda}$, from proof of Theorem 3.1, we know that (1.1) has a positive solution u_{1} and $\left\|u_{1}\right\| \leq\left\|u_{1}\right\| \leq R_{0}<r / 2$. Further, also from $0<\lambda<$ $\min \left\{\bar{\lambda}, \lambda^{*}\right\}$, we have $0<\lambda<\lambda^{*}$, from proof of Theorem 3.2, we know that (1.1) has a positive solution u_{2} and $\left\|u_{2}\right\| \geq R_{1} / 2>r / 2$. Then (1.1) has at least two positive solutions u_{1} and u_{2}. This completes the proof of Theorem 3.3.

4. Examples

To illustrate the usefulness of the results, we give some examples.
Example 4.1. Consider the boundary value problem

$$
\begin{gather*}
u^{\Delta \nabla}(t)+a(t) u^{\Delta}(t)+b(t) u(t)+\lambda\left(u^{a}(t)+\frac{1}{\left(t-t^{2}\right)^{1 / 2}} \cos (2 \pi u(t))\right)=0, \quad \lambda>0 \\
u(\rho(0))=0, \quad u(\sigma(1))=\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right) \tag{4.1}
\end{gather*}
$$

where $a>1$. Then, if $\lambda>0$ is sufficiently small, (4.1) has a positive solution u with $u(t)>0$ for $t \in(0,1)$.

To see this, we will apply Theorem 3.2 with

$$
\begin{equation*}
q(t)=1, \quad f(t, u)=u^{a}(t)+\frac{1}{\left(t-t^{2}\right)^{1 / 2}} \cos (2 \pi u(t)), \quad g(t)=\frac{1}{\left(t-t^{2}\right)^{1 / 2}} . \tag{4.2}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
f(t, 0)=\frac{1}{\left(t-t^{2}\right)^{1 / 2}}>0, \quad f(t, u)+g(t) \geq u^{a}(t)>0, \quad \lim _{u \uparrow+\infty} \frac{f(t, u)}{u}=+\infty, \tag{4.3}
\end{equation*}
$$

for $t \in(\rho(0), \sigma(1)), u>0$. Namely, $\left(\mathrm{H}_{1}^{*}\right)$ and $\left(\mathrm{H}_{2}\right)-\left(\mathrm{H}_{4}\right)$ hold. From $\int_{\rho(0)}^{\sigma(1)}(1 /((\sigma(1)-\rho(0)) s-$ $\left.\left.(s-\rho(0))^{2}\right)^{1 / 2}\right) \nabla s=\pi$, set $R_{1}=C_{1} \pi$ and $m=\max _{\rho(0) \leq t \leq \sigma(1)}\{p(t)\}+1$, we have

$$
\begin{align*}
& \int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s)\left[\max _{0 \leq z \leq R_{1}} f(s, z)+g(s)\right] \nabla s \\
& \quad \leq \int_{\rho(0)}^{\sigma(1)} \frac{m C_{1}\left\|\phi_{1}\right\|\left\|\phi_{2}\right\|}{\phi_{1}^{\Delta}(\rho(0))}\left[\left(C_{1} \pi\right)^{a}+\frac{1}{\left((\sigma(1)-\rho(0)) s-(s-\rho(0))^{2}\right)^{1 / 2}}\right] \nabla s \tag{4.4}\\
& \quad \leq \frac{m C_{1}\left\|\phi_{1}\right\|\left\|\phi_{2}\right\|}{\phi_{1}^{\Delta}(\rho(0))}\left(\left(C_{1} \pi\right)^{a}+\pi\right)
\end{align*}
$$

and $\lambda^{*}=\min \left\{1, \phi_{1}^{\Delta}(\rho(0)) / m\left\|\phi_{1}\right\|\left\|\phi_{2}\right\|\left(\left(C_{1}^{a} \pi^{a-1}+1\right)\right\}\right.$. Now, if $\lambda<\lambda^{*}$, Theorem 3.2 guarantees that (4.1) has a positive solution u with $\|u\| \geq 2$.

