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A semigroup theory for a differential equation with delayed and advanced arguments is
developed, with a detailed description of the infinitesimal generator. This in turn allows to study
the exact controllability of the equation, by rewriting it as a classical Cauchy problem.

1. Introduction

In this paper, we will study the exact controllability of a functional differential equation
with both delayed and advanced arguments. Such equations are often referred to in the
literature as mixed-type functional differential equations (MTFDE) or forward-backward
equations. The study of this type of equations is less developed compared with other classes
of functional equations. Interest in MTDFEs is motivated by problems in optimal control [1]
and applications, for example, in economic dynamics [2] and travelling waves in a spatial
lattice [3]. See also [4]. In all these references, the reader can find interesting examples and
applications.

In order to achieve our goal, first, we rewrite the equation as a classical Cauchy
problem in a certain Banach space. Then we introduce the associated semigroup and its
infinitesimal generator and prove some important properties of these operators (including
some spectral properties). This will allow us to characterize the exact controllability, by
applying a result of Bárcenas and Diestel (see [5]).
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2. Preliminary Results

In [6], the following differential-difference equation is considered

x′(t) = x(t − 1) + x(t + 1), (2.1)

where t ≥ 0 and x : [−1,+∞) → C
n is differentiable in [0,+∞).

Equation (2.1)may be written as

x(t + 1) = x′(t) − x(t − 1) (2.2)

or equivalently

x(t) = x′(t − 1) − x(t − 2). (2.3)

From this we have that in order to find the solution x(t) on the interval [m,m + 1], it is
necessary to know its value on the interval [m − 2, m], with m being a positive integer. In
particular, to determine the solution on the interval [1, 2], it is necessary to know it on the
interval [−1, 1].

Accordingly, x(t) is defined for t ∈ [−1, 1] as

x(t) = ϕ(t) =

⎧
⎨

⎩

ϕ1(t), t ∈ [−1, 0],
ϕ2(t), t ∈ [0, 1],

(2.4)

where the function ϕ belongs to the space C∞([−1, 1],Cn). The solution of the initial value
problem (2.1), (2.4) is constructed via an iterative process using the step derivation method.

It is

x(t) =
m∑

i=0

c1iϕ
(i)(t −m) +

m∑

i=0

c2iϕ
(i)(t −m − 1), (2.5)

where c1i and c2i are constants not all necessarily different from zero.
This solution may be extended to the left by rewriting (2.1) as

x(t − 1) = x′(t) − x(t + 1) (2.6)

which allows to yield an expression for x(t) analogous to (2.5).
In order to assure the existence, differentiability, and uniqueness of the solution x(t),

it is demanded that x(t) must satisfy the relationship

ϕ(n)(0) = ϕ(n−1)(−1) + ϕ(n−1)(1) (2.7)

for n = 1, 2, 3, . . . .
Further, if a differentiable solution x(t) exists, then it belongs to the space C∞([−1,

+∞],Cn) (see [6, Theorems 3.1 and 3.2]).
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LetM be the following nonempty, closed subspace of the topological spaceC∞([−1, 1],
C

n):

M =
{
ϕ ∈ C∞([−1, 1],Cn) : ϕ(n)(0) = ϕ(n−1)(−1) + ϕ(n−1)(1), n = 1, 2, 3, . . .

}
. (2.8)

The space C∞([−1, 1],Cn) is endowed with the topology induced by the following countable
system of seminorms:

Pk

(
f
)
= max

t∈[−1,1]
‖f (k)(x)‖

Cn , for k = 0, 1, 2, . . . . (2.9)

The convergence in this topology means the uniform convergence of the function and each
of its derivatives of any order. We denote

‖f‖k =
k∑

i=0

Pi

(
f
)
, for each k = 0, 1, 2, . . . . (2.10)

A sequence {fn}∞n=1 converges to f if and only if ‖fn − f‖k tends to 0, as n tends to infinity, for
each k.

For each t ≥ 0, the operator T(t) is defined on the solutions x(t) of (2.1) as follows:

T(t)x(θ) = x(t + θ), θ ∈ [−1, 1]. (2.11)

The following result originally appears on [7].

Theorem 2.1. The family {T(t)}t≥0 defines a strongly continuous semigroup on L(M).

