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We present two iterative schemes with errors which are proved to be strongly convergent to
a common element of the set of fixed points of a countable family of relatively nonexpansive
mappings and the set of fixed points of nonexpansive mappings in the sense of Lyapunov
functional in a real uniformly smooth and uniformly convex Banach space. Using the result we
consider strong convergence theorems for variational inequalities and equilibrium problems in a
real Hilbert space and strong convergence theorems for maximal monotone operators in a real
uniformly smooth and uniformly convex Banach space.

1. Introduction

Let E be a real Banach space, and E∗ the dual space of E. The function φ : E → E∗ is denoted
by

φ
(
y, x

)
=
∥∥y

∥∥2 − 2
〈
y, Jx

〉
+ ‖x‖2 (1.1)

for all x, y ∈ E, where J is the normalized duality mapping from E to E. Let C be a closed
convex subset of E, and let T be a mapping from C into itself. We denote by F(T) the set of
fixed points of T . A point p in C is said to be an asymptotic fixed point of T [1] if C contains
a sequence {xn} which converges weakly to p such that the strong limn→∞ (xn − Txn) equals
0. The set of asymptotic fixed points of T will be denoted by F̂(T). A mapping T from C
into itself is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C and nonexpansive
with respect to the Lyapunov functional [2] if φ(Tx, Ty) ≤ φ(x, y) for all x, y ∈ C and it is
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called relatively nonexpansive [3–6] if F̂(T) = F(T) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and
p ∈ F(T). The asymptotic behavior of relatively nonexpansive mapping was studied in [3–6].

There are many methods for approximating fixed points of a nonexpansive mapping.
In 1953, Mann [7] introduced the iteration as follows: a sequence {xn} is defined by

xn+1 = αnxn + (1 − αn)Txn, (1.2)

where the initial guess element x0 ∈ C is arbitrary and {αn} is a real sequence in [0, 1].
Mann iteration has been extensively investigated for nonexpansive mappings. One of the
fundamental convergence results was proved by Reich [1]. In an infinite-dimensional Hilbert
space, Mann iteration can yield only weak convergence (see [8, 9]). Attempts to modify the
Mann iteration method (1.2) so that strong convergence is guaranteed have recently been
made. Nakajo and Takahashi [10] proposed the following modification of Mann iteration
method (1.2) for nonexpansive mapping T in a Hilbert space: in particular, they studied the
strong convergence of the sequence {xn} generated by

x0 = x ∈ C,

yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥∥z − yn

∥∥ ≤ ‖z − xn‖
}
,

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Qnx, n = 0, 1, 2, . . . ,

(1.3)

where {αn} ⊂ [0, 1] and PCn∩Qn is the metric projection from C onto Cn ∩Qn.
Recently, Takahashi et al. [11] extended iteration (1.6) to obtain strong convergence to

a common fixed point of a countable family of nonexpansive mappings; let C be a nonempty
closed convex subset of a Hilbert space H. Let {Tn} and T be families of nonexpansive
mappings of C into itself such that ∅/=F(T) =

⋂∞
n=1 F(Tn) and let x0 ∈ H. Suppose that

{Tn} satisfies the NST-condition (I) with T; that is, for each bounded sequence {zn} ⊂ C,
limn→∞‖zn − Tnzn‖ = 0 implies that limn→∞‖zn − Tnzn‖ = 0 for all T ∈ T. For x1 = PCx0,
define a sequence {xn} of C as follows:

yn = αnxn + (1 − αn)Tnxn,

Cn =
{
z ∈ C :

∥∥z − yn

∥∥ ≤ ‖z − xn‖
}
,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

un+1 = PCn∩Qnx0, n ∈ N,

(1.4)

where 0 ≤ αn ≤ α < 1. Then, {un} converges strongly to z0 = PF(T)x0.
On the other hand, Halpern [12] introduced the following iterative scheme for

approximating a fixed point of T :

xn+1 = αnx + (1 − αn)Txn (1.5)
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for all n ∈ N, where x1 = x ∈ C and {αn} is a sequence of [0, 1]. Strong convergence of this
type of iterative sequence has beenwidely studied: for instance, see [13, 14] and the references
therein. In 2006, Martinez-Yanes and Xu [15] have adapted Nakajo and Takahashi’s [10] idea
to modify the process (1.5) for a nonexpansive mapping T in a Hilbert space:

x0 = x ∈ C,

yn = αnx0 + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥2 ≤ ‖xn − z‖2 + αn

(
‖x0‖2 + 2〈xn − x0, z〉

)}
,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0, n = 0, 1, 2, . . . ,

(1.6)

where PCn∩Qn is the metric projection from C onto Cn ∩ Qn. They proved that if {αn} ⊂ (0, 1)
and limn→∞ αn = 0, then the sequence {xn} generated by (1.6) converges strongly to PF(T)x.

