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We study necessary and sufficient conditions for the oscillation of the third-order nonlinear
ordinary differential equation with damping term and deviating argument x

′′′
(t) + q(t)x′(t) +

r(t)f(x(ϕ(t))) = 0. Motivated by the work of Kiguradze (1992), the existence and asymptotic
properties of nonoscillatory solutions are investigated in case when the differential operator
Lx = x

′′′
+ q(t)x′ is oscillatory.

1. Introduction

The aim of this paper is to investigate the third order nonlinear functional differential
equation with deviating argument

x′′′(t) + q(t)x′(t) + r(t)f
(
x
(
ϕ(t)
))

= 0. (1.1)

The following assumptions will be made. q, r, ϕ are continuous functions for t ≥ 0,
r(t) > 0, ϕ : [0,∞) → [0,∞), ϕ(0) = 0, limt→∞ϕ(t) = ∞, and f is a continuous function,
f : R → R, such that

f(u)u > 0 for u/= 0. (1.2)

In this paper we will restrict our attention to solutions x of (1.1) which are defined in a
neighborhood of infinity and sup{|x(s)| : s > t} > 0 for any t of this neighborhood. As
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usual, a solution of (1.1) is said to be oscillatory if it has a sequence of zeros converging to
infinity; otherwise it is said to be nonoscillatory.

Throughout the paper we assume that the operator Lx = x′′′ + q(t)x′ is oscillatory, that
is, the second-order equation

h′′(t) + q(t)h(t) = 0 (1.3)

is oscillatory.
It is well known, see, for example, [1], that if (1.3) is nonoscillatory, then (1.1) can be

written as a two-term equation of the form

(
a1(t)

(
a2(t)x′)′

)′
+ r(t)f

(
x
(
ϕ(t)
))

= 0, (1.4)

where ai, i = 1, 2, are continuous positive functions for t ≥ 0.
Asymptotic properties of equations of type (1.4) have been widely investigated in the

literature. We refer to [1–7] in case when
∫∞
0 1/ai(t)dt = ∞ (i = 1, 2), that is, the disconjugate

differential operator L1x = (a1(t)(a2(t)x′)′)′ is in the so-called canonical form [5, 8, 9] when
this property does not occur. Some of these results extend the pioneering works [10, 11],
devoted to the equation

x′′′(t) + q(t)x′(t) + r(t)x μ(t) = 0, (1.5)

where μ is the quotient of odd positive integers. Other contributions deal with the solvability
of certain boundary value problems associated to equations of type (1.1) on compact or
noncompact intervals see, for example, [12, 13] or [14, 15], respectively, and references
therein.

Recently, oscillation criteria for (1.4)with damping term, that is, for

(
a1(t)

(
a2(t)x′)′

)′
+ q(t)x′ + r(t)f

(
x
(
ϕ(t)
))

= 0 (1.6)

have been presented in [9] by using a generalized Riccati transformation and an integral
averaging technique. Here oscillation means that any solution x of this equation is oscillatory
or satisfies limt→∞x(t) = 0. Several examples [9, Examples 1–5] concern the case when the
second-order equation (1.3) is nonoscillatory and so such an equation can be reduced to a
two-term equation of the form (1.4).

If the differential operator Lx = x′′′ + q(t)x′ is oscillatory, then very little is known.
According to Kiguradze [16], we say that (1.1) has property A if each of its solutions either is
oscillatory, or satisfies the condition

lim
t→∞

x(i)(t) = 0 (i = 0, 1, 2). (1.7)
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If any solution x of (1.1) is either oscillatory, or satisfies the condition (1.7), or admits the
asymptotic representation

x(i) = c(1 + sin(t − α))(i) + εi(t), (i = 0, 1, 2, 3), (1.8)

where c /= 0 and α are constants, the continuous functions εi(i = 0, 1, 2, 3) vanish at infinity
and ε0 satisfies the inequality cε0(t) > 0 for large t, then we say that (1.1) has weak property A.

For n = 3, the results in [16] deal with the equation

x′′′(t) + x′(t) + r(t)f(x(t)) = 0, (1.9)

and read as follows.

Theorem 1.1 (see [16, Theorem 1.5]). Let f be a nondecreasing function satisfying

∫∞

1

du

f(u)
< ∞,

∫−1

−∞

du

f(u)
< ∞. (1.10)

Then the condition

∫∞

0
r(t)dt = ∞ (1.11)

is necessary and sufficient in order that (1.9) has weak property A.

Theorem 1.2 (see [16, Corollary 1.5]). Let for some K > 0 and a > 0

r(t)
∣∣f(u)

∣∣ ≥ Kt−1|u| for u ∈ R, t ≥ a. (1.12)

Then (1.9) has property A.

