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Let E be a real Banach space which is uniformly smooth and uniformly convex. Let K be
a nonempty, closed, and convex sunny nonexpansive retract of E, where Q is the sunny
nonexpansive retraction. If E admits weakly sequentially continuous duality mapping j, path
convergence is proved for a nonexpansive mapping T : K → K. As an application, we prove
strong convergence theorem for common zeroes of a finite family of m-accretive mappings of K
to E. As a consequence, an iterative scheme is constructed to converge to a common fixed point
(assuming existence) of a finite family of pseudocontractive mappings from K to E under certain
mild conditions.

1. Introduction

Let E be a real Banach space with dual E∗ and K a nonempty, closed and convex subset of E.
A mapping T : K → K is said to be nonexpansive if for all x, y ∈ K, we have

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥. (1.1)

A point x ∈ K is called a fixed point of T if Tx = x. The fixed points set of T is the set
F(T) := {x ∈ K : Tx = x}.

Construction of fixed points of nonexpansive mappings is an important subject in
nonlinear mapping theory and its applications; in particular, in image recovery and signal
processing (see, e.g., [1–3]). Many authors have worked extensively on the approximation
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of fixed points of nonexpansive mappings. For example, the reader can consult the recent
monographs of Berinde [4] and Chidume [5].

We denote by J the normalized duality mapping from E to 2E
∗
defined by

Jx :=
{

f∗ ∈ E∗ :
〈

x, f∗〉 = ‖x‖2 = ∥
∥f∗∥∥2

}

, (1.2)

where 〈·, ·〉 denotes the generalized duality pairing between members of E and E∗. It is well
known that if E∗ is strictly convex then J is single valued (see, e.g., [5, 6]). In the sequel, we
will denote the single-valued normalized duality mapping by j.

A mapping A : D(A) ⊆ E → E is called accretive if, for all x, y ∈ D(A), there exists
j(x − y) ∈ J(x − y) such that

〈

Ax −Ay, j
(

x − y
)〉 ≥ 0. (1.3)

By the results of Kato [7], (1.3) is equivalent to

∥
∥x − y

∥
∥ ≤ ∥

∥x − y + s
(

Ax −Ay
)∥
∥, ∀s > 0. (1.4)

If E is a Hilbert space, accretive mappings are also calledmonotone. A mappingA is called m-
accretive if it is accretive andR(I+rA), range of (I+rA), isE for all r > 0; andA is said to satisfy
the range condition if cl(D(A)) ⊆ R(I + rA), for all r > 0, where cl(D(A)) denotes the closure
of the domain ofA.A is said to be maximal accretive if it is accretive and the inclusion G(A) ⊂
G(B), where G(A) is a graph of A, with B accretive, implies G(A) = G(B). It is known (see
e.g., [8]) that every maximal accretive mapping is m-accretive and the converse holds if E is
a Hilbert space. Interest in accretive mappings stems mainly from their firm connection with
equations of evolution. It is known (see, e.g., [9]) that many physically significant problems
can be modelled by initial-value problems of the following form:

u′(t) +Au(t) = 0, u(0) = u0, (1.5)

where A is an accretive mapping in an appropriate Banach space. Typical examples where
such evolution equations occur can be found in the heat, wave, or Schrödinger equations.
One of the fundamental results in the theory of accretive mappings, due to Browder [10],
states that if A is locally Lipschitzian and accretive, then A is m-accretive. This result was
subsequently generalized by Martin [11] to the continuous accretive mappings. If in (1.5),
u(t) is independent of t, then (1.5) reduces to

Au = 0, (1.6)

whose solutions correspond to the equilibrium points of the system (1.5). Consequently,
considerable research effects have been devoted, especially within the past 30 years or so,
to iterative methods for approximating these equilibrium points.

Closely related to the class of accretive mappings is the class of pseudocontractive
mappings. A mapping T with domain D(T) in E and range R(T) in E is called
pseudocontractive if A := I − T is accretive. It is then clear that any zero of A is a fixed point
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of T . Consequently, the study of approximating fixed points of pseudocontractive mappings,
which correspond to equilibrium points of the system (1.5), became a flourishing area of
research for numerous mathematicians (see, e.g., [12–14] and the references therein).