The ideas to generalize the process (1.3) and (1.6) from Hilbert space to Banach space
have been studied by many authors. Matsushita and Takahashi [6], Qin and Su [16], and
Plubtieng and Ungchittrakool [17] generalized the process (1.3) and (1.6) and proved the
strong convergence theorems for relatively nonexpansive mappings in a uniformly convex
and uniformly smooth Banach spacey; see, for instance, [2, 6, 16, 18–22] and the references
therein.

Recently, Nakajo et al. [18] introduced the following condition. Let C be a nonempty
closed convex subset of a Hilbert space H, let {Tn} be a family of mappings of C into itself
with F :=

⋂∞
n=1 F(Tn)/= ∅, and let ωw(zn) denote the set of all weak subsequential limits of

a bounded sequence {zn} in C. {Tn} is said to satisfy the NST-condition (II) if, for every
bounded sequence {zn} in C,

lim
n→∞

‖zn − Tnzn‖ = 0 implies ωw(zn) ⊂ F. (1.7)

Very recently, Nakajo et al. [19] introduced the more general condition so-called the NST∗-
condition, {Tn} is said to satisfy the NST∗-condition if, for every bounded sequence {zn} in
C,

lim
n→∞

‖zn − Tnzn‖ = lim
n→∞

‖zn − zn+1‖ = 0 implies ωw(zn) ⊂ F. (1.8)

It follows directly from the definitions above that if {Tn} satisfies the NST-condition (I), then
{Tn} satisfies the NST∗-condition.

Motivated and inspired by Wei and Cho [2], in this paper, we introduce two iterative
schemes (3.1) and (3.14) and use the NST∗-condition for a countable family of relatively
nonexpansive mappings to obtain the strong convergence theorems for finding a common
element of the set of fixed points of a countable family of relatively nonexpansive mappings
and the set of fixed points of nonexpansive mappings in the sense of Lyapunov functional
in a real uniformly smooth and uniformly convex Banach space. Using this result, we also
discuss the problem of strong convergence concerning variational inequality, equilibrium,
and nonexpansive mappings in Hilbert spaces. Moreover, we also apply our convergence
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theorems to the maximal monotone operators in Banach spaces. The results obtained in this
paper improve and extend the corresponding result of Matsushita and Takahashi [6], Qin
and Su [16], Wei and Cho [2], Wei and Zhou [22], and many others.

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual of E. For all x ∈ E and
x∗ ∈ E∗, we denote the value of x∗ at x by 〈x, x∗〉. We denote the strong convergence and
the weak convergence of a sequence {xn} to x in E by xn → x and xn ⇀ x, respectively. We
also denote the weak∗ convergence of a sequence {x∗

n} to x∗ in E∗ by x∗
n⇀

∗x∗. An operator
T ⊂ E × E∗ is said to be monotone if 〈x − y, x∗ − y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ T . We
denote the set {x ∈ E : 0 ∈ Tx} by T−10. A monotone T is said to be maximal if its graph
G(T) = {(x, y) : y ∈ Tx} is not properly contained in the graph of any other monotone
operator. If T is maximal monotone, then the solution set T−10 is closed and convex.

The normalized duality mapping J from E to E∗ is defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
(2.1)

for x ∈ E. By Hahn-Banach theorem, J(x) is nonempty; see [23] for more details. A Banach
space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and
x /=y. It is also said to be uniformly convex if, for each ε ∈ (0, 2], there exists δ > 0 such that
‖x + y‖/2 ≤ δ for x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε. Let S(E) = {x ∈ E : ‖x‖ = 1} be
the unit sphere of E. Then the Banach space E is said to be smooth provided that

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

exists for each x, y ∈ S(E). It is also said to be uniformly smooth if the limit is attained
uniformly for x, y ∈ S(E). It is well known that if E is smooth, strictly convex, and reflexive,
then the duality mapping J is single valued, one-to-one, and onto.

Let E be a smooth, strictly convex, and reflexive Banach space and letC be a nonempty
closed convex subset of E. Throughout this paper, we denote by φ the function defined by

φ
(
y, x

)
=
∥∥y

∥∥2 − 2
〈
y, Jx

〉
+ ‖x‖2, ∀x, y ∈ C. (2.3)

It is obvious from the definition of the function φ that (‖x‖ − ‖y‖)2 � φ(y, x) � (‖y‖2 + ‖x‖2)
for all x, y ∈ E.
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Following Alber [24], the generalized projection PC from E onto C is defined by

PC(x) = arg min
y∈C

φ
(
y, x

)
, ∀x ∈ E. (2.4)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 and PC is the metric projection of H onto C.
We need the following lemmas for the proof of our main results.

Lemma 2.1 (Kamimura and Takahashi [25]). Let E be a uniformly convex and smooth Banach
space and let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If
limn→∞ φ(xn, yn) = 0, then limn→∞‖xn − yn‖ = 0.