Proof. That T(0) = I and T(t + s) = T(t)T(s) for each t, s ≥ 0 are straightforward from the
definition of T(t). Since x(θ)|θ∈[−1,1] = ϕ(θ) ∈ M, the domain of T(t) isM. On the other hand,
the function

yt(θ) := T(t)x(θ) = x(t + θ) (2.12)

belongs toM for each t ≥ 0, because if x(t) ∈ C∞([−1, 1],Cn), then yt(θ) ∈ C∞([−1, 1],Cn) for
each fixed t ≥ 0. Additionally, for each t ≥ 0, y(n)

t (0) = y
(n−1)
t (−1) + y

(n−1)
t (1), for n = 1, 2, 3, . . .,

or equivalently

x(n)(t) = x(n−1)(t − 1) + x(n−1)(t + 1), n = 1, 2, . . . . (2.13)

Hence yt(θ) ∈ M.
In order to prove that T(τ) is continuous for each fixed τ ≥ 0, we will prove that there

exists nk for each k and some constant c ≥ 0 such that

‖T(τ)x(θ)‖k ≤ c
nk∑

i=0

‖x(θ)‖i. (2.14)
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In view that

Pk(T(τ)x(θ)) = max
θ∈[−1,1]

∣
∣
∣x(k)(τ + θ)

∣
∣
∣ ≤ max

t∈[[τ]]−1,[τ]+2]

∣
∣
∣x(k)(t)

∣
∣
∣

≤ max
t∈[τ]−1,[τ]]

∣
∣
∣x(k)(t)

∣
∣
∣ + max

t∈[[τ]],[τ]+1]

∣
∣
∣x(k)(t)

∣
∣
∣ + max

t∈[[τ]]+1,[τ]+2]

∣
∣
∣x(k)(t)

∣
∣
∣

(2.15)

and using formula (2.5) withm = [τ], one obtains

max
θ∈[−1,1]

∣
∣
∣x(k)(τ + θ)

∣
∣
∣ ≤

m−1∑

i=0

c1i max
t∈[m−1,m]

∣
∣
∣ϕ(i+k)(t − (m − 1))

∣
∣
∣ +

m−1∑

i=0

c2i max
t∈[m−1,m]

∣
∣
∣ϕ(i+k)(t − (m − 1) − 1)

∣
∣
∣

+
m∑

i=0

c3i max
t∈[m,m+1]

∣
∣
∣ϕ(i+k)(t −m)

∣
∣
∣ +

m∑

i=0

c4i max
t∈[m,m+1]

∣
∣
∣ϕ(i+k)(t −m − 1)

∣
∣
∣

+
m+1∑

i=0

c5i max
t∈[m+1,m+2]

∣
∣
∣ϕ(i+k)(t − (m + 1))

∣
∣
∣

+
m+1∑

i=0

c6i max
t∈[m+1,m+2]

∣
∣
∣ϕ(i+k)(t − (m + 1) − 1)

∣
∣
∣

≤
m−1∑

i=0
(c1i + c2i)

m−1∑

i=0

max
θ∈[−1,1]

∣
∣
∣ϕ(i+k)(θ)

∣
∣
∣ +

m∑

i=0
(c3i + c4i)

m∑

i=0

max
θ∈[−1,1]

∣
∣
∣ϕ(i+k)(θ)

∣
∣
∣

+
m+1∑

i=0
(c5i + c6i)

m+1∑

i=0

max
θ∈[−1,1]

∣
∣
∣ϕ(i+k)(θ)

∣
∣
∣

≤ c1‖ϕ‖m+k−1 + c2‖ϕ‖m+k + c3‖ϕ‖m+k+1

≤ (c1 + c2 + c3)
(‖ϕ‖m+k−1 + ‖ϕ‖m+k + ‖ϕ‖m+k+1

)

= c
(‖ϕ‖m+k−1 + ‖ϕ‖m+k + ‖ϕ‖m+k+1

)
.

(2.16)

It only remains to prove that T(t)x → T(t0)x, as t → to, for each x ∈ M.
In fact, let t0 ≥ 0. We have that limt→ t0T(t)x = T(t0)x ⇔ limτ → 0T(t0 + τ)x = T(t0)x ⇔

‖T(t0 + τ)x(θ) − T(t0)x(θ)‖k → 0 as τ → 0 for each k = 0, 1, . . ., ⇔ maxθ∈[−1,1]|x(k)(t0 + τ +
θ) − x(k)(t0 + θ)| → 0 as τ → 0 for each k = 0, 1, . . . .

Assuming that 0 ≤ [τ] ≤ 1 and taking into account the uniform convergence of x(k)(t)
in the closed interval [a, b] := [t0 − 2, t0 + 2](t, t′ ∈ [a, b]), it follows that

max
θ∈[−1,1]

∣
∣
∣x(k)(t0 + τ + θ) − x(k)(t0 + θ)

∣
∣
∣ ≤ max

|t−t′ |≤[τ]

∣
∣
∣x(k)(t) − x(k)(t′

)∣∣
∣ −→ 0 (2.17)

as τ → 0.
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Some basic definitions and concepts on controllability are recalled below. LetU and X
be Banach spaces. We consider the inhomogeneous differential linear system:

ẋ(t) = Ax(t) + Bu(t),
x(0) = x0 ∈ D(A),

(2.18)

whereA : X → X is the infinitesimal generator operator of a strongly continuous semigroup
(St)t≥0; B : U → U is a bounded linear operator and u : [0,+∞) → U is a strongly
measurable essentially bounded function.