It is not difficult to deduce from (1.4) that the mapping A is accretive if and only
if (I + rA)−1, for all r > 0, is nonexpansive on the range of (I + rA). Thus, in particular,
JA := (I +A)−1 is nonexpansive and single valued on the range of (I + A). Furthermore,
F(JA) := N(A) := {x ∈ D(A) : Ax = 0}. It is well known that every nonexpansive mapping
is pseudocontractive and the converse does not, however, hold.

Very recently, Yao et al. [15] proved path convergence for a nonexpansive mapping in
a real Hilbert space. In particular, they proved the following theorem.

Theorem 1.1 (Yao et al. [15]). Let K be a nonempty, closed, and convex subset of a real Hilbert
space H. Let T : K → K be a nonexpansive mapping with F(T)/= ∅. For t ∈ (0, 1), let the net {xt}
be generated by xt = TPK[(1 − t)xt], then as t → 0, the net {xt} converges strongly to a fixed point
of T .

Furthermore, they applied Theorem 1.1 to prove the following theorem.

Theorem 1.2 (Yao et al. [15]). LetK be a nonempty, closed, and convex subset of a real Hilbert space
H. Let T : K → K be a nonexpansive mapping such that F(T)/= ∅. Let {αn}∞n=1 and {βn}∞n=1 be two
real sequences in (0, 1). For an arbitrary x1 ∈ K, let the sequence {xn}∞n=1 be generated iteratively by

yn = PK[(1 − αn)xn],

xn+1 =
(

1 − βn
)

xn + βnTyn, n ≥ 1.
(1.7)

Suppose that the following conditions are satisfied:

(a) limαn = 0 and
∑∞

n=1 αn = ∞,

(b) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then the sequence {xn}∞n=1 generated by (1.7) converges strongly to a fixed point of T .

Motivated by the results of Yao et al. [15], we proved path convergence for a
nonexpansive mapping in a uniformly smooth real Banach space which is also uniformly
convex and E admits weakly sequentially continuous duality mapping j. As an application, a
strong convergence is proved for common zeroes of a finite family of m-accretive mappings
of K to E. As a consequence, an iterative scheme is constructed to converge to a common
fixed point (assuming existence) of a finite family of pseudocontractive mappings from K to
E under certain mild conditions.

2. Preliminaries

Let E be a real Banach space and let S := {x ∈ E : ‖x‖ = 1}. E is said to have a Gâteaux
differentiable norm (and E is called smooth) if the limit

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.1)
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exists for each x, y ∈ S; E is said to have a uniformly Gâteaux differentiable norm if for each
y ∈ S the limit is attained uniformly for x ∈ S. Further, E is said to be uniformly smooth if the
limit exists uniformly for (x, y) ∈ S × S. The modulus of smoothness of E is defined by

ρE(τ) := sup

{∥
∥x + y

∥
∥ +

∥
∥x − y

∥
∥

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}

. (2.2)

E is equivalently said to be smooth if ρE(τ) > 0, for any τ > 0.
Let dimE ≥ 2. The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined

by

δE(ε) := inf
{

1 −
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥
: ‖x‖ =

∥
∥y

∥
∥ = 1; ε =

∥
∥x − y

∥
∥

}

. (2.3)

E is uniformly convex if for any ε ∈ (0, 2], there exists a δ = δ(ε) > 0 such that if x, y ∈ E
with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε, then ‖(1/2)(x + y)‖ ≤ 1 − δ. Equivalently, E is
uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2]. E is called strictly convex if for all
x, y ∈ E, x /=y, ‖x‖ = ‖y‖ = 1, we have ‖λx + (1 − λ)y‖ < 1, for all λ ∈ (0, 1). It is known that
every uniformly convex Banach space is reflexive.

