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We introduce a modified block hybrid projection algorithm for solving the convex feasibility
problems for an infinite family of closed and uniformly quasi-φ-asymptotically nonexpansive
mappings and the set of solutions of the generalized equilibrium problems. We obtain a strong
convergence theorem for the sequences generated by this process in a uniformly smooth and
strictly convex Banach space with Kadec-Klee property. The results presented in this paper
improve and extend some recent results.

1. Introduction and Preliminaries

The convex feasibility problem (CFP) is the problem of computing points laying in the
intersection of a finite family of closed convex subsets Cj, j = 1, 2, . . . ,N, of a Banach space E.
This problem appears in various fields of applied mathematics. The theory of optimization
[1], Image Reconstruction from projections [2], and Game Theory [3] are some examples.
There is a considerable investigation on (CFP) in the framework of Hilbert spaces which
captures applications in various disciplines such as image restoration, computer tomograph,
and radiation therapy treatment planning [4]. The advantage of a Hilbert spaceH is that the
projection PC onto a closed convex subset C of H is nonexpansive. So projection methods
have dominated in the iterative approaches to (CFP) in Hilbert spaces. In 1993, Kitahara
and Takahashi [5] deal with the convex feasibility problem by convex combinations of
sunny nonexpansive retractions in a uniformly convex Banach space. It is known that if C
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is a nonempty closed convex subset of a smooth, reflexive, and strictly convex Banach space,
then the generalized projection (see, Alber [6] or Kamimura and Takahashi [7]) from E onto
C is relatively nonexpansive, whereas the metric projection from H onto C is not generally
nonexpansive.

We note that the block iterative method is a method which is often used by many
authors to solve the convex feasibility problem (CFP) (see, [8, 9], etc.). In 2008, Plubtieng and
Ungchittrakool [10] established strong convergence theorems of block iterative methods for
a finite family of relatively nonexpansive mappings in a Banach space by using the hybrid
method in mathematical programming.

Let C be a nonempty closed convex subset of a real Banach space E with ‖ · ‖ and E∗

being the dual space of E. Let f be a bifunction of C × C into R and B : C → E∗ a monotone
mapping. The generalized equilibrium problem, denoted by GEP , is to find x ∈ C such that

f
(
x, y

)
+ 〈Bx, y − x〉 ≥ 0, ∀y ∈ C. (1.1)

The set of solutions for the problem (1.1) is denoted by GEP(f, B), that is

GEP
(
f, B

)
:=

{
x ∈ C : f

(
x, y

)
+ 〈Bx, y − x〉 ≥ 0, ∀y ∈ C

}
. (1.2)

If B ≡ 0, the problem (1.1) reducing into the equilibrium problem for f , denoted by EP(f), is to
find x ∈ C such that

f
(
x, y

) ≥ 0, ∀y ∈ C. (1.3)

If f ≡ 0, the problem (1.1) reducing into the classical variational inequality, denoted by VI(B,C),
is to find x∗ ∈ C such that

〈
Bx∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1.4)

The above formulation (1.3)was shown in [11] to covermonotone inclusion problems, saddle
point problems, variational inequality problems, minimization problems, optimization
problems, variational inequality problems, vector equilibrium problems, and Nash equilibria
in noncooperative games. In addition, there are several other problems, for example, the
complementarity problem, fixed point problem, and optimization problem, which can also
be written in the form of an EP(f). In other words, the EP(f) is a unifying model for several
problems arising in physics, engineering, science, optimization, economics, and so forth.
In the last two decades, many papers have appeared in the literature on the existence of
solutions of EP(f); see, for example [11] and references therein. Some solution methods have
been proposed to solve the EP(f); see, for example, [12–29] and references therein.

Consider the functional defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y

∥∥2
, ∀x, y ∈ E, (1.5)
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where J is the duality mapping from E into E∗. It is well known that if C is a nonempty closed
convex subset of a Hilbert space H and PC : H → C is the metric projection of H onto C,
then PC is nonexpansive. This fact actually characterizes Hilbert spaces and consequently, it
is not available in more general Banach spaces. It is obvious from the definition of function φ
that

(‖x‖ − ∥
∥y

∥
∥)2 ≤ φ

(
x, y

) ≤ (‖x‖ + ∥
∥y

∥
∥)2, ∀x, y ∈ E. (1.6)

If E is a Hilbert space, then φ(x, y) = ‖x − y‖2, for all x, y ∈ E. On the other hand, the
generalized projection (Alber [6]) ΠC : E → C is a map that assigns to an arbitrary point
x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x, where x is the solution
to the minimization problem

φ(x, x) = inf
y∈C

φ
(
y, x

)
, (1.7)

and existence and uniqueness of the operatorΠC follow from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J (see, for example, [6, 7, 30–32]).