Lemma 2.2 (Alber [24], Kamimura and Takahashi [25]). Let C be a nonempty closed convex
subset of a smooth, strictly convex, and reflexive Banach space E. Then

φ
(
x, PCy

)
+ φ

(
PCy, y

)
≤ φ

(
x, y

)
, ∀x ∈ C, y ∈ E. (2.5)

Lemma 2.3 (Alber [24], Kamimura and Takahashi [25]). Let C be a nonempty closed convex
subset of a smooth, strictly convex, and reflexive Banach space E, let x ∈ E, and let x0 ∈ C. Then

x0 = PCx ⇐⇒ 〈z − x0, Jx0 − Jx〉 ≥ 0, ∀z ∈ C. (2.6)

Lemma 2.4 (Matsushita and Takahashi [6]). LetC be a nonempty closed convex subset of a smooth,
strictly convex, and reflexive Banach space E, and let T be a relatively nonexpansive mapping from C
into itself. Then F(T) is closed and convex.

Lemma 2.5 (see [2]). Let E be a real smooth and uniformly convex Banach space. If S : E → E is
a mapping which is nonexpansive with respect to the Lyapunov functional, then F(S) is convex and
closed subset of E.

3. Main Results

In this section, by using the NST∗-condition, we proved two strong convergence theorems
for finding a common element of the set of fixed points of a countable family of relatively
nonexpansive mappings and the set of fixed points of nonexpansive mappings in the sense
of Lyapunov functional in a real uniformly smooth and uniformly convex Banach space.

Theorem 3.1. Let E be a real uniformly smooth and uniformly convex Banach space, let C be a
nonempty closed convex subset of E, and let S : C → C be nonexpansive with respect to the Lyapunov
functional and weakly sequentially continuous. Let {Tn} be a family of relatively nonexpansive
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mappings of C into itself such that F :=
⋂∞

n=1 F(Tn) ∩ F(S)/= ∅ and satisfy the NST∗-condition.
Then the sequence {xn} generated by

x0 ∈ C,

yn = Tn(xn + en),

zn = J−1
(
αnJxn + (1 − αn)Jyn

)
,

un = Szn,

Hn =
{
z ∈ C : φ(z, un) � φ(z, zn) � αnφ(z, xn) + (1 − αn)φ(z, xn + en)

}
,

Wn = {z ∈ C : 〈z − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = PHn∩Wnx0, n = 0, 1, 2, . . .

(3.1)

converges strongly to PFx0 provided that

(i) {αn} ⊂ [0, 1] with αn ≤ 1 − β for some β ∈ (0, 1);

(ii) the error sequence is {en} ⊂ C such that ‖en‖ → 0 as n → ∞.

Proof. We split the proof into five steps.

Step 1 (BothHn and Wn are closed and convex subset of C). Noting the facts that

φ(z, zn) � αnφ(z, xn) + (1 − αn)φ(z, xn + en) ⇐⇒ ‖zn‖2 − αn‖xn‖2 − (1 − αn)‖xn + en‖2

≤ 2〈z, Jzn − αnJxn − (1 − αn)J(xn + en)〉,

φ(z, un) � φ(z, zn) ⇐⇒ ‖zn‖2 − ‖un‖2 ≥ 2〈z, Jzn − Jun〉,
(3.2)

we can easily know that Hn is closed and convex subset of E. It is obvious that Wn is also a
closed and convex subset of E.

Step 2 (F := (
⋂∞

n=1 F(Tn)) ∩ F(S) ⊆ Hn ∩Wn for all n ∈ N ∪ {0}). To observe this, take p ∈ F.
Then it follows from the convexity of ‖ · ‖2 that

φ
(
p, un

)
= φ

(
Sp, Szn

)
≤ φ

(
p, zn

)

=
∥∥p

∥∥2 − 2
〈
p, αnJxn + (1 − αn)Jyn

〉
+
∥∥αnJxn + (1 − αn)Jyn

∥∥2

≤
∥∥p

∥∥2 − 2αn

〈
p, Jxn

〉
− 2(1 − αn)

〈
p, Jyn

〉
+ αn‖xn‖2 + (1 − αn)

∥∥yn

∥∥2

= αnφ
(
p, xn

)
+ (1 − αn)φ

(
p, yn

)

= αnφ
(
p, xn

)
+ (1 − αn)φ

(
p, Tn(xn + en)

)

≤ αnφ
(
p, xn

)
+ (1 − αn)φ

(
p, xn + en

)

(3.3)
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for all n ∈ N ∪ {0}. Hence F ⊂ Hn for all n ∈ N ∪ {0}. On the other hand, it is clear that
p ∈ W0 = C. Then p ∈ H0 ∩ W0 and x1 = PH0∩W0x0 is well defined. Suppose that p ∈ Wn−1
for some n ≥ 1. Then p ∈ Hn−1 ∩ Wn−1 and xn = PHn−1∩Wn−1x0 is well defined. It follows from
Lemma 2.3 that

〈
p − xn, Jx0 − Jxn

〉
=
〈
p − PHn−1∩Wn−1x0, Jx0 − JPHn−1∩Wn−1x0

〉
≤ 0, (3.4)

which implies that p ∈ Wn. Therefore p ∈ Hn ∩ Wn, and hence xn+1 = PHn∩Wnx0 is well
defined. Then by induction, the sequence {xn} generated by (3.1) is well defined, for each
n ≥ 0. Moreover F ⊂ Hn ∩Wn for each nonnegative integer n.