LetK ⊂ E be closed and convex andQ be a mapping of E ontoK. ThenQ is said to be
sunny ifQ(Q(x)+ t(x−Q(x))) = Q(x) for all x ∈ E and t ≥ 0. A mappingQ of E into E is said
to be a retraction ifQ2 = Q. If a mappingQ is a retraction, thenQ(z) = (z) for every z ∈ R(Q),
where R(Q) is the range of Q. A subset K of E is said to be a sunny nonexpansive retract of E
if there exists a sunny nonexpansive retraction of E ontoK and it is said to be a nonexpansive
retract of E if there exists a nonexpansive retraction of E ontoK. If E = H, the metric projection
PK is a sunny nonexpansive retraction fromH to any closed and convex subset ofH. But this
is not true in a general Banach spaces. We note that if E is smooth and Q is retraction of K
onto F(T), then Q is sunny and nonexpansive if and only if for each x ∈ K and z ∈ F(T) we
have 〈Qx − x, J(Qx − z)〉 ≤ 0, (see [16–18] for more details).

A mapping T with domain D(T) and range R(T) in E is said to be demiclosed at p if
whenever {xn}∞n=1 is a sequence in D(T) such that xn ⇀ x ∈ D(T) and Txn → p then Tx = p.

Suppose that J is single valued. Then, J is said to be weakly sequentially continuous if
for each {xn}∞n=1 ⊂ E which converges weakly to x implies J(xn) converges in weak∗ to J(x).

We need the following lemmas in the sequel.

Lemma 2.1 (Browder [19], Goebel and Kirk [20]). Let E be a real uniformly convex Banach space
and let K be a nonempty, closed, and convex subset of E and T : K → K is a nonexpansive mapping
such that F(T)/= ∅, then, I − T is demiclosed at zero.

Lemma 2.2 (Suzuki [21]). Let {xn}∞n=1 and {yn}∞n=1 be bounded sequences in a Banach space X and
let {βn}∞n=1 be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose that
xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 1 and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0,
then limn→∞‖yn − xn‖ = 0.
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Lemma 2.3 (Chidume [5], Reich [22]). Let E be a uniformly real smooth Banach space, then there
exists a nondecreasing continuous function β : [0,∞) → [0,∞) with limt→ 0+β(s) = 0 and β(cs) ≤
cβ(s) for c ≥ 1 such that for all x, y ∈ E, the following inequality holds:

∥
∥x + y

∥
∥
2 ≤ ‖x‖2 + 2

〈

y, j(x)
〉

+max{‖x‖, 1}∥∥y∥∥β(∥∥y∥∥). (2.4)

Lemma 2.4 (Xu [23]). Let {an} be a sequence of nonnegative real numbers which satisfies the
following relation:

an+1 ≤ (1 − αn)an + αnσn, n ≥ 1, (2.5)

where {an}∞n=1 ⊂ [0, 1] and {σn}∞n=1 is a sequence in R satisfying the following:

(i)
∑

αn = ∞,

(ii) lim sup σn ≤ 0,

then, an → 0 as n → ∞.

Lemma 2.5 (Cioranescu [8]). Let A be a continuous accretive mapping defined on a real Banach
space E with D(A) = E, then A is m-accretive.

Lemma 2.6 (Zegeye and Shahzad [24]). Let K be a nonempty, closed, and convex subset of a real
strictly convex Banach space E. For each r = 1, 2, . . . ,N let Ar : K → E be an m-accretive mapping
such that

⋂N
r=1 N(Ai)/= ∅. Let a0, a1, a2, . . . , aN be real numbers in (0, 1) such that

∑N
i=0 ai = 1, and

let SN := a0I + a1JA1 + a2JA2 + · · · + aNJAN , with JAr := (I +Ar)
−1, then SN is nonexpansive and

F(SN) =
⋂N

r=1 N(Ar).

3. Path Convergence Theorem

Let K be a nonempty, closed, and convex sunny nonexpansive retract of a uniformly smooth
Banach space E which is also uniformly convex where QK is the sunny nonexpansive
retraction of E onto K. Let T : K → K be nonexpansive. For each t ∈ (0, 1), we define
the mapping Tt : K → K by

Ttx := TQK[(1 − t)x]. (3.1)

We will show that Tt is a contraction.
From (3.1), we have

∥
∥Ttx − Tty

∥
∥ ≤ ∥

∥QK(1 − t)x −QK(1 − t)y
∥
∥

≤ (1 − t)
∥
∥x − y

∥
∥,

(3.2)

which implies that Tt is a contraction. Therefore, by the Banach contraction mapping
principle, there exists a unique fixed point zt of Tt in K. That is,

zt = TQK[(1 − t)zt]. (3.3)
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Next, we prove that {zt} is bounded. Let x∗ ∈ F(T), then using (3.3), we have

‖zt − x∗‖ = ‖TQK(1 − t)zt − TQKx
∗‖

≤ ‖QK(1 − t)zt −QKx
∗‖

≤ ‖(1 − t)zt − tx∗ + tx∗ − x∗‖ = ‖(1 − t)(zt − x∗) − tx∗‖
≤ (1 − t)‖zt − x∗‖ + t‖x∗‖.