Example 4.2. Consider the boundary value problem

$$
\begin{gather*}
u^{\Delta \nabla}(t)+a(t) u^{\Delta}(t)+b(t) u(t)+\lambda\left(u^{2}(t)-\frac{9}{2} u(t)+2\right)=0, \quad 0<t<1, \lambda>0, \\
u(\rho(0))=0, \quad u(\sigma(1))=\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right) . \tag{4.5}
\end{gather*}
$$

Then, if $\lambda>0$ is sufficiently small, (4.5) has two solutions u_{i} with $u_{i}(t)>0$ for $t \in(0,1), i=$ 1,2 .

To see this, we will apply Theorem 3.3 with

$$
\begin{equation*}
f(t, u)=u^{2}(t)-\frac{9}{2} u(t)+2, \quad g(t)=4 . \tag{4.6}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
q(t)=0, \quad f(t, 0)=2>0, \quad f(t, u)+g(t) \geq \frac{15}{16}>0, \quad \lim _{u \uparrow+\infty} \frac{f(t, u)}{u}=+\infty . \tag{4.7}
\end{equation*}
$$

Namely, $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold. Let $\delta=1 / 4, \varepsilon=1 / 4$ and $c=\int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s) \nabla s$, then we may have

$$
\begin{equation*}
\bar{\lambda}=\frac{1}{8 c\left(\max _{0 \leq z \leq \varepsilon} f(t, z)+4\right)}=\frac{1}{48 c} . \tag{4.8}
\end{equation*}
$$

Now, if $\lambda<\bar{\lambda}$, Theorem 3.2 guarantees that (4.5) has a positive solution u_{1} with $\left\|u_{1}\right\| \leq 1 / 4$.
Next, let $R_{1}=p$, where $p=4 c C_{3} / C_{2}+1$ is a constant, then we have

$$
\begin{equation*}
\int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s)\left[\max _{0 \leq z \leq R_{1}} f(s, z)+g(s)\right] \nabla s=\int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s)\left[\frac{9}{2}+4\right] \nabla s=\frac{17 c}{2} \tag{4.9}
\end{equation*}
$$

and $\lambda^{*}=\min \{1,2 p / 17 c\}$. Now, if $0<\lambda<\lambda^{*}$, Theorem 3.1 guarantees that (4.5) has a positive solution u_{2} with $\left\|u_{2}\right\| \geq p$.

So, since all the conditions of Theorem 3.3 are satisfied, if $\lambda<\min \left\{\bar{\lambda}, \lambda^{*}\right\}$, Theorem 3.3 guarantees that (4.5) has two solutions u_{i} with $u_{i}(t)>0(i=1,2)$.

Example 4.3. Consider the boundary value problem

$$
\begin{gather*}
u^{\Delta \nabla}(t)+a(t) u^{\Delta}(t)+b(t) u(t)+\lambda\left(u^{a}(t)+\cos (2 \pi u(t))\right)=0, \quad 0<t<1, \lambda>0 \\
u(\rho(0))=0, \quad u(\sigma(1))=\sum_{i=1}^{m-2} \alpha_{i} u\left(\eta_{i}\right) \tag{4.10}
\end{gather*}
$$

where $a>1$. Then, if $\lambda>0$ is sufficiently small, (4.10) has two solutions u_{i} with $u_{i}(t)>0$ for $t \in(0,1), i=1,2$.