Let Ω be a nonempty separable weakly compact convex subset of U.
We recall (see [8]) that x0 ∈ X is controllable with respect to x1 if there exist t≥ 0 and a

control u ∈ L∞([0, t];U) such that x(t) = x1 in (2.18).
The controllability map on [0, t] for some t≥ 0 is the linear map

Bt : L∞
([

0, t
]
;U

)
−→ X (2.19)

defined by

Btu =
∫ t

0
S
(

t −s
)
Bu(s)ds. (2.20)

Now, one says that (2.18) is exactly controllable on [0, t] if every point in X can be reached
from the origin at time t, that is, if ran(Bt) = X, which is equivalent to

x1 =
∫ t

0
S
(

t −s
)
Bu(s)ds,

0 = −x1 +
∫ t

0
S
(

t −s
)
Bu(s)ds,

or 0 = S
(

t
)
x0 +

∫ t

0
S
(

t −s
)
Bu(s)ds.

(2.21)

In other words,

ran
(
Bt
)
= X ⇐⇒ 0 ∈

{

S
(

t
)
x0 +

∫ t

0
S
(

t −s
)
Bu(s)ds : u is a control in L∞

([
0, t

]
;U

)
}

.

(2.22)

The set Ωt = {u ∈ L∞([0, t];U) : u ∈ Ω a.e.} is called the set of admissible controls of (2.18),

while the set At(x0) = {S(t)x0 +
∫ t
0 S(t −s)Bu(s)ds : u ∈ Ωt} is called the set of accessible

points of (2.18). Therefore, the system (2.18) is controllable if 0 ∈ At(x0), for each t> 0.
We will make use of the following theorem, which will be applied to problem

(2.1),(2.4).
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Theorem 2.2 (Bárcenas and Diestel [5]). Let X and U be Banach spaces. Let B : U → X be a
bounded linear operator and A : X → X the infinitesimal generator of a C0-semigroup (St)t≥0 on X
whose dual semigroup is strongly continuous on (0,+∞). Suppose Ω is nonempty separable weakly
compact convex subset of U containing 0. Then, for each t> 0, 0 ∈ At(x0) if and only if for each
x∗ ∈ X∗,

x∗
(
S
(

t
)
x0

)
+
∫ t

0
max
v∈Ω

x∗(S(t)Bv)dt ≥ 0. (2.23)

The Bárcenas-Diestel Theorem is an important and recent achievement on exact
controllability. Throughout the literature on optimal control in Banach Spaces, hypotheses
like “separable and reflexive” are frequently encountered. Using techniques from Banach
space theory and the theory of vector measures, the authors show how to remove the
hypothesis of reflexivity (thus giving considerably greater generality to the resulting
conclusions) and translate the question of accessibility of controls to a problem in semigroups
of operators, namely, given a c0-semigroup (S(t))t≥0 of operators on a Banach space X, under
what conditions is the dual semigroup strongly continuous on (0,∞)?

It should be noted that, for each fixed t ≥ 0 and each x∗ ∈ X∗, a bounded linear
functional u∗ ∈ U∗ is defined by means of u∗(v) := x∗(S(t)Bv). The maximum in Theorem 2.2
exists as a consequence of a now classical result of James [9], stating that a weakly closed
subset C of a Banach space Z is weakly compact if and only if each continuous linear
functional on Z attains a maximum on C.

On the other hand, the following result is proven in [10]: for each x∗ ∈ X∗, themapping
of [0, τ] to [0,∞) that takes t ∈ [0, τ] to maxv∈Ω x∗(S(t)Bv) is continuous (see also [5]), and
so the integral in Theorem 2.2 exists in the common Riemann sense.

3. The Cauchy Problem

We will formulate the problem (2.1),(2.4) in the form (2.18). One should observe that we
are working on a topological space which is not a Banach space. Let us consider the space
C

n × M, endowed with the product topology, where M is defined in (2.8), and let N be the
closed subspace of all pairs (r, f) in C

n ×M such that f(0) = r. OnN we define the following
map:

S(t)
(
ϕ(0)
ϕ(·)

)

=
(

x(t)
x(t + θ)

)

=

⎛

⎜
⎝

m∑

i=0

c1iϕ
(i)(t −m) +

m∑

i=0

c2iϕ
(i)(t −m − 1)

x(t + θ)

⎞

⎟
⎠ (3.1)

for each t ≥ 0 and θ ∈ [−1, 1], where x(t) is the solution (2.5) of the initial value problem
(2.1),(2.4).

Now, one has the following result.