(3.4)

Thus, ‖zt − x∗‖ ≤ ‖x∗‖. This implies that {zt} is bounded.
We next show that ‖zt − Tzt‖ → 0 as t → 0, as follows:

‖zt − Tzt‖ = ‖TQK(1 − t)zt − TQKzt‖
≤ ‖QK(1 − t)zt −QKzt‖ ≤ ‖(1 − t)zt − zt‖
≤ t‖zt‖ −→ 0, (since t −→ 0).

(3.5)

Next, we show that {zt} is relatively norm compact as t → 0. Let {tn} be a sequence
in (0, 1) such that tn → 0 as n → ∞. Put zn := ztn . From (3.5), we obtain that

‖zn − Tzn‖ −→ 0. (3.6)

Remark 3.1. Let x∗ ∈ F(T) and r1 > 0 be sufficiently large such that zt ∈ Br1(x∗) ∩K for each
t ∈ (0, 1), where Br1(x∗) := {z ∈ E : ‖z − x∗‖ ≤ r1}. For the next theorem, we define A :=
max{1, 2r1} and assume that the function β from Lemma 2.3 satisfies the following condition:
β(s) ≤ s/A.

Theorem 3.2. Let E be a real Banach space which is uniformly smooth and uniformly convex and
let K be a nonempty, closed, and convex sunny nonexpansive retract of E, where QK is the sunny
nonexpansive retraction of E ontoK. Let T : K → K be a nonexpansive mapping with F(T)/= ∅. For
each t ∈ (0, 1), let {zt} be generated by (3.3), then as t → 0, {zt} converges strongly to a fixed point
of T if E admits weak sequential continuous duality mapping j.

Proof. From (3.3), we get for u ∈ F(T),

‖zt − u‖2 = ‖TQK[(1 − t)zt] − TQKu‖2

≤ ‖(1 − t)zt − u‖2 = ‖zt − u − tzt‖2

≤ ‖zt − u‖2 − 2t
〈

zt, j(zt − u)
〉

+max{‖zt − u‖, 1}t‖zt‖β(t‖zt‖)

≤ ‖zt − u‖2 − 2t
〈

zt, j(zt − u)
〉

+max{2r1, 1}t‖zt‖β(t‖zt‖)

≤ ‖zt − u‖2 − 2t
〈

zt, j(zt − u)
〉

+ t2‖zt‖2

= ‖zt − u‖2 − 2t
〈

zt − u, j(zt − u)
〉 − 2t

〈

u, j(zt − u)
〉

+ t2‖zt‖2

≤ ‖zt − u‖2 − 2t‖zt − u‖2 − 2t
〈

u, j(zt − u)
〉

+ t2‖zt‖2.

(3.7)
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This implies that

‖zt − u‖2 ≤ 〈

u, j(u − zt)
〉

+
t

2
‖zt‖2. (3.8)

In particular,

‖zn − u‖2 ≤ 〈

u, j(u − zn)
〉

+
tn
2
‖zn‖2. (3.9)

Since {zn} is bounded, without loss of generality, we can assume that {zn} converges weakly
to z∗. Using the demiclosedness property of (I − T) at zero and the fact that ‖zn − Tzn‖ → 0
as n → ∞, we obtain that z∗ ∈ F(T). Therefore, we can substitute z∗ for u in (3.9) to obtain

‖zn − z∗‖2 ≤ 〈

z∗, j(z∗ − zn)
〉

+
tn
2
‖zn‖2. (3.10)

Using the fact that j is weakly sequentially continuous, we have from the last inequality that
{zn} converges strongly to z∗. We now show that {zt} actually converges to z∗. Suppose that
{ztm} converges strongly to x∗. Put zm := ztm , then since ‖zm −Tzm‖ → 0 asm → ∞ and I −T
is demiclosed at zero, we have that x∗ ∈ F(T).