To see this we will apply Theorem 3.3 with

$$
\begin{equation*}
f(t, u)=u^{a}(t)+\cos (2 \pi u(t)), \quad g(t)=2 \tag{4.11}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
f(t, 0)=1>0, \quad f(t, u)+g(t) \geq u^{a}(t)+1>0, \quad \lim _{u \uparrow+\infty} \frac{f(t, u)}{u}=+\infty, \quad \text { for } t \in(\rho(0), \sigma(1)) \tag{4.12}
\end{equation*}
$$

Namely, $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold. Let $\delta=1 / 2, \varepsilon=1 / 8$ and $c=\int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s) \nabla s$, then we may have

$$
\begin{equation*}
\frac{\varepsilon}{2 c\left(\max _{0 \leq x \leq \varepsilon} f(t, x)+2\right)} \geq \frac{1}{16 c\left((1 / 8)^{a}+3\right)}:=\bar{\lambda} \tag{4.13}
\end{equation*}
$$

Now, if $0<\lambda<\bar{\lambda}$ then $0<\lambda<\varepsilon / 2 c\left(\max _{0 \leq x \leq \varepsilon} f(t, x)+2\right)$, Theorem 3.2 guarantees that (4.10) has a positive solution u_{1} with $\left\|u_{1}\right\| \leq 1 / 8$.

Next, let $R_{1}=p$, where $p=4 c C_{3} / C_{2}+1$ is a constant, then we have

$$
\begin{equation*}
\int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s)\left[\max _{0 \leq z \leq R_{1}} f(s, z)+g(s)\right] \nabla s \leq \int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s)\left[p^{a}+2\right] \nabla s=\left(p^{a}+2\right) c \tag{4.14}
\end{equation*}
$$

and $\lambda^{*}=\min \left\{1, p /\left(p^{a}+2\right) c\right\}$. Now, if $0<\lambda<\lambda^{*}$, then $0<\lambda<p \times$ $\left(\int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s)\left[\max _{0 \leq z \leq R_{1}} f(s, z)+g(s)\right] \nabla s\right)^{-1}$, Theorem 3.1 guarantees that (4.10) has a positive solution u_{2} with $\left\|u_{2}\right\| \geq 1$.

So, if $\lambda<\min \left\{\bar{\lambda}, \lambda^{*}\right\}$, Theorem 3.3 guarantees that (4.10) has two solutions u_{i} with $u_{i}(t)>0(i=1,2)$.

Example 4.4. Let $\mathbb{T}=\{0,1 / 4,2 / 4,3 / 4,1,5 / 4, \ldots\}$. We consider the following four point boundary value problem:

$$
\begin{gather*}
u^{\Delta \nabla}(t)+\frac{12}{5} u^{\Delta}(t)-\frac{16}{5} u(t)+\lambda\left(u^{a}(t)+\cos (2 \pi u(t))\right)=0, \quad \lambda>0 \\
u(0)=0, \quad u\left(\frac{5}{4}\right)=\frac{1}{2} u\left(\frac{1}{4}\right)+\frac{1}{4} u\left(\frac{1}{2}\right), \tag{4.15}
\end{gather*}
$$

where $a(t)=12 / 5, b(t)=-16 / 5$, and $q(t)=1$. Then, if $\lambda>0$ is sufficiently small, (4.15) has two solutions u_{i} with $u_{i}>0(i=1,2)$.

Let ϕ_{1} and ϕ_{2} be the solutions of the following linear boundary value problems, respectively,

$$
\begin{array}{lll}
u^{\Delta \nabla}(t)+\frac{12}{5} u^{\Delta}(t)-\frac{16}{5} u(t)=0, & u(0)=0, & u\left(\frac{5}{4}\right)=1 \\
u^{\Delta \nabla}(t)+\frac{12}{5} u^{\Delta}(t)-\frac{16}{5} u(t)=0, & u(0)=1, & u\left(\frac{5}{4}\right)=0 \tag{4.16}
\end{array}
$$