Theorem 3.1. The operator S satisfies

(i) S(t) ∈ L(N) for all t ≥ 0;

(ii) S(t) is a C0-semigroup inN.
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Proof. (i) The linearity of S(t) follows from the linearity of its components. In order to see the
continuity for each t ≥ 0, let us bear in mind that we are working with the product topology.
The continuity and convergence for this topology are coordinatewise. We say that (f(0), f) is
close or tends to (g(0), g) if ‖f(0) − g(0)‖

Cn is close to 0 and ‖f − g‖k is close to 0, for each k,
(k = 0, 1, 2, . . .), or, equivalently, if for each k

‖f(0) − g(0)‖
Cn + ‖f − g‖k (3.2)

is close to 0, where ‖ · ‖k is defined as above. In the case of the linear map S(t), the
second coordinate is the continuous semigroup (2.11), and so, if c1 = max1≤i≤m|c1i | and
c2 = max1≤i≤m|c2i |, we have, for each k

‖x(t)‖Cn + ‖x(t + θ)‖k ≤
m∑

i=0

c1‖ϕ(i)(t −m)‖
Cn +

m∑

i=0

c2‖ϕ(i)(t −m − 1)‖
Cn + c

nk∑

i=0

‖ϕ(·)‖i

≤ (c1 + c2)‖ϕ(·)‖m + c
nk∑

i=0

‖ϕ(·)‖i.
(3.3)

If (ϕ(0), ϕ(·)) is close to (0, 0), then, in particular, ‖ϕ(·)‖k is close to 0, for each k, and thus, by

the previous estimate, S(t)
(

ϕ(0)
ϕ(·)

)
is close to (0, 0). Being S(t) linear, this is enough to prove

that it is continuous.
(ii) Now we will check the semigroup properties. Obviously, S(0) = I. To prove S(t +

s) = S(t)S(s), one defines the function h(t) = x(t + s), where x(·) is the solution of (2.1),(2.4).
Therefore, h(t) satisfies

ḣ(t) = h(t − 1) + h(t + 1), 0 ≤ t,

h(0) = x(s),

h(θ) = ϕ(s + θ), θ ∈ [−1, 1].
(3.4)

By the definition of S, one has

(
h(t)

h(t + ·)
)

= S(t)
(

x(s)
x(s + ·)

)

= S(t)S(s)
(
ϕ(s)
ϕ(·)

)

. (3.5)

On the other hand,

S(t + s)
(
ϕ(0)
ϕ(·)

)

=
(

x(t + s)
x(t + s + ·)

)

=
(

h(t)
h(t + ·)

)

= S(t)S(s)
(
ϕ(0)
ϕ(·)

)

. (3.6)

According to Theorem 2.1, we have that limt→ 0+x(t + s) = x(s); since ϕ is continuous, then
limt→ 0+x(t) = ϕ(0). Consequently, limt→ 0+S(t) = I and S(t) is a C0-semigroup inN.
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Lemma 3.2. Let A be the infinitesimal generator associated to the semigroup S(t). For α ∈ R

sufficiently large, the resolvent is given by

(αI −A)−1
(
ϕ(0)
ϕ(·)

)

=
(
g(0)
g(·)

)

, (3.7)

where

(i) g(θ) = eαθg(0) − ∫θ
0 e

α(θ−s)ϕ(s)ds, θ ∈ [−1, 1];
(ii) g(0) = (Δ(α))−1[ϕ(0) +

∫0
−1 e

−α(θ+1)ϕ(θ)dθ − ∫1
0 e

−α(θ−1)ϕ(θ)dθ] with Δ(λ) = (λ − eλ −
e−λ)I, for λ ∈ C.

Further, g satisfies the following relation:

(iii) αg(0) = ϕ(0) + g(−1) + g(1).

Proof. (i) From [8, Lemma 2.1.11], for α ≥ ω0 ( ω0 is the growth bound of the semigroup), one
has

(αI −A)−1
(
ϕ(0)
ϕ(·)

)

=
∫+∞

0
e−αtS(t)

(
ϕ(0)
ϕ(·)

)

dt =
∫+∞

0
e−αt

(
x(t)

x(t + ·)
)

dt. (3.8)

One defines for θ ∈ [−1, 1]

g(θ) =
∫+∞

0
e−αtx(t + θ)dt =

∫+∞

θ

e−α(s−θ)x(s)ds. (3.9)

It is observed that g(θ) is a solution of the differential equation

dg
dθ

(θ) = αg(θ) − x(θ). (3.10)

The variation of constants formula for (3.10) shows that g(θ) is equal to (i).
(iii) Since, as it was defined above,

g(θ) =
∫+∞

0
e−αtx(t + θ)dt, θ ∈ [−1, 1], (3.11)

one has after an integration by parts,

αg(0) = α

∫+∞

0
e−αtx(t)dt = ϕ(0) +

∫+∞

0
e−αt(x(t − 1) + x(t + 1))dt = ϕ(0) + g(−1) + g(1)

(3.12)

which is (iii)
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(ii) On the other hand,

αg(0) = ϕ(0) +
∫−1

0
e−αtx(t + 1)dt +

∫+∞

−1
e−αtx(t + 1)dt +

∫1

0
e−αtx(t − 1)dt +

∫+∞

1
e−αtx(t − 1)dt

= ϕ(0) +
∫+∞

−1
e−αtx(t + 1)dt +

∫+∞

1
e−αtx(t − 1)dt +

∫1

0
e−αtϕ(t − 1)dt −

∫0

−1
e−αtϕ(t + 1)dt

= ϕ(0) + eαg(0) + e−αg(0) +
∫1

0
e−αtϕ(t − 1)dt −

∫0

−1
e−αtϕ(t + 1)dt.