In our previous paper [1]we have investigated (1.1)without deviating argument (i.e.,
ϕ(t) = t), especially when (1.3) is nonoscillatory. More precisely, the nonexistence of possible
types of nonoscillatory solutions is examined, independently on the oscillation of (1.3).

Motivated by [1, 16], here we continue such a study, by giving necessary and sufficient
conditions in order that all solutions of (1.1) are either oscillatory or satisfy lim inft→∞x(t) =
0. The property A for (1.1) is also considered and an extension to (1.1) of Theorem 1.1 is
presented.

The role of the deviating argument ϕ and some phenomena for (1.1), which do
not occur when (1.3) is nonoscillatory, are presented. Our results depend on a a priori
classification of nonoscillatory solutions which is based on the concept of phase function
[17] and on a suitable energy function. A fixed point method is also employed and sharp
upper and lower estimates for bounded nonoscillatory solutions of (1.1) are established by
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means of a suitable “cut” function. This approach enables us to assume r ∈ L1[0,∞) instead
of R(t) ∈ L1[0,∞), where

R(t) =
∫∞

t

r(τ)dτ. (1.13)

2. Classification of Nonoscillatory Solutions

A function g, defined in a neighborhood of infinity, is said to change its sign, if there exists a
sequence {tk} → ∞ such that g(tk)g(tk+1) < 0.

The following theorem shows the possible types of nonoscillatory solutions for (1.1).
It is worth noting that here q can change sign.

Theorem 2.1. Any nonoscillatory solution x of (1.1) either satisfies

x(t)x′(t) ≤ 0, x(t)/= 0 for large t (2.1)

or

x(t)/= 0 for large t, x′(t) changes its sign. (2.2)

Proof. Without loss of generality suppose that there exists a solution x of (1.1) and T ≥ 0 such
that x(t) > 0, x(ϕ(t)) > 0, x′(t) ≥ 0 on [T,∞).

O. Boruvka [17] proved that if (1.3) is oscillatory, then there exists a continuously
differentiable function α : [T,∞) → [T,∞), called a phase function, such that α′(t) > 0 and

3(α′′(t))2

4(α′(t))4
− α′′′(t)

2(α′(t))3
+

q(t)

α′2(t)
= 1. (2.3)

Using this result, we can consider the change of variables

s = α(t) , x′(t) =
1

√
α′(t)

Ẋ(s),
(
· = d

ds

)

(2.4)

for t ∈ [T,∞), s ∈ [T ∗,∞), T ∗ = α(T). Thus, t = α−1(s) and

x′′(t) = −1
2
(α′(t))−3/2α′′(t)Ẋ(s) + (α′(t))1/2Ẍ(s),

x′′′(t) = −1
2
(
α′(t)

)−3/2
α′′′(t)Ẋ(s) +

3
4
(
α′(t)

)−5/2(
α′′(t)

)2
Ẋ(s) +

(
α′(t)

)3/2 ...
X (s).

(2.5)
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Substituting into (1.1), we obtain

...
X(s)+Ẋ(s)

(
3
4
(
α′(t)

)−4(
α′′(t)

)2− 1
2
(
α′(t)

)−3
α′′′(t)+q(t)

(
α′(t)

)−2
)

+(α′(t))−3/2r(t)f
(
x
(
ϕ(t)
))

=0.

(2.6)

From here and (2.3) we obtain

...
X(s) + Ẋ(s) +

(
α′(t)

)−3/2
r(t)f

(
x
(
ϕ(t)
))

= 0. (2.7)

Because limt→∞ϕ(t) = ∞, we have for large t

...
X(s) + Ẋ(s) = −(α′(t)

)−3/2
r(t)f

(
x
(
ϕ(t)
))

< 0. (2.8)

Since x′(t) ≥ 0, (2.4) yields Ẋ(s) ≥ 0 and so
...
X(s) < 0, that is, Ẍ is decreasing. If there exists

s1 ≥ T such that Ẍ(s1) < 0, Ẋ becomes eventually negative, which is a contradiction. Then
Ẍ(s) ≥ 0 and Ẋ(s) is nondecreasing. Let T1 ≥ T ∗ be such that Ẋ(s) > 0 on [T1,∞). Thus, using
(2.8) we obtain

Ẍ(s) − Ẍ(T1) =
∫s

T1

...
X(u)du ≤ −

∫s

T1

Ẋ(u)du ≤ −Ẋ(T1)(s − T1). (2.9)

Hence, lims→∞Ẍ(s) = −∞, which contradicts the positivity of Ẍ(s). Finally, the case Ẋ(s) ≡ 0
on [T ∗,∞) cannot occur, because, if x′(t) ≡ 0 on [T,∞), then x ≡ 0, which is a contradiction.