Claim (z∗ = x∗). Suppose in contradiction that x∗ /= z∗. Using (3.3), we obtain using similar
argument as above that

‖zm − z∗‖2 ≤ 〈

z∗, j(z∗ − zm)
〉

+
tm
2
‖zm‖2. (3.11)

Thus,

‖x∗ − z∗‖2 ≤ 〈

z∗, j(z∗ − x∗)
〉

. (3.12)

Interchanging x∗ and z∗, we obtain

‖z∗ − x∗‖2 ≤ 〈

x∗, j(x∗ − z∗)
〉

. (3.13)

Adding (3.12) and (3.13) yields

2‖x∗ − z∗‖2 ≤ ‖x∗ − z∗‖2 (3.14)

and implies that x∗ = z∗. This completes the proof.

Corollary 3.3. Let E := lp, 1 < p < ∞ and let K be a nonempty, closed, and convex sunny
nonexpansive retract of E, where QK is the sunny nonexpansive retraction of E onto K. Let T :
K → K be a nonexpansive mapping with F(T)/= ∅. For each t ∈ (0, 1), let {zt} be generated by (3.3)
then as t → 0, {zt} converges strongly to a fixed point of T .
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4. Iterative Methods and Convergence Theorems

Theorem 4.1. Let E be a real Banach space which is uniformly smooth and uniformly convex, and
let K be a nonempty, closed, and convex sunny nonexpansive retract of E, where QK is the sunny
nonexpansive retraction of E onto K. For each r = 1, 2, . . . ,N, let Ar : K → E be an m-accretive
mapping such that

⋂N
r=1 N(Ar)/= ∅. Let {αn}∞n=1 and {βn}∞n=1 be two real sequences in (0, 1). For an

arbitrary x1 ∈ K, let the sequence {xn}∞n=1 be generated iteratively by

yn = QK[(1 − αn)xn],

xn+1 =
(

1 − βn
)

xn + βnSNyn, n ≥ 1,
(4.1)

where SN := a0I + a1JA1 + a2JA2 + · · · + aNJAN , with JAr := (I +Ar)
−1, r = 1, 2, . . . ,N for 0 < ai <

1, i = 0, 1, 2, . . . ,N,
∑N

i=0 ai = 1. Suppose that the following conditions are satisfied:

(a) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(b) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then the sequence {xn}∞n=1 converges strongly to a common zero of {Ar}Nr=1 if E admits weakly
sequentially continuous duality mapping j.

Proof. By Lemma 2.6, SN is nonexpansive and F(SN) =
⋂N

r=1 N(Ar). Now, we first show that
the sequence {xn}∞n=1 is bounded. Let x∗ ∈ ⋂N

r=1 N(Ar) = F(SN), we have from (4.1) that

‖xn+1 − x∗‖ =
∥
∥
(

1 − βn
)

(xn − x∗) + βn
(

SNyn − x∗)∥∥

≤ (

1 − βn
)‖xn − x∗‖ + βn

∥
∥SNyn − x∗∥∥

≤ (

1 − βn
)‖xn − x∗‖ + βn[(1 − αn)‖xn − x∗‖ + αn‖x∗‖]

=
(

1 − αnβn
)‖xn − x∗‖ + αnβn‖x∗‖

≤ max{‖xn − x∗‖, ‖x∗‖}
...

≤ max{‖x1 − x∗‖, ‖x∗‖}.

(4.2)

Hence, {xn}∞n=1 is bounded and {SNxn} is also bounded. Set un = SNyn, n ≥ 1. It follows that

‖un+1 − un‖ =
∥
∥SNyn+1 − SNyn

∥
∥

≤ ∥
∥yn+1 − yn

∥
∥ ≤ ‖(1 − αn+1)xn+1 − (1 − αn)xn‖

≤ ‖xn+1 − xn‖ + αn+1‖xn+1‖ + αn‖xn‖.
(4.3)
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Hence, lim supn→∞(‖un+1 −un‖ − ‖xn+1 −xn‖) ≤ 0. This together with Lemma 2.2 implies that
limn→∞‖un − xn‖ = 0. Thus,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