(3.13)

Therefore,

[(
α − (

eα + e−α
))
I
]
g(0) = ϕ(0) +

∫0

−1
e−α(θ+1)ϕ(θ)dθ −

∫1

0
e−α(θ−1)ϕ(θ)dθ (3.14)

which is (ii) for α sufficiently large.

Theorem 3.3. Let S(t) be the semigroup defined by (3.1). Then its infinitesimal generator is given by

A

(
ϕ(0) = r
ϕ(·)

)

=

⎛

⎝
ϕ(−1) + ϕ(1)

dϕ
dθ

(·)

⎞

⎠, (3.15)

where the domain of A is

D(A) =
{(

r
ϕ(·)

)

∈ N : ϕ is absolutely continuous, and
dϕ
dθ

∈ M

}

. (3.16)

Proof. Consider the operator Ã defined by

Ã

(
r

ϕ(·)
)

=

⎛

⎜
⎝

ϕ(−1) + ϕ(1)

dϕ
dθ

(·)

⎞

⎟
⎠ (3.17)

with

D
(
Ã
)
=
{(

r
ϕ(·)

)

∈ N : ϕ is absolutely continuous, and
dϕ
dθ

∈ M

}

. (3.18)
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We will prove that A = Ã. Suppose α is a sufficiently large number such that Lemma 3.2 is
true. In this case, for

( r
ϕ(·)

) ∈ N, one can write

(
αI − Ã

)
(αI −A)−1

(
r

ϕ(·)
)

=
(
αI − Ã

)(g(0)
g(·)

)

=

⎛

⎝
αg(0) − g(1) − g(−1)

αg(·) − dg
dθ

(·)

⎞

⎠ =
(

r
ϕ(·)

)

(3.19)

by differentiating (i) from Lemma 3.2.
Now, let us see that

(αI −A)
(
αI − Ã

)−1( r
ϕ(·)

)

=
(

r
ϕ(·)

)

. (3.20)

To do this, one takes
( r
ϕ(·)

) ∈ D(A) and defines

(
r1

ϕ1(·)
)

:= (αI −A)−1
(
αI − Ã

)( r
ϕ(·)

)

. (3.21)

We will show that (αI − Ã) is injective.
Suppose that there exists

(
r0

ϕ0(·)
)
∈ D(A) such that

(
0
0

)

=
(
αI − Ã

)( r0
ϕ0(·)

)

=
(
αI − Ã

)(ϕ0(0)
ϕ0(·)

)

=

⎛

⎝
αϕ0(0) − ϕ0(−1) − ϕ0(1)

αϕ0(·) −
dϕ0

dθ
(·)

⎞

⎠ (3.22)

which implies

αϕ0(0) − ϕ0(−1) − ϕ0(1) = αϕ0(0) − ϕ0(0)eα − ϕ0(0)e−α =
(
α − eα − e−α

)
ϕ0(0) = 0,

ϕ0(θ) = ϕ0(0)eαθ.
(3.23)

As α − eα − e−α is different from zero, then ϕ0(0) = r0 = 0 and so ϕ0(·) = ϕ0(0)eα(·) = 0; thus
(αI − Ã) is injective. Consequently,

(
αI − Ã

)( r1
ϕ1(· )

)

=
(
αI − Ã

)
(αI −A)−1

[(
αI − Ã

)( r
ϕ(·)

)]

=
(
αI − Ã

)( r
ϕ(·)

)

(3.24)

which implies that

(
r1

ϕ1(·)
)

=
(

r
ϕ(·)

)

. (3.25)
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In other words, for every
( r
ϕ(·)

) ∈ D(A), one has

(αI −A)−1
(
αI − Ã

)( r
ϕ(·)

)

=
(

r
ϕ(·)

)

, (3.26)

that it is equivalent to

(
αI − Ã

)( r
ϕ(·)

)

= (αI −A)
(

r
ϕ(·)

)

. (3.27)

Then Ã = A, as we wanted to see.

For each m ∈ N, let Mm be the space M defined in (2.8) provided with the topology
of Cm([−1, 1],Cn), as a closed subset of Cm([−1, 1],Cn). Mm is a Banach space. Therefore,
C

n ×Mm, for all m ∈ N, is also a Banach space with the norm

∥
∥
∥
∥

(
r
f

)∥
∥
∥
∥

Cn×Mm

= ‖r‖Cn + ‖f‖Cm([−1,1],Cn). (3.28)

Now, let Nm be the closed subspace of C
n ×Mm of all pairs (r, f) such that r = f(0).

The semigroup Sm(t) : Nm → Nm, defined in the same form as S(t), is now a
semigroup defined on a Banach space for all m ∈ N.

Lemma 3.4. If Am denote the infinitesimal generator of Sm(t), then Am = A for all m ∈ N, where A
is the infinitesimal generator of S(t).