Remark 2.2. Theorem 2.1 extends [1, Proposition 2] for (1.1) with ϕ(t) = t and improves [11,
Theorem 3.2] for (1.5).

The following lemma is similar to [16, Lemma 2.2].

Lemma 2.3. Any solution x of (1.1) satisfies

lim inf
t→∞

∣∣x′(t)
∣∣ = 0, (2.10)

lim inf
t→∞

∣∣x′′(t)
∣∣ = 0. (2.11)

Proof. In view of Theorem 2.1, it is sufficient to prove (2.10) and (2.11) for solutions x of (1.1)
such that x(t) > 0, x′(t) ≤ 0 for large t. If (2.10) does not hold, then, in view of Theorem 2.1,
a positive constant C1 exists such that x′(t) ≤ −C1 for large t and, hence, limt→∞x(t) = −∞, a
contradiction.
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Now let us prove (2.11) and, without loss of generality, assume x(t) > 0, x(ϕ(t)) > 0
for t ≥ t0. Suppose, for the sake of contradiction, that lim inft→∞|x′′(t)| = 2C > 0. Then there
exists t1 ≥ t0 such that either

x′′(t) ≥ C or x′′(t) ≤ −C for t ≥ t1. (2.12)

If x′′(t) ≥ C, then limt→∞x′(t) = ∞, which is a contradiction with Theorem 2.1. Thus x′′(t) ≤
−C on [t1,∞). From this and the Taylor theorem we obtain

x(t) = x(t1) + x′(t1)(t − t1) +
∫ t

t1

(t − σ)x′′(σ)dσ

≤ x(t1) + x′(t1)(t − t1) − C

2
(t − t1)2,

(2.13)

which gives limt→∞x(t) = −∞, a contradiction to the positivity of x and so (2.11) holds.

Lemma 2.4. Let q(t) ≥ 0 for large t. If x is a solution of (1.1) such that x(t) > 0 for large t and the
function

w(t) = x′′(t) + q(t)x(t) (2.14)

is nonincreasing for large t, then

lim
t→∞

w(t) = w0 ≥ 0. (2.15)

Proof. By contradiction, assume w0 < 0. Then for large t

x′′(t) < −q(t)x(t) ≤ 0. (2.16)

If there exists T ≥ 0 such that x′(T) < 0, then x(t) < 0 for large t, which is a contradiction.
Thus x′(t) ≥ 0 for large t, which is again a contradiction to Theorem 2.1.

In view of Theorem 2.1, any nonoscillatory solution x of (1.1) is one of the following
types.

Type I: x satisfies for large t

x(t)x′(t) ≤ 0, lim
t→∞

x(t) = 0. (2.17)

Type II: x satisfies for large t

|x(t)| ≥ mx > 0. (2.18)
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Type III: x satisfies for large t

x(t)/= 0, lim inf
t→∞

|x(t)| = 0, x′ changes its sign. (2.19)

Remark 2.5. Nonoscillatory solution x of (1.1), such that x′ changes its sign, is usually called
weakly oscillatory solution. Note that weakly oscillatory solutions can be either of Type II or
Type III. When ϕ(t) ≡ t, in [1, Theorem 6] conditions are given under which (1.1) does not
have weakly oscillatory solutions, especially solutions of Type III. This result will be used
later for proving that the only nonoscillatory solutions of (1.1) are of Type I.

3. Necessary Condition for Oscillation

Our main result here deals with the existence of solutions of Type II.

Theorem 3.1. Assume q is continuously differentiable and is bounded away from zero, that is,

q(t) ≥ q0 > 0. (3.1)

If

∫∞

0

∣∣q′(t)
∣∣dt < ∞,

∫∞

0
r(t)dt < ∞,

(3.2)

then for any c ∈ R \ {0} there exists a solution x of (1.1) satisfying

lim
t→∞

x(t) = c, lim
t→∞

x(i)(t) = 0, i = 1, 2. (3.3)

Proof. We prove the existence of solutions of (1.1) satisfying (3.3) for c = 1.
Let u and v be two linearly independent solutions of (1.3) with Wronskian d = 1. By

assumptions on q, all solutions of (1.3) and their derivatives are bounded; see, for example,
[18, Theorem 2]. Put

β = max
1/2≤u≤3/2

f(u), M = sup
t≥t0

{|u(t)|, ∣∣u′(t)
∣∣, |v(t)|, ∣∣v′(t)

∣∣}
(3.4)

and denote h(s, t) = u(s)v′(t)−u′(t)v(s). Thus, there exists k1 > 0 such that (1+2|h(s, t)|)f(u) ≤
k1 for any u ∈ [1/2, 3/2]. Hence

2(|h(s, t)|)f(u) ≤ k1, (1 + |h(s, t)|)f(u) ≤ k1. (3.5)
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Let t0 be large so that

4k1
3q0

∫∞

t0

r(t)dt ≤ 1
2
,

1
q0

∫∞

t0

∣
∣q′(s)

∣
∣ds ≤ 1

4
. (3.6)

Let t ≥ t0 be such that ϕ(t) ≥ t0 for t ≥ t. Define

ϕ(t) =

⎧
⎨

⎩

ϕ(t), if t ≥ t,

ϕ
(
t
)
, if t0 ≤ t ≤ t.