βn‖xn − un‖ = 0,

‖xn − SNxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − SNxn‖
≤ ‖xn − xn+1‖ +

(

1 − βn
)‖xn − SNxn‖ + βn

∥
∥SNyn − SNxn

∥
∥

≤ ‖xn − xn+1‖ +
(

1 − βn
)‖xn − SNxn‖ + βn

∥
∥yn − xn

∥
∥

= ‖xn − xn+1‖ +
(

1 − βn
)‖xn − SNxn‖ + βn‖QK[(1 − αn)xn] −QKxn‖

≤ ‖xn − xn+1‖ +
(

1 − βn
)‖xn − SNxn‖ + βn‖(1 − αn)xn − xn‖

= ‖xn − xn+1‖ +
(

1 − βn
)‖xn − SNxn‖ + αnβn‖xn‖

≤ ‖xn − xn+1‖ +
(

1 − βn
)‖xn − SNxn‖ + αn‖xn‖, since βn ∈ (0, 1),

(4.4)

that is,

‖xn − SNxn‖ ≤ 1
βn

{‖xn − xn+1‖ + αn‖xn‖} −→ 0. (4.5)

Let {zt} be defined by (3.3) for T = SN , then from Theorem 3.2, zt → x∗ ∈ F(SN) =
⋂N

r=1 N(Ar) as t → 0 (This is guaranteed because E admits weakly sequentially continuous
duality mapping). Next, we show that

lim sup
n→∞

〈

x∗, j(x∗ − xn)
〉 ≤ 0. (4.6)

Now, since {xn}∞n=1 and {zt} are bounded, there exist r1 > 0, r2 > 0 such that zt ∈ Br1(x∗) ∩K

for each t ∈ (0, 1) and xn ∈ Br2(x∗) ∩ K for any n ≥ 1. Let ρ = r1 + r2, A = max{2ρ, 1}, and
β(s) ≤ s/A. Hence, by Lemma 2.3, we have

‖zt − xn‖2 = ‖zt − SNxn + SNxn − xn‖2

≤ ‖zt − SNxn‖2 + 2
〈

SNxn − xn, j(zt − SNxn)
〉

+max{‖zt − SNxn‖, 1}‖SNxn − xn‖β(‖SNxn − xn‖)

≤ ‖zt − SNxn‖2 + 2
〈

SNxn − xn, j(zt − SNxn)
〉

+max{‖zt − x∗‖ + ‖xn − x∗‖, 1}‖SNxn − xn‖β(‖SNxn − xn‖)

≤ ‖zt − SNxn‖2 + 2
〈

SNxn − xn, j(zt − SNxn)
〉

+max
{

2ρ, 1
}‖SNxn − xn‖β(‖SNxn − xn‖)
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≤ ‖zt − SNxn‖2 + 2
〈

SNxn − xn, j(zt − SNxn)
〉

+ ‖SNxn − xn‖2

≤ ‖zt − SNxn‖2 + 2‖SNxn − xn‖‖zt − SNxn‖ + ‖SNxn − xn‖2

≤ ‖zt − SNxn‖2 +M‖SNxn − xn‖

≤ ‖SNQK(1 − t)zt − SNxn‖2 +M‖SNxn − xn‖

≤ ‖QK(1 − t)zt − xn‖2 +M‖SNxn − xn‖

= ‖(1 − t)zt − xn‖2 +M‖SNxn − xn‖

= ‖zt − xn − tzt‖2 +M‖SNxn − xn‖

≤ ‖zt − xn‖2 − 2t
〈

zt, j(zt − xn)
〉

+max{‖zt − xn‖, 1}t‖zt‖β(t‖zt‖) +M‖Txn − xn‖

≤ ‖zt − xn‖2 − 2t
〈

zt, j(zt − xn)
〉

+max{‖zt − x∗‖ + ‖xn − x∗‖, 1}t‖zt‖β(t‖zt‖) +M‖Txn − xn‖

≤ ‖zt − xn‖2 − 2t
〈

zt, j(zt − xn)
〉

+max
{

2ρ, 1
}

t‖zt‖β(t‖zt‖) +M‖Txn − xn‖

≤ ‖zt − xn‖2 − 2t
〈

zt, j(zt − xn)
〉

+ t2‖zt‖2 +M‖Txn − xn‖
≤ ‖zt − xn‖2 − 2t

〈

zt, j(zt − xn)
〉

+ t2M1 +M‖Txn − xn‖
(4.7)

for some M > 0 andM1 > 0. Thus, 〈zt, j(zt − xn)〉 ≤ M1t/2 + (M/2t)‖SNxn − xn‖. Therefore,

lim
t→ 0

lim sup
n→∞

〈

zt, j(zt − xn)
〉 ≤ 0. (4.8)