Proof.

lim
t→ 0

1
t

∥
∥
∥
∥S

m(t)
(
ϕ(0)
ϕ(·)

)

−
(
ϕ(0)
ϕ(·)

)

− tA

(
ϕ(0)
ϕ(·)

)∥
∥
∥
∥

Cn×Mm

= lim
t→ 0

1
t

∥
∥
∥
∥
∥
∥

(
x(t)

x(t + θ)

)

−
(
ϕ(0)
ϕ(·)

)

−
⎛

⎝
t(ϕ(−1) + ϕ(1))

t
dϕ
dθ

(·)

⎞

⎠

∥
∥
∥
∥
∥
∥

Cn×Mm

= lim
t→ 0

[
1
t

∥
∥x(t) − ϕ(0) − t(ϕ(−1) + ϕ(1))

∥
∥

Cn +
1
t

∥
∥
∥
∥x(t + θ) − ϕ(·) − t

dϕ
dθ

(·)
∥
∥
∥
∥
Mm

]

≤ lim
t→ 0

[
1
t

∥
∥x(t) − ϕ(0) − t(ϕ(−1) + ϕ(1))

∥
∥

Cn+
1
t

m∑

k=0

Pk

(

x(t + θ) − ϕ(·) − t
dϕ
dθ

(·)
)]

= 0.

(3.29)

Theorem 3.5. Let A be the infinitesimal generator of S(t).
The spectrum of A is discrete and it is defined by

σ(A) = {λ ∈ C : det(Δλ) = 0}, (3.30)
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where Δλ = (λ − eλ − e−λ)I for all λ ∈ C, and the multiplicity of each eigenvalue is finite. For every
δ ∈ R, there exist only a finite number of eigenvalues in C+

δ
= {s ∈ C : Re(s) > δ}. If λ ∈ σ(A), then

( r
eλ·r

)
, where r /= 0 satisfies Δλr = 0, is an eigenvector of A with eigenvalue λ. On the other hand, if

Φ is an eigenvector of A with eigenvalue λ, then Φ =
( r
eλ·r

)
with Δλr = 0.

Proof. According to the previous Lemma 3.2, for α ∈ R sufficiently large, one has

(αI −A)−1
(

r
ϕ(·)

)

=
(
g(0)
g(·)

)

, (3.31)

where g(θ) and g(0) are as (i) and (ii), respectively in Lemma 3.2. Denote byQλ the extension
of (3.31) to C, that is,

Qλ

(
r

ϕ(·)
)

:=
(
g(0)
g(·)

)

. (3.32)

A simple calculation shows that if λ ∈ C satisfies det(Δλ)/= 0, then Qλ is a bonded linear
operator from N to N. Furthermore, for these λ we have (λI − A)Qλ = I and (λI − A) is
injective. Therefore, Qλ = (λI −A)−1 = 
(A), the resolvent operator of A.

Since {λ ∈ C : det(Δλ)/= 0} ⊆ 
(A), then σ(A) ⊂ {λ ∈ C : det(Δλ) = 0}.
On the other hand, if det(Δλ) = 0, then there exists a ξ ∈ C

n such that (λI − e−λ

−eλ)(ξ) = 0.
The following element of N, z0 =

(
ξ

eλ·ξ

)
belongs to D(A) and

(λI −A)z0 =

⎛

⎝
λξ − e−λξ − eλξ

λeλθξ − d
dθ

eλθξ

⎞

⎠ =
(
0
0

)

. (3.33)

Then {λ ∈ C : det(Δλ) = 0} ⊂ σ(A).
Let λ be an element in C+

δ
with eδ + e−δ < |λ|.

For this λ, one has |eλ + e−λ| ≤ eδ + e−δ < |λ|, and from [8, Corollary A.4.10], one
concludes that λI−eλ−e−λ is invertible inNm, whereNm is defined as before. Thus det(Δλ)/= 0
and λ ∈ ρ(A). Since det(λI − eλ − e−λ) is an entire function, it has finitely many zeros in the
compact set C+

δ
∩ {λ ∈ C : |λ| ≤ eδ + e−δ} (see in [8, Theorem A.1.4.6b]) and we have showed

that in the rest of C+
δ
there are none. Therefore, there are only a finite number of eigenvalues

in C+
δ .