(3.7)

Denote by C[t0,∞) the Fréchet space of all continuous functions on [t0,∞), endowed with
the topology of uniform convergence on compact subintervals of [t0,∞). Consider the set
Ω ⊂ C[t0,∞) given by

Ω =
{
x ∈ C[t0,∞) :

1
2
≤ x(t) ≤ 3

2

}
. (3.8)

Let T ∈ [t0,∞) be fixed and let I = [t0, T]. For any x ∈ Ω, consider the “cut” function

Gx(t) = −
∫T

t

∫∞

τ

(
r(s)f

(
x
(
ϕ(s)

)))
(u(s)v(τ) − u(τ)v(s))dsdτ, t ∈ I. (3.9)

Then

G′
x(t) =

∫∞

t

(
r(s)f

(
x
(
ϕ(s)

)))
(u(s)v(t) − u(t)v(s))ds,

G′′
x(t) =

∫∞

t

(
r(s)f

(
x
(
ϕ(s)

)))(
u(s)v′(t) − u′(t)v(s)

)
ds,

G′′′
x (t) = −r(t)f(x(ϕ(t))) − q(t)

∫∞

t

(
r(s)f

(
x
(
ϕ(s)

)))
(u(s)v(t) − u(t)v(s))ds,

= −r(t)f(x(ϕ(t))) −G′
x(t)q(t).

(3.10)

Consider the function

g(t) = G′′
x(t) + q(t)Gx(t), t ∈ I. (3.11)

Then g(T) = G′′
x(T) and

g ′(t) = G′′′
x (t) + q(t)G′

x(t) + q′(t)Gx(t) = −r(t)f(x(ϕ(t))) + q′(t)Gx(t), t ∈ I. (3.12)
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Integrating from t to T we have

g(t) = g(T) −
∫T

t

g ′(s)ds = g(T) +
∫T

t

(
r(s)f

(
x
(
ϕ(s)

)))
ds −

∫T

t

q′(s)Gx(s)ds

= G′′
x(x)(T) +

∫T

t

(
r(s)f

(
x
(
ϕ(s)

)))
ds −

∫T

t

q′(s)Gx(s)ds.

(3.13)

From here and (3.11)we get

Gx(t) =
1

q(t)

(

G′′
x(T) −G′′

x(t) +
∫T

t

(
r(s)f

(
x
(
ϕ(s)

)))
ds −

∫T

t

q′(s)Gx(s)ds

)

=
1

q(t)

∫T

t

(
r(s)f

(
x
(
ϕ(s)

)))
(1 − h(s, t))ds

+
1

q(t)

∫∞

T

(
r(s)f

(
x
(
ϕ(s)

)))
(h(s, T) − h(s, t))ds − 1

q(t)

∫T

t

q′(s)Gx(s)ds.

(3.14)

Thus, in view of (3.5), we obtain

|Gx(t)| ≤ k1
q(t)

∫∞

t

r(s)ds +max
t≤s≤T

|Gx(s)| 1
q(t)

∫∞

t0

∣∣q′(s)
∣∣ds, (3.15)

or, in view of (3.6),

|Gx(t)| ≤ k1
q0

∫∞

t

r(s)ds +
1
4
max
t≤s≤T

|Gx(s)|, (3.16)

that is,

max
t≤σ≤T

|Gx(σ)| ≤ k1
q0

∫∞

t

r(s)ds +
1
4
max
t≤σ≤T

|Gx(σ)|. (3.17)

Hence

|Gx(t)| ≤ max
t≤σ≤T

|Gx(σ)| ≤ 4k1
3q0

∫∞

t

r(s)ds, (3.18)

that is,

∣∣∣∣∣

∫T

t

∫∞

τ

(
r(s)f

(
x
(
ϕ(s)

)))
(u(s)v(τ) − u(τ)v(s))dsdτ

∣∣∣∣∣
≤ 4k1

3q0

∫∞

t

r(s)ds. (3.19)
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In view of (3.19), using the Cauchy criterion, the limit

lim
T →∞

∫T

t

∫∞

τ

(
r(s)f

(
x
(
ϕ(s)

)))
(u(s)v(τ) − u(τ)v(s))dsdτ (3.20)

exists finitely for any fixed t. This fact means that the operator

H(x)(t) = 1 −
∫∞

t

∫∞

τ

(
r(s)f

(
x
(
ϕ(s)