Step 3 ({xn} is bounded sequence of C). In fact, for all p ∈ F ⊂ Hn ∩Wn ⊂ Wn, it follows from
Lemma 2.2 that

φ
(
p, PWnx0

)
+ φ(PWnx0, x0) ≤ φ

(
p, x0

)
. (3.5)

By the definition of Wn and Lemma 2.2, we note that xn = PWnx0 and hence

φ
(
p, xn

)
+ φ(xn, x0) ≤ φ

(
p, x0

)
. (3.6)

Therefore {xn} is bounded.

Step 4 (ωw(xn) ⊂ F := (
⋂∞

n=1 F(Tn)) ∩ F(S)). From the facts xn = PWnx0, xn+1 ∈ Wn, and
Lemma 2.2, we have

φ(xn+1, xn) + φ(xn, x0) ≤ φ(xn+1, x0). (3.7)

Therefore, limn→∞ φ(xn, x0) exists. Then φ(xn+1, xn) → 0, which implies from Lemma 2.1
that ‖xn+1 − xn‖ → 0 as n → ∞. Since xn+1 ∈ Hn, we have

φ(xn+1, un) � φ(xn+1, zn) � αnφ(xn+1, xn) + (1 − αn)φ(xn+1, xn + en). (3.8)

Note that

φ(xn+1, xn + en) − φ(xn+1, xn) = ‖xn + en‖2 − ‖xn‖2 + 2〈xn+1, Jxn − J(xn + en)〉. (3.9)

Since J is uniform continuous on each bounded subset of E and ‖en‖ → 0, we have
φ(xn+1, xn + en) → 0 as n → ∞. This implies that φ(xn+1, un) → 0 and φ(xn+1, zn) → 0
as n → ∞. Using Lemma 2.1, we obtain limn→∞‖xn+1 − (xn +en)‖ = 0, limn→∞‖xn+1 −zn‖ = 0,
and limn→∞‖xn+1−un‖ = 0. Since both J : E → E∗ and J−1 : E∗ → E are uniformly continuous
on bounded subsets, it follows that limn→∞‖xn − yn‖ = 0.
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Put vn := xn + en for all n ∈ N ∪ {0}. Since {xn} is bounded and ‖en‖ → 0, we have
{vn} is bounded. Note that

‖vn+1 − vn‖ = ‖(xn+1 + en+1) − (xn + en)‖

≤ ‖xn+1 − (xn + en)‖ + ‖en+1‖,

‖vn − Tnvn‖ = ‖(xn + en) − Tn(xn + en)‖ =
∥
∥(xn + en) − yn

∥
∥

≤ ‖(xn + en) − xn+1‖ + ‖xn+1 − xn‖ +
∥
∥xn − yn

∥
∥

(3.10)

for all n ∈ N ∪ {0}. It implies that limn→∞‖vn+1 − vn‖ = limn→∞‖vn − Tnvn‖ = 0. Therefore,
we have ωw(vn) ⊂

⋂∞
n=1 F(Tn) since {Tn} satisfies NST∗-condition. Note that ‖vn − xn‖ =

‖(xn + en) − xn‖ = ‖en‖ → 0 as n → ∞. Hence, we also have ωw(xn) ⊂
⋂∞

n=1 F(Tn).
On the other hand, from Step 3, we know that ωw(xn)/= ∅. Then, for all q ∈ ωw(xn),

there exists a subsequence {xni} of {xn} such that xni ⇀ q as i → ∞. Therefore, uni ⇀ q and
zni ⇀ q as i → ∞. Since S : C → C is weakly continuous and uni = Szni , we have q ∈ F(S).
Hence ωw(xn) ⊂ F := (

⋂∞
n=1 F(Tn)) ∩ F(S).

Step 5 (xn → q∗ = PFx0, as n → ∞). Let {xnj} be any subsequence of {xn} which weakly
converges to q ∈ F. Since xn+1 = PHn∩Wnx0 and q∗ ∈ F ⊂ Hn ∩ Wn, we have φ(xn+1, x0) ≤
φ(q∗, x0). Then,

φ
(
xn, q

∗) = φ(xn, x0) + φ
(
x0, q

∗) − 2
〈
xn − x0, Jq

∗ − Jx0
〉

≤ φ
(
q∗, x0

)
+ φ

(
x0, q

∗) − 2
〈
xn − x0, Jq

∗ − Jx0
〉
,

(3.11)

which yields

lim sup
j→∞

φ
(
xnj , q

∗
)
≤ φ

(
q∗, x0

)
+ φ

(
x0, q

∗) − 2
〈
q − x0, Jq

∗ − Jx0
〉
= −2

〈
q∗ − q, Jq∗ − Jx0

〉
≤ 0.