It is evident (form the Corollaries 4.24 and 4.25 and Theorem 4.28 of [17]) that

$$
\begin{equation*}
\phi_{1}(t)=\frac{(5 / 4)^{4 t}-(1 / 2)^{4 t}}{(5 / 4)^{5}-(1 / 2)^{5}}, \quad \phi_{2}(t)=\frac{(5 / 4)^{5}(1 / 2)^{4 t}-(1 / 2)^{5}(5 / 4)^{4 t}}{(5 / 4)^{5}-(1 / 2)^{5}} \tag{4.17}
\end{equation*}
$$

Also ϕ_{1} satisfies (C3). Green's function is

$$
H(t, s)=\frac{1024}{9279}\left\{\begin{array}{l}
\left(\frac{5}{4}\right)^{4 s}-\left(\frac{1}{2}\right)^{4 s}\left(\frac{5}{4}\right)^{5}\left(\frac{1}{2}\right)^{4 t}-\left(\frac{1}{2}\right)^{5}\left(\frac{5}{4}\right)^{4 t}, \quad s \leq t \tag{4.18}\\
\left(\frac{5}{4}\right)^{4 t}-\left(\frac{1}{2}\right)^{4 t}\left(\frac{5}{4}\right)^{5}\left(\frac{1}{2}\right)^{4 s}-\left(\frac{1}{2}\right)^{5}\left(\frac{5}{4}\right)^{4 s}, \quad t \leq s
\end{array}\right.
$$

and $p(t)=(2 / 5)^{4 t-1}$ follows from $e_{\alpha}\left(t, t_{0}\right)=(1+\alpha h)^{\left(t-t_{0}\right) / h}$ on $\mathbb{T}=h \mathbb{N}$.

To see this, we will apply Theorem 3.3 with

$$
\begin{equation*}
f(t, u)=u^{a}(t)+\cos (2 \pi u(t)), \quad g(t)=2 . \tag{4.19}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
f(t, 0)=1>0, \quad f(t, u)+g(t) \geq u^{a}(t)+1>0, \quad \lim _{u \uparrow+\infty} \frac{f(t, u)}{u}=+\infty, \quad \text { for } t \in(\rho(0), \sigma(1)) \tag{4.20}
\end{equation*}
$$

Namely, $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{3}\right)$ hold. Let $\delta=1 / 2, \varepsilon=1 / 8$ and $c=\int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s) \nabla s$, then we may have

$$
\begin{equation*}
\frac{\varepsilon}{2 c\left(\max _{0 \leq x \leq \varepsilon} f(t, x)+2\right)} \geq \frac{1}{16 c\left((1 / 8)^{a}+3\right)}:=\bar{\lambda} \tag{4.21}
\end{equation*}
$$

Now, if $0<\lambda<\bar{\lambda}$ then $0<\lambda<\varepsilon / 2 c\left(\max _{0 \leq x \leq \varepsilon} f(t, x)+2\right)$, Theorem 3.2 guarantees that (4.15) has a positive solution u_{1} with $\left\|u_{1}\right\| \leq 1 / 8$.

Next, let $R_{1}=4 c C_{3} / C_{2}+1$ is a constant, then we have

$$
\begin{equation*}
\int_{\rho(0)}^{\sigma(1)}\left[\max _{0 \leq z \leq R_{1}} f(s, z)+g(s)\right] \nabla s \leq \int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s) p(s)\left[R_{1}^{a}+2\right] \nabla s=\left(p^{a}+2\right) c \tag{4.22}
\end{equation*}
$$

and $\lambda^{*}=\min \left\{1, R_{1} /\left(R_{1}^{a}+2\right) c\right\}$. Now, if $0<\lambda<\lambda^{*}$, then $0<\lambda<R_{1} \times$ $\left(\int_{\rho(0)}^{\sigma(1)} C_{1} H(s, s)\left[\max _{0 \leq z \leq R_{1}} f(s, z)+g(s)\right] \nabla s\right)^{-1}$, Theorem 3.1 guarantees that (4.15) has a positive solution u_{2} with $\left\|u_{2}\right\| \geq 1$.