)))
(u(s)v(τ) − u(τ)v(s))dsdτ (3.21)

is well defined for any x ∈ Ω. Moreover, from (3.19) we have for t ≥ t0

∣∣∣∣

∫∞

t

∫∞

τ

(
r(s)f

(
x
(
ϕ(s)

)))
(u(s)v(τ) − u(τ)v(s))dsdτ

∣∣∣∣≤
4k1
3q0

∫∞

t

r(s)ds (3.22)

and so, in view of (3.6), H maps Ω into itself.
Let us show that H(Ω) is relatively compact, that is, H(Ω) consists of functions which

are equibounded and equicontinuous on every compact interval of [t0,∞). Because H(Ω) ⊂
Ω, the equiboundedness follows. Moreover, for any x ∈ Ωwe have

H′(x)(t) =
∫∞

t

(
r(s)f

(
x
(
ϕ(s)

)))
(u(s)v(t) − u(t)v(s))ds, (3.23)

and so

∣∣H′(x)(t)
∣∣ ≤ 2βM2

∫∞

t

r(s)ds, (3.24)

which proves the equicontinuity of the elements of H(Ω).
Now we prove the continuity of H on Ω. Let {xn}, n ∈ N, be a sequence in Ω which

converges uniformly on every compact interval of [t0,∞) to x ∈ Ω. Because H(Ω) is relatively
compact, the sequence {H(xn)} admits a subsequence, denoted again by {H(xn)} for sake of
simplicity, which is convergent to y ∈ Ω. From (3.4)we obtain

∣∣∣∣

∫∞

τ

(
r(s)f

(
xn

(
ϕ(s)

)))
(u(s)v(τ) − u(τ)v(s))ds

∣∣∣∣ ≤ 2βM2R(τ), (3.25)

where R is defined in (1.13). Hence, in virtue of the Lebesgue dominated convergence
theorem, {Gxn(t)} converges pointwise to Gx(t) on [t0, T], that is,

lim
n→∞

Gxn(t) = Gx(t). (3.26)
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Choosing a sufficiently large T and using (3.22), we obtain

|H(xn)(t) −H(x)(t)|
= |H(xn)(t) −Gxn(t) +Gxn(t) −Gx(t) +Gx(t) −H(x)(t)|
≤ |H(xn)(T) − 1| + |Gxn(t) −Gx(t)| + |H(x)(T) − 1|

≤ |Gxn(t) −Gx(t)| + 8k1
3q0

∫∞

T

r(s)ds.

(3.27)

Then, from (3.26), {H(xn)} converges point-wise to H(x) and, in view of the uniqueness of
the limit, H(x) = y is the only cluster point of the compact sequence {H(xn)}, that is, the
continuity of H inΩ. Applying the Tychonov fixed point theorem, there exists a solution x of
the integral equation

x(t) = H(x)(t), (3.28)

which is a solution of (1.1) with the required properties.

Remark 3.2. Theorem 3.1 partially extends [16, Theorem 1.4] for n = 3.

4. Sufficient Condition for Oscillation

In this section we give a sufficient condition for oscillation of (1.1) in the sense that any
solution is either oscillatory or satisfies lim inft→∞x(t) = 0.

Theorem 4.1. Assume

lim inf
u→±∞

∣∣f(u)
∣∣ > 0, (4.1)

and q continuously differentiable for large t satisfying

q(t) > 0, q′(t) ≤ 0. (4.2)

If

∫∞
∞r(t)dt = ∞, (4.3)

then any (nonoscillatory) solution x of (1.1) satisfies

lim inf
t→∞

|x(t)| = 0. (4.4)

Moreover, any nonoscillatory solution with x(t)x′(t) ≤ 0 for large t satisfies limt→∞x(i)(t) = 0 for
i = 0, 1, 2.
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Proof. To prove the first assertion, it is sufficient to show that (1.1) does not have solutions of
Type II. By contradiction, let x be a solution of (1.1) such that x(t) > m > 0, x(ϕ(t)) > m for
t ≥ t0.

Consider the function w given by (2.14). Then

w′(t) = x′′′(t) + q(t)x′(t) + q′(t)x(t) = −r(t)f(x(ϕ(t))) + q′(t)x(t) ≤ 0. (4.5)

By Lemma 2.4, we have limt→∞w(t) = w∞, 0 ≤ w∞ < ∞. Since

f
(
x
(
ϕ(t)
)) ≥ inf

u≥m
f(u) = K > 0 for t ≥ t0, (4.6)

we get

f
(
x
(
ϕ(t)
)) − q′(t)

r(t)
x(t) ≥ K. (4.7)

Consequently, we have from (4.5)

w(t0) ≥ w(t0) −w(t) =
∫ t

t0

r(s)
(
f
(
x
(
ϕ(s)

)) − q′(s)
r(s)

x(s)
)
ds ≥ K

∫ t

t0

r(s)ds, (4.8)

and, as t → ∞, we get a contradiction. Hence, any nonoscillatory solution satisfies (4.4).
Now let x be a solution of (1.1) such that x(t) > 0, x(ϕ(t)) > 0, x′(t) ≤ 0 for t ≥ t1 ≥ 0.