Moreover,

〈−zt, j(xn − zt)
〉

=
〈−x∗, j(xn − x∗)

〉

+
〈−x∗, j(xn − zt)

〉

− 〈−x∗, j(xn − x∗)
〉

+
〈

x∗ − zt, j(xn − zt)
〉

=
〈−x∗, j(xn − x∗)

〉

+
〈−x∗, j(xn − zt) − j(xn − x∗)

〉

+
〈

x∗ − zt, j(xn − zt)
〉

.

(4.9)

Since {xn}∞n=1 is bounded, we have that 〈x∗ −zt, j(xn −zt)〉 → 0 as t → 0 and since j is norm-
to-weak∗ uniformly continuous on bounded sets, we have 〈−x∗, j(xn − zt) − j(xn − x∗)〉 → 0
as t → 0. Using (4.8) and (4.9), we obtain

lim sup
n→∞

〈−x∗, j(xn − x∗)
〉 ≤ 0. (4.10)
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From (4.1), we have

∥
∥yn − x∗∥∥ = ‖SNQK(1 − αn)xn − x∗‖2 ≤ ‖(1 − αn)xn − x∗‖2 = ‖xn − x∗ − αnx

∗‖2

≤ ‖xn − x∗‖2 − 2αn

〈

xn, j(xn − x∗)
〉

+max
{

1, 2ρ
}

αn‖xn‖β(αn‖xn‖)

≤ ‖xn − x∗‖2 − 2αn

〈

xn, j(xn − x∗)
〉

+ α2
n‖xn‖2

= ‖xn − x∗‖2 + 2αn

〈

xn − x∗ + x∗, j(x∗ − xn)
〉

+ α2
n‖xn‖2

= ‖xn − x∗‖2 + 2αn

〈

x∗, j(x∗ − xn)
〉 − 2αn

〈

x∗ − xn, j(x∗ − xn)
〉

+ α2
n‖xn‖2

= ‖xn − x∗‖2 + 2αn

〈

x∗, j(x∗ − xn)
〉

+ α2
n‖xn‖2 − 2αn‖xn − x∗‖2

= (1 − αn)‖xn − x∗‖2 − αn‖xn − x∗‖2 + 2αn

〈

x∗, j(x∗ − xn)
〉

+ α2
n‖xn‖2

≤ (1 − αn)‖xn − x∗‖2 + 2αn

〈

x∗, j(x∗ − xn)
〉

+ α2
n‖xn‖2.

(4.11)

Also, from (4.1), we obtain

‖xn+1 − x∗‖2 ≤ (

1 − βn
)‖xn − x∗‖2 + βn

∥
∥yn − x∗∥∥2

≤ (

1 − βn
)‖xn − x∗‖2 + βn

[

(1 − αn)‖xn − x∗‖2 + 2αn

〈

x∗, j(x∗ − xn)
〉

+ α2
n‖xn‖2

]

≤ (

1 − αnβn
)‖xn − x∗‖2 + 2αnβn

〈

x∗, j(x∗ − xn)
〉

+ α2
nβnM2

=
(

1 − αnβn
)‖xn − x∗‖2 + αnβn

[

2
〈

x∗, j(x∗ − xn)
〉

+
αn

βn
M2

]

,

(4.12)

where M2 := supn≥1‖xn‖2. Using Lemma 2.4, we get that {xn}∞n=1 converges strongly to x∗ ∈
F(SN) =

⋂N
r=1 N(Ar). This completes the proof.

If in Theorem 4.1, we consider K = E, the condition that each Ar, r = 1, 2, . . . ,N is
m-accretive may be replaced with continuity of each Ar . Thus, we have this theorem.