Let Φ =
( r
ϕ(·)

)
be an eigenvector of Awith eigenvalue λ. From the definition of A, one

obtains (dϕ/dθ)(θ) = λϕ(θ) for θ ∈ [−1, 1] which gives ϕ(θ) = eλθϕ(0).
Since Φ ∈ D(A), one has ϕ(0) = r. Using the first equation of the definition of A,

eλ + e−λr = λr which shows that Δλr = 0. The other implication is obvious.
Finally, we will show that the multiplicity of each eigenvalue is finite. From

Lemma 3.2, one has

(αI −A)−1
(
ϕ(0)
ϕ(·)

)

=
(

g(0)
eαg(0)

)

+

⎛

⎝
0

−
∫ ·

0
eα(·−s)ϕ(s)ds

⎞

⎠, (3.34)
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where g(0) is given in (ii) of Lemma 3.2. We deduce from this expression that the resolvent
operator, as an operator from Nm to Nm, is the sum of an operator with finite range and an
integral operator. The first operator is compact (see [8, Lemma A.3.22a]), and so is the second
one, as we will see. Therefore, (αI −A)−1 is compact as an operator of L(Nm), for all m ∈ N.
From [8, Theorem A.4.18 and Lemma A.4.19], one obtains that the eigenvalue’s multiplicity
is finite for (αI −A) and A.

In order to prove the compactness of the second operator, let us observe that in [11,
Example 1, page 277], it is seen that the operator

Tϕ(a) =
∫a

0
eα(a−s)ϕ(s)ds (3.35)

is compact in C[0, a]. Let us suppose that a ≤ 1 and let B be the closed unit ball in Cm[−1, 1];
then B ∩ M is the unit ball of Mm and it is valid that T(B ∩M) ⊆ T(B) in the topology of
Cm[−1, 1].

Therefore, it is enough to prove that T(B) is compact in Cm[−1, 1]. Let B′ be the closed
unit ball of C[0, a]; then B ⊆ B′ which implies T(B) ⊆ T(B′). If W is the closure of T(B) in
C[0, a], then, as T(B) ⊆ T(B′),W is compact in C[0, a].

Now, let {Vα}α∈J be a covering consisting of open balls in Cm[−1, 1] of W. Each Vα is
contained in an open ball Bα of C[0, a]. Therefore, {Bα}α∈J is an open covering ofW in C[0, a],
hence there is a finite open covering {Bαi}ki=1. At last, {Vαi : Bαi ⊆ Vαi}ki=1 is a covering ofW and
soW is compact in Cm[−1, 1].

Since T(B)C
m[−1,1] ⊆ T(B)C[0,a] = W, T(B) is compact in Cm[−1, 1].

4. Controllability

Let U be a Banach space. One will consider the following linear system:

x′(t) = Ax(t) + Bu(t),
x(0) = x0, x0 ∈ D(A),

x(θ) = ϕ(θ), θ ∈ [−1, 1],
(4.1)

where A : D(A) ⊆ N → N is the infinitesimal generator of the semigroup (S(t))t≥0, B : U →
N is a bonded linear operator, u : [0,∞) → U is a strongly measurable, essentially bounded
function.

In this section, we will study the controllability of the system (4.1). The mild solution
of (4.1) is given by

x(t) = S(t)x0 +
∫ t

0
S(t − s)Bu(s)ds. (4.2)

Further, we will suppose that Ω is a separable weakly compact convex subset of U.
For τ > 0, the set

Ω̃τ =
{
u ∈ L∞

U[0, τ] : u ∈ Ω a.e.
}

(4.3)
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is called the set of admissible controls of (4.1), while the set

Aτ(x0) =
{

S(τ)x0 +
∫ τ

0
S(τ − s)Bu(s)ds : u ∈ Ω̃τ

}

(4.4)

is called the set of accessible points of (4.1).
The system (4.1) is controllable if 0 ∈ Aτ(x0), for each τ > 0.
Let x0, ϕ,U, u, B be as (4.1). Consider for each m ∈ N, the system

x′(t) = Amx(t) + Bu(t),

x(0) = x0, x0 ∈ D(A),

x(θ) = ϕ(θ), θ ∈ [−1, 1],
(4.5)

where B : U → Nm.
Note that, in this case, B is also a bounded operator. In fact, since for each u ∈ U,

Bu ∈ Nm, we can write Bu = (B1u, B2u), where B1 : U → C
n and B2 : U → Mm are bounded

linear operators. If {uj}∞j=0 ⊆ U is a convergent sequence to u, then

∥
∥Buj − Bu

∥
∥

Cn×Mm
=
∥
∥
∥
∥

(
B1uj

B2uj

)

−
(
B1u
B2u

)∥
∥
∥
∥

Cn×Mm

=
∥
∥
∥
∥

(
B1uj − B1u
B2uj − B2u

)∥
∥
∥
∥

Cn×Mm

=
∥
∥B1uj − B1u

∥
∥

Cn +
∥
∥B2uj − B2u

∥
∥
Mm

≤ ∥
∥B1uj − B1u

∥
∥

Cn + Pm

(
B2uj − B2u

)

(4.6)

which converges to zero as j tends to +∞.
Let us consider Ω and Ω̃τ as before.
The system (4.5) is controllable if 0 ∈ Am

τ (x0), for each τ > 0, where

Am
τ (x0) =

{

Sm(τ)x0 +
∫ τ

0
Sm(τ − s)Bu(s)ds : u ∈ Ω̃τ

}

. (4.7)

Lemma 4.1. Aτx0 =
⋂∞

m=1 A
m
τ x0.