Hence x is of Type I and

lim
t→∞

x(t) = 0. (4.9)

Because q is bounded and w is nonincreasing, (2.11) and (4.9) yield

lim
t→∞

w(t) = 0, (4.10)

and so limt→∞x′′(t) = 0. Consider the function F defined by

F(t) = F(x)(t) = 2x′′(t)x(t) − (x′(t)
)2 + q(t)x2(t). (4.11)

Then we have for t ≥ t1

F ′(t) = −2r(t)f(x(ϕ(t)))x(t) + q′(t)x2(t) < 0. (4.12)

Since F is decreasing and q is bounded, in view of (2.10) we obtain limt→∞F(t) = 0 and so
limt→∞x′(t) = 0.
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Remark 4.2. Theorem 4.1 generalizes Theorem 1.1. In [11, Theorem 3.8] the first part of
Theorem 4.1 is proved, by a different method, for the particular (1.5) under assumptions
(4.2) and (4.3).

Applying Theorems 3.1 and 4.1 we get the following result which extends Theorem 1.1
for (1.9).

Corollary 4.3. Assume (4.1) and that q is continuously differentiable for large t satisfying (4.2) then,
condition (4.3) is necessary and sufficient in order to every solution of (1.1) is either oscillatory or
satisfies (4.4).

From Theorem 4.1 and its proof, we have the following results.

Corollary 4.4. Assume that q is continuously differentiable for large t satisfying (4.2). If (4.1) and
(4.3) are satisfied, then for any nonoscillatory solution of (1.1) one has

F(t) > 0, F ′(t) < 0 for large t, (4.13)

where F is defined by (4.11).
In addition, if ϕ(t) ≡ t, then x is a nonoscillatory solution of (1.1) if and only if F(t) > 0 for

large t.

Proof. By Theorem 4.1, any nonoscillatory solution of (1.1) is either of Type I or Type III. If x
is of Type I, then limt→∞x(i)(t) = 0 for i = 0, 1, 2 and so limt→∞F(t) = 0. Hence, by using the
argument in the proof of Theorem 4.1, we obtain F ′(t) < 0 for large t.

If x is of Type III, then there exists a sequence {tk} of zeros of x′ tending to∞ such that
x′′(tk) ≥ 0 and so F(tk) > 0. Similarly, reasoning as in the proof of Theorem 4.1, one has that
F ′(t) < 0 for this solution. Thus, in both cases, the monotonicity of F gives (4.13).

Finally, if ϕ(t) ≡ t and x is an oscillatory solution, then f(x(t))x(t) ≥ 0 for any t and so
F ′(t) ≤ 0 for large t. Since F(τk) ≤ 0 for some sequence {τk}, we get F(t) < 0 for large t.

Theorem 4.5. Let ϕ(t) ≥ t and q is continuously differentiable for t ≥ 0 satisfying (4.2). If (4.1) and
(4.3) are satisfied, for any nonoscillatory solution x of (1.1) defined for t ≥ tx, one has

x(t)/= 0 for t ≥ tx. (4.14)

In particular, any continuable solution with zero is oscillatory.

Proof. Assume that x(t) > 0 for t > T > tx and x(T) = 0. Since ϕ(t) ≥ t, we have
f(x(ϕ(t)))x(t) > 0 for t > T . For the function F defined by (4.11), from (4.12) we obtain
F ′(t) ≤ 0 for t > T. Because F(T) ≤ 0, we obtain F(t) ≤ 0 for t > T. This is a contradiction with
Corollary 4.4 and the assertion follows.

We conclude this section with the following result on the continuability of solutions of
(1.1).

Proposition 4.6. Assume q is continuously differentiable for t ≥ 0 satisfying (4.2). Then any solution
of (1.1) which is not continuable at infinity has an infinite number of zeros.
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Proof. Let x be a solution of (1.1) defined on [tx, τ), τ < ∞. If x has a finite number of zeros
on [tx, τ), then there exists T, tx < T < τ, such that x(t)/= 0, x(ϕ(t))/= 0 on J = [T, τ). Suppose
x(t) > 0 on J . Consider the function w given by (2.14). Then w′(t) ≤ 0.