(3.12)

Hence φ(xnj , q
∗) → 0 as j → ∞. It follows from Lemma 2.1 that xnj → q∗ as j → ∞.

Therefore, xn → q∗ = PFx0 as n → ∞. This completes the proof.

Corollary 3.2 (seeMatsushita and Takahashi [6]). LetE be a real uniformly smooth and uniformly
convex Banach space, let C be a nonempty closed convex subset of E, let T be a relatively nonexpansive
mappings of C into itself, and let {αn} be a sequence of real numbers such that 0 ≤ αn < 1 and
lim supn→∞ αn < 1. Suppose that {xn} is given by

x0 = x ∈ C,

yn = J−1(αnJxn + (1 − αn)JTxn),

Hn =
{
z ∈ C : φ

(
z, yn

)
� φ(z, xn)

}
,

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, . . . ,

(3.13)
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where J is the duality mapping on E. If F(T) is nonempty, then {xn} converges strongly to PF(T)x,
where PF(T) is the generalized projection from C onto F(T).

Proof. Suppose that F(T)/= ∅ and put Tn ≡ T , S ≡ I, and en = 0 for all n ∈ N ∪ {0}. Let {zn} be
a bounded sequence in C with limn→∞‖zn − Tzn‖ = 0 and let z ∈ ωw(zn). Then there exists
subsequence {znk} of {zn} such that znk ⇀ z. It follows directly from the definition of T that
z ∈ F̂(T) = F(T). Hence T satisfies NST-condition; by Theorem 3.1, {xn} converges strongly
to PF(T)x.

Theorem 3.3. Let E be a real uniformly smooth and uniformly convex Banach space, let C be a
nonempty closed convex subset of E, and let S : C → C be nonexpansive with respect to the Lyapunov
functional and weakly sequentially continuous. Let {Tn} be a family of relatively nonexpansive
mappings of C into itself such that F :=

⋂∞
n=1 F(Tn) ∩ F(S)/= ∅ and satisfy the NST∗-condition.

Then the sequence {xn} generated by

x0 ∈ C,

yn = Tn(xn + en),

zn = J−1
(
αnJx0 + (1 − αn)Jyn

)
,

un = Szn,

Hn =
{
z ∈ C : φ(z, un) � φ(z, zn) � αnφ(z, x0) + (1 − αn)φ(z, xn + en)

}
,

Wn = {z ∈ C : 〈z − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = PHn∩Wnx0

(3.14)

converges strongly to PFx0 provided that

(i) {αn} ⊂ [0, 1] is a sequence such that αn → 0 as n → ∞;

(ii) the error sequence is {en} ⊂ E such that ‖en‖ → 0 as n → ∞.

Proof. By slightly modifying the corresponding proof in Theorem 3.1, we can easily obtain
the result.

Setting Tn ≡ T , S ≡ I, and en = 0 for all n ∈ N ∪ {0} in Theorem 3.3, we obtain the
following corollary.

Corollary 3.4 (see Qin and Su [16]). LetE be a real uniformly smooth and uniformly convex Banach
space, and let C be a nonempty closed convex subset of E. Let T be a relatively nonexpansive mappings
of C into itself, and let {αn} be a sequence in (0, 1) and limn→∞ αn = 0. Define a sequence {xn} in C
by

x0 ∈ C,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

)
� αnφ(z, x0) + (1 − αn)φ(z, xn)

}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, 2, . . . ,

(3.15)
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where J is the duality mapping on E. If F(T) is nonempty, then {xn} converges strongly to PF(T)x,
where PF(T) is the generalized projection from C onto F(T).

4. Applications to the Variational Inequality Problem,
Equilibrium Problem, and Fixed Points Problem of
Nonexpansive Mappings in a Real Hilbert Space

In this section, using Theorems 3.1 and 3.3, we prove the strong convergence theorems for
finding a common element of the set of fixed points of nonexpansive mapping, the solution
set of the variational inequality problems, and the solution set of an equilibrium problems in
a Hilbert space.

4.1. Common Solutions of a Fixed Point Problem and a
Variational Inequality Problem

Let C be a nonempty closed convex subset of a real Hilbert space H and let A be a mapping
of C into H. A classical variational inequality problem, denoted by VI(C,A), is to find an
element u∗ ∈ C such that 〈u − u∗, Au∗〉 ≥ 0 for all u ∈ C. It is known that for λ > 0, x ∈ C is
a solution of the variational inequality of A if and only if x = PC(I − λA)x, where PC is the
metric projection fromH onto C. We denote byNC(v) the normal cone for C at a point v ∈ C,
that is, NC(v) = {w ∈ H : 〈w,v − u〉 ≥ 0 for all u ∈ C}. Define f : H → H by

f(v) =

⎧
⎨

⎩

Av +NC(v), ∀v ∈ C,

∅, otherwise.
(4.1)

Then f is maximal monotone and f−10 = VI(C,A) (see [26]). A mappingA : C → H is called
α-inverse strongly monotone if there exists an α > 0 such that

〈Au −Av, u − v〉 ≥ α‖Au −Av‖2, ∀u, v ∈ C. (4.2)

It is well known that if 0 < λ < 2α, then PC(I − λA) is nonexpansive of C into itself.