Theorem 4.2. Let E be a real Banach space which is uniformly smooth and also uniformly convex. For
each r = 1, 2, . . . ,N, let Ar : E → E be a continuous accretive mapping such that

⋂N
r=1 N(Ar)/= ∅.

Let {αn}∞n=1 and {βn}∞n=1 be two real sequences in (0, 1). For an arbitrary x1 ∈ E, let the sequence
{xn}∞n=1 be generated iteratively by

yn = (1 − αn)xn,

xn+1 =
(

1 − βn
)

xn + βnSNyn, n ≥ 1,
(4.13)

where SN := a0I + a1JA1 + a2JA2 + · · · + aNJAN , with JAr := (I +Ar)
−1, r = 1, 2, . . . ,N for

0 < ai < 1, i = 0, 1, 2, . . . ,N,
∑N

i=0 ai = 1. Suppose that the following conditions are satisfied:

(a) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(b) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,



12 Abstract and Applied Analysis

then the sequence {xn}∞n=1 converges strongly to a common zero of {Ar}Nr=1 if E admits weakly
sequentially continuous duality mapping j.

Proof. Take QK = I in Theorem 4.1. By Lemma 2.5, we have that Ar is m-accretive for each
r = 1, 2, . . . ,N. Then, the result follows from Theorem 4.1.

The following theorems give strong convergence to a common fixed point of a finite
family of pseudocontractive mappings.

Theorem 4.3. Let E be a real Banach space which is uniformly smooth and uniformly convex, and
let K be a nonempty, closed, and convex sunny nonexpansive retract of E, where QK is the sunny
nonexpansive retraction of E ontoK. For each r = 1, 2, . . . ,N, let Tr : K → E be a pseudocontractive
mapping such that (I − Tr) ism-accretive onK with

⋂N
r=1 F(Tr)/= ∅. Let {αn}∞n=1 and {βn}∞n=1 be two

real sequences in (0, 1) and JTr := (2I − Tr)
−1 for each r = 1, 2, . . . ,N. For an arbitrary x1 ∈ K let

sequence {xn}∞n=1 be generated iteratively by

yn = QK[(1 − αn)xn],

xn+1 =
(

1 − βn
)

xn + βnSNyn, n ≥ 1,
(4.14)

where SN := a0I + a1JT1 + a2JT2 + · · · + aNJTN for 0 < ai < 1, i = 0, 1, 2, . . . ,N,
∑N

i=0 ai = 1. Suppose
that the following conditions are satisfied:

(a) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(b) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then the sequence {xn}∞n=1 converges strongly to a common fixed point of {Tr}Nr=1 if E admits weakly
sequentially continuous duality mapping j.

Proof. Let Ar := (I − Tr) for each r = 1, 2, . . . ,N. Then, clearly, F(Tr) = N(Ar) and hence
⋂N

r=1 N(Ar) =
⋂N

r=1 F(Tr)/= ∅. Furthermore, each Ar for r = 1, 2, . . . ,N is m-accretive. The
result follows from Theorem 4.1.

Theorem 4.4. Let E be a real Banach space which is uniformly smooth and uniformly convex. For
each r = 1, 2, . . . ,N, let Tr : K → E be a continuous pseudocontractive mapping on E such that
⋂N

r=1 F(Tr)/= ∅. Let {αn}∞n=1 and {βn}∞n=1 be two real sequences in (0, 1) and JTr := (2I − Tr)
−1 for

each r = 1, 2, . . . ,N. For arbitrary x1 ∈ K let sequence {xn}∞n=1 be generated iteratively by

yn = (1 − αn)xn,

xn+1 =
(

1 − βn
)

xn + βnSNyn, n ≥ 1,
(4.15)

where SN := a0I +a1JT1 +a2JT2 + · · ·+aNJTN for 0 < ai < 1, i = 0, 1, 2, . . . ,N,
∑N

i=0 ai = 1. Suppose
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that the following conditions are satisfied:

(a) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(b) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then the sequence {xn}∞n=1 converges strongly to a common fixed point of {Tr}Nr=1 if E admits weakly
sequentially continuous duality mapping j.

Proof. The proof follows from Theorem 4.2.
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