Now consider these two cases. (a) Let x′′(t) > 0 in the left neighborhood of τ or x′′

changes sign in this neighborhood. Then 0 ≤ w(t) ≤ w(T) for t ∈ J . Integrating this inequality
on J we obtain

x′(t) ≤ x′(T) +w(T)(τ − T) −
∫ t

T

q(s)x(s)ds ≤ x′(T) +w(T)(τ − T) = c, (4.15)

Thus x(t) ≤ x(T) + c(t − T) and x is bounded on J . From here and the boundedness of w
we have that x′′ is bounded on J . Since x(i) (i = 0, 1, 2) are bounded, the solution x can be
extended beyond τ , which is a contradiction.

(b) Let x′′(t) < 0 in the left neighborhood of τ , say J1 ⊂ J . Then x′ is decreasing
and x is bounded on J1. We claim that x′(t) does not tend to −∞ as t → τ−. Indeed, if
x′(τ−) = −∞, then there exists a sequence {tk}, tk → τ−, such that limkx

′′′(tk) = −∞, which is
a contradiction with the boundedness of x. Thus x′′′ is bounded and so x′′ is bounded on J1
and x is continuable, which is again a contradiction.

Remark 4.7. Theorem 4.5 and Proposition 4.6 improve [11, Corollary 3.4] and [11, Theorem
1.2] for (1.5), respectively.

5. Property A

In this section we study Property A for (1.1), that is, any solution either is oscillatory or tends
to zero as t → ∞.

We start with the following result on the boundedness of nonoscillatory solutions,
which extends [11, Theorem 3.12] for (1.5).

Theorem 5.1. Assume that q is continuously differentiable for large t and there exists a constant q0
such that

q(t) ≥ q0 > 0, q′(t) ≤ 0 for large t. (5.1)

Then every nonoscillatory solution x of (1.1) satisfies

lim sup
t→∞

∣∣∣x(i)(t)
∣∣∣ < ∞, i = 0, 1, 2. (5.2)

Proof. Without loss of generality, assume that x is a solution of (1.1) such that x(t) > 0,
x(ϕ(t)) > 0 for t ≥ T ≥ 0. Consider the function w defined by (2.14). Then

w′(t) = −r(t)f(x(ϕ(t))) + q′(t)x(t) ≤ q′(t)x(t) ≤ 0, (5.3)
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that is, w is nonincreasing. By Lemma 2.4, limt→∞w(t) = w0 ≥ 0. Moreover, from (5.3) we
have

∫∞

T

∣
∣q′(t)

∣
∣x(t)dt ≤ −

∫∞

T

w′(t)dt = w(T) −w0, (5.4)

or

lim
t→∞

∫∞

t

∣
∣q′(t)

∣
∣x(t)dt = 0 , lim

t→∞

∫∞

t

∣
∣w′(t)

∣
∣dt = 0. (5.5)

Let u, v be two linearly independent solutions of (1.3)withWronskian d. Because all solutions
of (1.3) together with their derivatives are bounded, see, for example, [19, Ch. XIV, Theorem
3.1], from (5.5)we get

lim
t→∞

∫∞

t

(
w′(s) − q′(s)x(s)

)
(u(s)v(t) − u(t)v(s))ds = 0. (5.6)

Moreover, from the equality

x′′′(t) + q(t)x′(t) = w′(t) − q′(t)x(t), (5.7)

using the variation of constants formula, we have

x′(t) = c1u(t) + c2v(t) − 1
d

∫∞

t

(
w′(s) − q′(s)x(s)

)
(u(s)v(t) − u(t)v(s))ds, (5.8)

where c1 and c2 are real constants. Thus x′ is bounded. Moreover,

x′′(t) = c1u
′(t) + c2v

′(t) −
∫∞

t

(
w′(s) − q′(s)x(s)

)(
u(s)v′(t) − u′(t)v(s)

)
ds. (5.9)

Since w is bounded, u, v, u′, v′ are bounded, and (5.5) holds, x′′ is bounded, too. From here
and (2.14) the boundedness of x follows.

The next result describes the asymptotic properties of nonoscillatory solutions andwill
be used later.

Theorem 5.2. Assume (4.1), (4.3), and q is continuously differentiable satisfying (5.1). If

lim inf
u→ 0

f(u)
u

> 0, (5.10)

∫∞

0
r(t)
∣∣t − ϕ(t)

∣∣dt < ∞, (5.11)
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then any nonoscillatory solution x of (1.1) defined on [tx,∞) satisfies

∫∞

tx

r(t)x2(t)dt < ∞. (5.12)

If, moreover,

q(t)
r(t)

≤ C < ∞ for large t, (5.13)

then x satisfies

∫∞

tx

(
x′(t)

)2
dt < ∞. (5.14)