Remark 1.1. If E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E,
φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0 then x = y. From
(1.5), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J,
one has Jx = Jy. Therefore, we have x = y; see [31, 32] for more details.

Let C be a closed convex subset of E; a mapping T : C → C is said to be nonexpansive
if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C. A point x ∈ C is a fixed point of T provided Tx = x.
Denote by F(T) the set of fixed points of T ; that is, F(T) = {x ∈ C : Tx = x}. Recall that a
point p in C is said to be an asymptotic fixed point of T [33] if C contains a sequence {xn}
which converges weakly to p such that limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed
points of T will be denoted by F̃(T).

A mapping T from C into itself is said to be relatively nonexpansive [34–36] if
F̃(T) = F(T) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T). The asymptotic behavior
of a relatively nonexpansive mapping was studied in [37–39]. T is said to be φ-nonexpansive,
if φ(Tx, Ty) ≤ φ(x, y) for x, y ∈ C. T is said to be relatively quasi-nonexpansive if F(T)/= ∅
and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T). T is said to be quasi-φ-asymptotically
nonexpansive if F(T)/= ∅ and there exists a real sequence {kn} ⊂ [1,∞) with kn → 1 such
that φ(p, Tnx) ≤ knφ(p, x) for all n ≥ 1x ∈ C and p ∈ F(T). A mapping T is said to be closed
if for any sequence {xn} ⊂ C with xn → x and Txn → y, Tx = y. It is easy to know
that each relatively nonexpansive mapping is closed. The class of quasi-φ-asymptotically
nonexpansive mappings contains properly the class of quasi-φ-nonexpansive mappings as
a subclass and the class of quasi-φ-nonexpansive mappings contains properly the class of
relatively nonexpansive mappings as a subclass, but the converse may be not true (see more
details [37–41]).

A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E
with ‖x‖ = ‖y‖ = 1 and x /=y. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then
a Banach space E is said to be smooth if the limit limt→ 0(‖x + ty‖ − ‖x‖)/t exists for each
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x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly for x, y ∈ U.
Let E be a Banach space. The modulus of convexity of E is the function δ : [0, 2] → [0, 1]
defined by δ(ε) = inf{1 − ‖(x + y)/2‖ : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε}. A Banach
space E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be a fixed real
number with p ≥ 2. A Banach space E is said to be p-uniformly convex if there exists a
constant c > 0 such that δ(ε) ≥ cεp for all ε ∈ [0, 2]; see [42] for more details. Observe that
every p-uniform convex is uniformly convex. One should note that no Banach space is p-
uniform convex for 1 < p < 2. It is well known that a Hilbert space is 2-uniformly convex,
uniformly smooth. For each p > 1, the generalized duality mapping Jp : E → 2E

∗
is defined

by Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1} for all x ∈ E. In particular, J = J2 is called
the normalized duality mapping. If E is a Hilbert space, then J = I, where I is the identity
mapping. It is also known that if E is uniformly smooth, then J is uniformly norm-to-norm
continuous on each bounded subset of E.

The following basic properties can be found in Cioranescu [31].

(i) If E is a uniformly smooth Banach space, then J is uniformly continuous on each
bounded subset of E.

(ii) If E is a reflexive and strictly convex Banach space, then J−1 is norm-weak∗-
continuous.

(iii) If E is a smooth, strictly convex, and reflexive Banach space, then the normalized
duality mapping J : E → 2E

∗
is single-valued, one-to-one, and onto.

(iv) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex.

(v) Each uniformly convex Banach space E has the Kadec-Klee property, that is, for any
sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, xn → x.

In 2005, Matsushita and Takahashi [40] proposed the following hybrid iteration
method (it is also called the CQ method) with generalized projection for relatively
nonexpansive mapping T in a Banach space E:

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0.

(1.8)

They proved that {xn} converges strongly to ΠF(T)x0, where ΠF(T) is the generalized
projection from C onto F(T). In 2007, Plubtieng and Ungchittrakool [43] generalized the
processes (1.8) to the new general processes of two relatively nonexpansive mappings in
a Banach space. Let C be a closed convex subset of a Banach space E and S, T : C → C
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relatively nonexpansive mappings such that F := F(S)∩F(T)/= ∅. Define {xn} in the following
way:

x0 = x ∈ C,

yn = J−1(αnJxn + (1 − αn)Jzn),

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn

)
,

Hn =
{
z ∈ C : φ

(
z, yn

)
� φ(z, xn)

}
,

Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 � 0},
xn+1 = PHn∩Wnx, n = 0, 1, 2, . . . ,

(1.9)

where {αn}, {β(1)n }, {β(2)n }, and {β(3)n } are sequences in [0, 1] with β
(1)
n + β