So, if $\lambda<\min \left\{\bar{\lambda}, \lambda^{*}\right\}$, Theorem 3.3 guarantees that (4.15) has two solutions u_{i} with $u_{i}(t)>0(i=1,2)$.

Acknowledgments

The work was supported by the Scientific Research Fund of Heilongjiang Provincial Education Department (no. 11544032) and the National Natural Science Foundation of China (no. 10871071).

References

[1] S. G. Topal and A. Yantir, "Positive solutions of a second order m-point BVP on time scales," Nonlinear Dynamics and Systems Theory, vol. 9, no. 2, pp. 185-197, 2009.
[2] X. Lin and Z. Du, "Positive solutions of m-point boundary value problem for second-order dynamic equations on time scales," Journal of Difference Equations and Applications, vol. 14, no. 8, pp. 851-864, 2008.
[3] H.-R. Sun and W.-T. Li, "Positive solutions for nonlinear three-point boundary value problems on time scales," Journal of Mathematical Analysis and Applications, vol. 299, no. 2, pp. 508-524, 2004.
[4] Y. Pang and Z. Bai, "Upper and lower solution method for a fourth-order four-point boundary value problem on time scales," Applied Mathematics and Computation, vol. 215, no. 6, pp. 2243-2247, 2009.
[5] F. M. Atici and S. G. Topal, "The generalized quasilinearization method and three point boundary value problems on time scales," Applied Mathematics Letters, vol. 18, no. 5, pp. 577-585, 2005.
[6] S. Liang and J. Zhang, "The existence of countably many positive solutions for nonlinear singular m-point boundary value problems on time scales," Journal of Computational and Applied Mathematics, vol. 223, no. 1, pp. 291-303, 2009.
[7] S. Liang, J. Zhang, and Z. Wang, "The existence of three positive solutions of m-point boundary value problems for some dynamic equations on time scales," Mathematical and Computer Modelling, vol. 49, no. 7-8, pp. 1386-1393, 2009.
[8] L. Hu, "Positive solutions to singular third-order three-point boundary value problems on time scales," Mathematical and Computer Modelling, vol. 51, no. 5-6, pp. 606-615, 2010.
[9] İ. Yaslan, "Multiple positive solutions for nonlinear three-point boundary value problems on time scales," Computers \& Mathematics with Applications, vol. 55, no. 8, pp. 1861-1869, 2008.
[10] J. Li and J. Shen, "Existence results for second-order impulsive boundary value problems on time scales," Nonlinear Analysis. Theory, Methods \& Applications, vol. 70, no. 4, pp. 1648-1655, 2009.
[11] J.-P. Sun, "Twin positive solutions of nonlinear first-order boundary value problems on time scales," Nonlinear Analysis. Theory, Methods \& Applications, vol. 68, no. 6, pp. 1754-1758, 2008.
[12] R. P. Agarwal, M. Bohner, and D. O'Regan, "Time scale boundary value problems on infinite intervals," Journal of Computational and Applied Mathematics, vol. 141, no. 1-2, pp. 27-34, 2002.
[13] H. Chen, H. Wang, Q. Zhang, and T. Zhou, "Double positive solutions of boundary value problems for p-Laplacian impulsive functional dynamic equations on time scales," Computers \mathcal{E} Mathematics with Applications, vol. 53, no. 10, pp. 1473-1480, 2007.
[14] R. Ma and H. Luo, "Existence of solutions for a two-point boundary value problem on time scales," Applied Mathematics and Computation, vol. 150, no. 1, pp. 139-147, 2004.
[15] D. R. Anderson, G. S. Guseinov, and Joan Hoffacker, "Higher-order self-adjoint boundary-value problems on time scales," Journal of Computational and Applied Mathematics, vol. 194, no. 2, pp. 309342, 2006.
[16] D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, vol. 5 of Notes and Reports in Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1988.
[17] Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USA, 2003.