Proof. Theorem 4.1 yields that x is not of Type II. Then there exists T ≥ tx such that for t ≥ T
either

x(t) > 0, x
(
ϕ(t)
)
> 0, x′(t) ≤ 0, lim

t→∞
x(t) = 0, (5.15)

or

x(t) > 0, x
(
ϕ(t)
)
> 0, x′ changes its sign . (5.16)

By Theorem 5.1, x and x′ are bounded, that is, there exists m > 0 such that |x(t)| ≤
m, |x′(t)| ≤ m for t ≥ tx. By Corollary 4.4, the function F, given by (4.11), is positive for large
t, say t ≥ T, and has a finite limit as t → ∞.Moreover

∞ > F(T) − F(∞) =
∫∞

T

F ′(t)dt ≥ 2
∫∞

T

r(t)x(t)f
(
x
(
ϕ(t)
))
dt

≥ 2K
∫∞

T

r(t)x(t)x
(
ϕ(t)
)
dt.

(5.17)

From the boundedness of x′ we get

x
(
ϕ(t)
)
= x(t) − x′(ξ)

(
t − ϕ(t)

) ≥ x(t) −m
∣∣t − ϕ(t)

∣∣, (5.18)

and so

∫∞

T

r(t)x(t)x
(
ϕ(t)
)
dt ≥

∫∞

T

r(t)x2(t)dt −m2
∫∞

T1

r(t)
∣∣t − ϕ(t)

∣∣dt. (5.19)

Hence, in view of (5.11) and (5.17), we obtain (5.12).
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In order to complete the proof, define for t ≥ T

z(t) = 2x′(t)x(t) − 3
∫ t

T

(
x′(s)

)2
ds +

∫ t

T

q(s)x2(s)ds. (5.20)

Then z′(t) = F(t) > 0 for t ≥ T and so z is increasing. If x satisfies either (5.15) or (5.16), there
exists a sequence {τk} tending to ∞ such that

x(τk)x′(τk) ≤ 0 , k = 1, 2, . . . . (5.21)

Moreover,

∫∞

T

q(s)x2(s)ds =
∫∞

T

q(s)
r(s)

r(s)x2(s)ds

≤ C

∫∞

T

r(s)x2(s)ds = C1 < ∞.

(5.22)

Now, in view of (5.20) and (5.21), we obtain

3
∫ τk

T

(
x′(t)

)2
dt = −z(τk) + 2x′(τk)x(τk) +

∫ τk

T

q(s)x2(s)ds

≤ −z(τ1) + C1,

(5.23)

and so (5.14) is satisfied.

Using the previous results, we obtain a sufficient condition for property A.

Theorem 5.3. Assume (4.1), (5.10), (5.11), and q is continuously differentiable satisfying (5.1). If
there existsM0 > 0 such that

r(t) ≥ M0 for large t, (5.24)

then (1.1) has property A, that is, any nonoscillatory solution x of (1.1) satisfies

lim
t→∞

x(i)(t) = 0, i = 0, 1, 2. (5.25)

Proof. Let x be a nonoscillatory solution of (1.1) defined for t ≥ tx ≥ 0. Because (5.24) implies
(4.3), by Theorem 4.1, x is of Type I or Type III. If x is of Type I, the assertion follows applying
again Theorem 4.1. Now let x be of Type III and assume x(t) > 0, x(ϕ(t)) > 0 for t ≥ T ≥ tx.
By applying Theorem 5.2, in view of (5.24), we obtain

∫∞

tx

x2(t)dt < ∞,

∫∞

tx

(
x′(t)

)2
dt < ∞. (5.26)
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According to the inequality of Nagy, see, for example, [20, V, § 2, Theorem 1], we get

lim
t→∞

x(t) = 0. (5.27)

Now consider the function w given by (2.14). Then w′(t) = −r(t)f(x(ϕ(t))) + q′(t)x(t) < 0
for t ≥ T . For a sequence {tk} of zeros of x′′ tending to ∞, we have limk→∞w(tk) = 0. Hence,
limt→∞w(t) = 0 and

lim
t→∞

x′′(t) = 0. (5.28)

By Corollary 4.4, the function F, given by (4.11), is positive decreasing for large t. From here,
(2.10), (5.27), and (5.28)we obtain limt→∞x′(t) = 0.

Corollary 5.4. Suppose assumptions of Theorem 5.3, ϕ(t) = t, and for some K > 0

∣∣f(u)
∣∣ ≥ K|u| for u ∈ R. (5.29)

then any nonoscillatory solution x of (1.1) satisfies x(t)x′(t) < 0 for large t.

Proof. The assertion follows from Theorem 5.3 and [1, Theorem 6].
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[1] M. Bartušek, M. Cecchi, Z. Došlá, and M. Marini, “On nonoscillatory solutions of third order
nonlinear differential equations,” Dynamic Systems and Applications, vol. 9, no. 4, pp. 483–499, 2000.
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