Lemma 4.1 (see [27]). Let C be a nonempty closed convex subset of a real Hilbert space H and
let A be α-inverse strongly monotone mapping of C into H. Let {λn} ⊂ (0, 2α) and let PC be a
metric projection from H onto C. Let Tn = PC(I − λnA), for all n ∈ N. Then {Tn} is a sequence of
nonexpansive mappings and satisfies NST-condition.

By using Lemma 4.1 and Theorem 3.1 with en = 0, for all n ∈ N ∪ {0}, we obtain the
following theorem.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H and let A be α-
inverse strongly monotone mapping of C into H. Let S be a nonexpansive mapping of C into itself



Abstract and Applied Analysis 11

such that F := F(S) ∩ V I(C,A)/= ∅. Let PC be a metric projection fromH onto C. Then the sequence
{xn} generated by

x0 ∈ C,

yn = αnxn + (1 − αn)PC(xn − λnAxn),

zn = Syn,

Hn = {z ∈ C : ‖z − zn‖ ≤ ‖z − xn‖},
Wn = {z ∈ C : 〈z − xn, x0 − xn〉 ≤ 0},
xn+1 = PHn∩Wnx0, n = 0, 1, 2, . . .

(4.3)

converges strongly to PFx0 provided that

(i) {αn} ⊂ [0, 1] with αn ≤ 1 − β for some β ∈ (0, 1);

(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 2α) with a ≤ b.

Next, by using Lemma 4.1 and Theorem 3.3 with en = 0, for all n ∈ N ∪ {0}, we obtain
the following theorem.

Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H and let A be α-
inverse strongly monotone mapping of C into H. Let S be a nonexpansive mapping of C into itself
such that F := F(S) ∩ V I(C,A)/= ∅. Let PC be a metric projection fromH onto C. Then the sequence
{xn} generated by

x0 ∈ C,

yn = αnx0 + (1 − αn)PC(xn − λnAxn),

zn = Syn,

Hn =
{
z ∈ C : ‖z − zn‖2 ≤ ‖z − xn‖2 + αn

(
‖x0‖2 + 2〈xn − x0, v〉

)}
,

Wn = {z ∈ C : 〈z − xn, x0 − xn〉 ≤ 0},

xn+1 = PHn∩Wnx0, n = 0, 1, 2, . . .

(4.4)

converges strongly to PFx0 provided that

(i) {αn} ⊂ [0, 1] is a sequence such that αn → 0 as n → ∞;

(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 2α) with a ≤ b.

4.2. Common Solutions of a Fixed Point Problem and an Equilibrium Problem

Let C be a nonempty closed convex subset of H and let F be a bifunction of C × C into R,
where R is the set of real numbers. The equilibrium problem for F : C × C → R is to find
x ∈ C such that

F
(
x, y

)
≥ 0, ∀y ∈ C. (4.5)
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The set of solutions of (4.5) is denoted by EP(F). Numerous problems in physics,
optimization, and economics reduce to find a solution of (4.5). In 1997, Combettes and
Hirstoaga [15] introduced an iterative scheme of finding the best approximation to the initial
data when EP(F) is nonempty and proved a strong convergence theorem.

For solving the equilibrium problem for a bifunction F : C × C → R, let us assume
that F satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 forall x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t→ 0

F
(
(tz + (1 − t)x), y

)
≤ F

(
x, y

)
; (4.6)

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [15, 28].

Lemma 4.4 (see [15, 28]). Let C be a nonempty closed convex subset of H and let F be a bifunction
of C × C in to R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

F
(
z, y

)
+
1
r

〈
y − z, z − x

〉
≥ 0, ∀y ∈ C. (4.7)

Define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : F

(
z, y

)
+
1
r

〈
y − z, z − x

〉
≥ 0, ∀y ∈ C

}
(4.8)

for all z ∈ H. Then, the following holds:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥Trx − Try
∥∥2 ≤

〈
Trx − Try, x − y

〉
; (4.9)

(3) F(Tr) = EP(F);

(4) EP(F) is closed and convex.

Lemma 4.5 (see [27]). Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let f be
a bifunction from C × C into R satisfying (A1)–(A4) and EP(f)/= ∅. If {rn} is a sequence in (0,∞)
satisfying lim infn→∞ rn > 0, then {Trn} is a family of firmly nonexpansive mappings of H into C
and satisfies NST-condition.
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The following theorem follows directly from Lemma 4.5 and Theorem 3.1.