Proof. If z ∈ Aτx0, there exist u ∈ Ω̃τ such that z = S(τ)x0+
∫τ
0 S(τ −s)Bu(s)ds. Since S(τ)x0 =

Sm(τ)x0 and S(τ − s)Bu(s) = Sm(τ − s)Bu(s), for all m ∈ N, then z ∈ ⋂∞
m=1 A

m
τ x0. If z ∈

⋂∞
m=1 A

m
τ x0, then there exists, for every m ∈ N, um ∈ Ω̃τ , such that z = Sm(τ)x0 +

∫τ
0 S

m(τ −
s)Bum(s)ds. In particular, for m = 1, z = S1(τ)x0 +

∫τ
0 S

1(τ − s)Bu1(s)ds and as S(τ)x0 =
S1(τ)x0 and S(τ − s)Bu1(s) = S1(τ − s)Bu1(s), then z = S1(τ)x0 +

∫τ
0 S

1(τ − s)Bu1(s)ds, that is,
z ∈ Aτx0.



Abstract and Applied Analysis 15

Before stating themain result on controllability, we need to prove the following lemma.

Lemma 4.2. The map Tt : Mm → Mm, defined by Tt(u)(θ) = u(t + θ), is compact.

Proof. To prove this lemma, we will follow the next five steps.
(1) The Kondrasov’s Theorem [12, 13] gives that the following canonical injection is

compact

Hm(−1, 1) c
↪→ C0([−1, 1]) if m ∈ N, (4.8)

where

Hm(−1, 1) =
{
f ∈ L2(−1, 1) : f (k) ∈ L2(−1, 1), k = 1, . . . , m

}
(4.9)

with f (k) being the derivative of order k in the sense of distributions. Hm(−1, 1) is endowed
with the norm

‖f‖2m =
m∑

k=0

∫1

−1

∣
∣
∣f (k)(t)

∣
∣
∣
2
dt. (4.10)

This implies thatHm[−1, 1] is a Banach space.

(2) Using (1), for m = 1, H1[−1, 1] c
↪→ C0([−1, 1]). Thus, for m ≥ 1, if f ∈ Hm+1(−1, 1),

then f (m) ∈ H1(−1, 1). Therefore, Hm+1(−1, 1) c
↪→ Cm([−1, 1]).

(3) By (2) and the definition of Mm+1, it follows that

Mm+1 ⊆ Cm+1([−1, 1]) ⊆ Hm+1(−1, 1) c
↪→ Cm([−1, 1]). (4.11)

Hence, for every bounded sequence {fk}k∈N
in Mm+1 with the topology of Cm([−1, 1]), it can

be found a convergent subsequence {fkl}l∈N
⊆ {fk}k∈N

that converges to f in Cm([−1, 1]); but
f (m) is continuous and f (m+1) ∈ L2(−1, 1). Thus {f (m+1)

kl
}
l∈N

converges to f (m+1) a.e, and so this
subsequence converges to f inMm+1.

(4) To prove that Tt is compact, it must be proven that for every bounded sequence
{ui}i∈N in Mm, a subsequence {uij}j∈N

can be found such that the sequence {Tt(uij )}j∈N

converges in Mm. As Tt(ui)(θ) = ui(t + θ), then the previous fact is equivalent to obtain a
convergent subsequence {uij}j∈N

from {ui}i∈N inMm.
(5) Using (3) and the conclusion of (4), it is obtained that for all t ∈ R, Tt is compact as

a bounded linear operator from Mm toMm.

Theorem 4.3. 0 ∈ Aτx0 for each τ > 0 (i.e., the system (4.1) is controllable) if and only if

x∗(Sm(τ)x0) +
∫ τ

0
max
u∈Ω

x∗(Sm(t)Bu)dt ≥ 0 (4.12)

for everym ∈ N and each x∗ ∈ (Nm)
∗.
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Proof. First, we will prove that Sm(t), for all t ≥ 0, is compact, for all m ∈ N; in fact,

Sm(t)
(

r
ϕ(·)

)

=
(

x(t)
x(t + θ)

)

=
(
x(t)
0

)

+
(

0
x(t + θ)

)

. (4.13)

The first term has finite rank, therefore, it is compact. According to Lemma 4.2, the second
term is compact in Mm. Consequently, Sm(t) is compact, as an operator in L(Cn × Mm). In
particular, it is compact as an operator in L(Nm). Hence, the adjoint (Sm(t))∗ is strongly
continuous in (0,+∞) (see, e.g., [14]). On the other hand, in view of Lemma 4.1, 0 ∈ Aτx0 if
and only if 0 ∈ Am

τ x0, for all m ∈ N and this is true, after Theorem 1.1 of Bárcenas-Diestel [5], if
and only if x∗(Sm(τ)x0)+

∫τ
0 maxu∈Ω x∗(Sm(t)Bu)dt ≥ 0 for all m ∈ N and each x∗ ∈ (Nm)

∗.
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