Theorem 4.6. Let C be a nonempty closed convex subset of a real Hilbert space H and let f be a
bifunction from C × C into R satisfying (A1)–(A4). Let S be a nonexpansive mapping of C into itself
such that F := F(S) ∩ EP(f)/= ∅. Then the sequence {xn} generated by

x0 ∈ C,

un ∈ C such that f
(
un, y

)
+

1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)un,

zn = Syn,

Hn = {z ∈ C : ‖z − zn‖ ≤ ‖z − xn‖},

Wn = {z ∈ C : 〈z − xn, x0 − xn〉 ≤ 0},

xn+1 = PHn∩Wnx0, n = 0, 1, 2, . . .

(4.10)

converges strongly to PFx0 provided that

(i) {αn} ⊂ [0, 1] with αn ≤ 1 − β for some β ∈ (0, 1);

(ii) {rn} ⊂ (0,∞) such that lim infn→∞ rn > 0,

Proof. Put Tn ≡ Trn and en = 0 for all n ∈ N ∪ {0}. Then, it follows from Lemma 4.5 and
Theorem 3.1 that {xn} converges strongly to PFx0.

Next, by using Lemma 4.5 and Theorem 3.3 with en = 0, for all n ∈ N ∪ {0}, we obtain the
following result.

Theorem 4.7. Let C be a nonempty closed convex subset of a real Hilbert space H and let f be a
bifunction from C × C into R satisfying (A1)–(A4). Let S be a nonexpansive mapping of C into itself
such that F := F(S) ∩ EP(f)/= ∅. Then the sequence {xn} generated by

x0 ∈ C,

un ∈ C such that f
(
un, y

)
+

1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnx0 + (1 − αn)un,

zn = Syn,

Hn =
{
z ∈ C : ‖z − zn‖2 ≤ ‖z − xn‖2 + αn

(
‖x0‖2 + 2〈xn − x0, v〉

)}
,

Wn = {z ∈ C : 〈z − xn, x0 − xn〉 ≤ 0},

xn+1 = PHn∩Wnx0, n = 0, 1, 2, . . .

(4.11)
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converges strongly to PFx0 provided that

(i) {αn} ⊂ [0, 1] is a sequence such that αn → 0 as n → ∞;

(ii) {rn} ⊂ (0,∞) such that lim infn→∞ rn > 0,

5. Applications to Maximal Monotone Operators in Banach Space

In this section, we discuss the problem of strong convergence concerning maximal monotone
operators in a real uniformly smooth and uniformly convex Banach space.

Let E be a smooth, strictly convex, and reflexive Banach space and let T ⊂ E × E∗ be
a maximal monotone operator. Then for each r > 0 and x ∈ E, there corresponds a unique
element xr ∈ D(T) satisfying

J(x) ∈ J(xr) + rT(xr); (5.1)

see [23]. We define the resolvent of T by Jrx = xr . In other words, Jr = (J + rT)−1J for all r > 0.
We know that Jr is relatively nonexpansive and T−10 = F(Jr) for all r > 0 (see [6, 23]), where
F(Jr) denotes the set of all fixed points of Jr . We can also define, for each r > 0, the Yosida
approximation of T by Ar = λ−1(J − JJr). We know that (Jrx,Arx) ∈ T for all r > 0.

Lemma 5.1. Let E be a real uniformly smooth and uniformly convex Banach space and let T : E →
E∗ be a maximal monotone operator with F := T−10/= ∅ and Jr = (J + rT)−1J for all r > 0. Let {Tn} be
a sequence of relatively nonexpansive mappings of E into itself defined by Tn ≡ Jrn for all n ∈ N∪ {0},
where {rn} is a sequence in (0,∞) such that lim infn≥0rn > 0. Then, {Tn} satisfies the NST-condition.

Proof. It easy to see that
⋂∞

n=0 F(Tn) =
⋂∞

n=0 F(Jrn) = T−10. Let {vn} be a bounded sequence in E
such that limn→∞‖vn − Jrnvn‖ = 0 and let v0 ∈ ωw(vn). Then, there exists a subsequence {vnk}
of {vn} such that vnk ⇀ v0. By the uniform smoothness of E, we have limn→∞‖Jvn−JJrnvn‖ =
0. Since lim infn→∞ rn > 0, we have

lim
n→∞

‖Arnvn‖ = lim
n→∞

1
rn
‖Jvn − JJrnvn‖ = 0. (5.2)

Let (u, u∗) ∈ T . Then it holds from the monotonicity of T that

〈u − Jrnk vnk , u
∗ −Arnk

vnk〉 ≥ 0 (5.3)

for all k ∈ N. Letting k → ∞, we get 〈u − v0, u
∗〉 ≥ 0. Then, the maximality of T implies

v0 ∈ T−10 :=
⋂∞

n=1 F(Jrn) =
⋂∞

n=0 F(Tn). Hence ωw(vn) ⊂
⋂∞

n=0 F(Tn). Therefore, {Tn} satisfies
the NST-condition.

Using Theorem 3.1 and Lemma 5.1, we first obtain the result of [2].

Theorem 5.2 (see [2]). Let E be a real uniformly smooth and uniformly convex Banach space and
let S : E → E be nonexpansive with respect to the Lyapunov functional and weakly sequentially
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continuous. Let T : E → E∗ be a maximal monotone operator with F := T−10 ∩ F(S)/= ∅ and
Jr = (J + rT)−1J for all r > 0. Then, sequence {xn} generated by the following scheme

x0 ∈ E, r0 > 0,

yn = Jrn(xn + en),

zn = J−1
(
αnJxn + (1 − αn)Jyn

)
,

un = Szn,

Hn =
{
z ∈ E : φ(z, un) � φ(z, zn) � αnφ(z, xn) + (1 − αn)φ(z, xn + en)

}
,

Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = PHn∩Wnx0, n = 0, 1, 2, . . .

(5.4)

converges strongly to PFx0 provided that

(i) {αn} ⊂ [0, 1] with αn ≤ 1 − β for some β ∈ (0, 1);

(ii) {rn} ⊂ (0,+∞) is a sequence such that lim infn≥0 rn > 0;

(iii) the error sequence is {en} ⊂ E such that ‖en‖ → 0 as n → ∞.

Proof. Put Tn ≡ Jrn for all n ∈ N ∪ {0}. Hence by using Lemma 5.1 and Theorem 3.1, we obtain
the result.

Putting S ≡ I in Theorem 5.2, we obtain the following corollary.

Corollary 5.3 (see [22]). Let E be a real uniformly smooth and uniformly convex Banach space and
let T : E → E∗ be a maximal monotone operator with F := T−10 ∩ F(S)/= ∅. and Jr = (J + rT)−1J for
all r > 0. Then, sequence {xn} generated by the following scheme

x0 ∈ E, r0 > 0,

yn = Jrn(xn + en),

zn = J−1
(
αnJxn + (1 − αn)Jyn

)
,

Hn =
{
z ∈ E : φ(z, zn) � αnφ(z, xn) + (1 − αn)φ(z, xn + en)

}
,

Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = PHn∩Wnx0, n = 0, 1, 2, . . .

(5.5)

converges strongly to PFx0 provided that

(i) {αn} ⊂ [0, 1] with αn ≤ 1 − β for some β ∈ (0, 1);

(ii) {rn} ⊂ (0,+∞) is a sequence such that lim infn≥0 rn > 0;

(iii) the error sequence is {en} ⊂ E such that ‖en‖ → 0 as n → ∞.

The following theorem follows directly from Lemma 5.1 and Theorem 3.3
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Theorem 5.4 (see [2]). Let E be a real uniformly smooth and uniformly convex Banach space and
let S : E → E be nonexpansive with respect to the Lyapunov functional and weakly sequentially
continuous. Let T : E → E∗ be a maximal monotone operator with F := T−10 ∩ F(S)/= ∅. and
Jr = (J + rT)−1J for all r > 0. Then, sequence {xn} generated by the following scheme

x0 ∈ E, r0 > 0,

yn = Jrn(xn + en),

zn = J−1
(
αnJx0 + (1 − αn)Jyn

)
,

un = Szn,

Hn =
{
z ∈ E : φ(z, un) � φ(z, zn) � αnφ(z, x0) + (1 − αn)φ(z, xn + en)

}
,

Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = PHn∩Wnx0, n = 0, 1, 2, . . .

(5.6)

converges strongly to PFx0 provided that

(i) {αn} ⊂ [0, 1] is a sequence such that αn → 0 as n → ∞;

(ii) {rn} ⊂ (0,+∞) is a sequence such that lim infn≥0 rn > 0;

(iii) the error sequence is {en} ⊂ E such that ‖en‖ → 0 as n → ∞.

Putting S ≡ I in Theorem 5.4, we obtain the following corollary.

Corollary 5.5 (see [22]). Let E be a real uniformly smooth and uniformly convex Banach space, let
C be a nonempty closed convex subset of E, and let T : E → E∗ be a maximal monotone operator
with F := T−10 ∩ F(S)/= ∅ and Jr = (J + rT)−1J for all r > 0. Then, sequence {xn} generated by the
following scheme

x0 ∈ E, r0 > 0,

yn = Jrn(xn + en),

zn = J−1
(
αnJx0 + (1 − αn)Jyn

)
,

Hn =
{
z ∈ E : φ(z, zn) � αnφ(z, x0) + (1 − αn)φ(z, xn + en)

}
,

Wn = {z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = PHn∩Wnx0, n = 0, 1, 2, . . .

(5.7)

converges strongly to PFx0 provided that

(i) {αn} ⊂ [0, 1] is a sequence such that αn → 0 as n → ∞;

(ii) {rn} ⊂ (0,+∞) is a sequence such that lim infn≥0 rn > 0;

(iii) the error sequence is {en} ⊂ E such that ‖en‖ → 0 as n → ∞.
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