(2)
n + β

(3)
n = 1 for all

n ∈ N ∪ {0}.
In 2009, Qin et al. [26] introduced a hybrid projection algorithm to find a common

element of the set of solutions of an equilibrium problem and the set of common fixed points
of two quasi-φ-nonexpansive mappings in the framework of Banach spaces:

x0 = x chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1
(
αnJxn + βnJTxn + γnJSxn

)
,

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x0,

(1.10)

where ΠCn+1 is the generalized projection from E onto Cn+1. They proved that the sequence
{xn} converges strongly to ΠF(T)∩F(S)∩EP(f)x0. In the same year, Wattanawitoon and Kumam
[44] and Petrot et al. [45] using the idea of Takahashi and Zembayashi [46, 47] and Plubtieng
and Ungchittrakool [43] extend the notion from relatively nonexpansive mappings or quasi-
φ-nonexpansive mappings to two relatively quasi-nonexpansive mappings and also proved
some strong convergence theorems to approximate a common fixed point of relatively quasi-
nonexpansive mappings and the set of solutions of an equilibrium problem in the framework
of Banach spaces. In 2010, Chang et al. [48] proposed the modified block iterative algorithm
for solving the convex feasibility problems for an infinite family of closed and uniformly
quasi-φ-asymptotically nonexpansivemapping; they obtain the strong convergence theorems
in a Banach space. Recently, many authors considered the iterative methods for finding a
common element of the set of solutions to the problem (1.3) and of the set of fixed points of
nonexpansive mappings; see, for instance, [12–27] and the references therein.



6 Abstract and Applied Analysis

Motivated by Chang et al. [48], Qin et al. [26, 49], Wattanawitoon and Kumam [44],
Petrot et al. [45], Zegeye [50], and other recent works, in this paper we introduce a new
modified block hybrid projection algorithm for finding a common element of the set of
solutions of the generalized equilibrium problems and the set of common fixed points of
an infinite family of closed and uniformly quasi-φ-asymptotically nonexpansive mappings
which is more general than closed quasi-φ-nonexpansive mappings in a uniformly smooth
and strictly convex Banach space E with Kadec-Klee property. The results presented in this
paper improve and generalize some well-known results in the literature.

2. Basic Results

We also need the following lemmas for the proof of our main results.

Lemma 2.1 (Kamimura and Takahashi [7]). Let E be a uniformly convex and smooth Banach space
and let {xn} and {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded,
then ‖xn − yn‖ → 0.

Lemma 2.2 (Alber [6]). Let C be a nonempty closed convex subset of a smooth Banach space E and
x ∈ E. Then x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C. (2.1)

Lemma 2.3 (Alber [6]). Let E be a reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed convex subset of E, and let x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

)
, ∀y ∈ C. (2.2)

For solving the equilibrium problem for a bifunction f : C×C → R, let us assume that
f satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

f
(
tz + (1 − t)x, y

) ≤ f
(
x, y

)
; (2.3)

(A4) for each x ∈ C, y �→ f(x, y) is convex and lower semicontinuous.

Lemma 2.4 (Blum and Oettli [11]). Let C be a closed convex subset of a smooth, strictly convex and
reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0
and x ∈ E. Then there exists z ∈ C such that

f
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.4)
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Lemma 2.5 (Zegeye [50]). Let C be a closed convex subset of a uniformly smooth, strictly convex
and reflexive Banach space E and let f be a bifunction from C × C to R satisfying (A1)–(A4) and let
B be a monotone mapping from C into E∗. For r > 0 and x ∈ E, define a mapping Tr : C → C as
follows:

Trx =
{
z ∈ C : f

(
z, y

)
+
〈
Bx, y − z

〉
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
(2.5)

for all x ∈ C. Then the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, for all x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
; (2.6)

(3) F(Tr) = GEP(f, B);

(4) GEP(f, B) is closed and convex.

Lemma 2.6 (Zegeye [50]). (LetC be a closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, let f be a bifunction from C ×C to R satisfying (A1)–(A4), and let B be a monotone
mapping from C into E∗. For r > 0, x ∈ E, and q ∈ F(Tr), we have that

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (2.7)

Lemma 2.7 (Chang et al. [48]). Let E be a uniformly convex Banach space, r > 0 a positive number,
and Br(0) a closed ball of E. Then, for any given sequence {xi}∞i=1 ⊂ Br(0) and for any given sequence
{λi}∞i=1 of positive number with

∑∞
n=1 λn = 1, there exists a continuous, strictly increasing, and convex

function g : [0, 2r) → [0,∞) with g(0) = 0 such that, for any positive integer i, j with i < j,

∥∥∥∥∥

∞∑

n=1

λnxn

∥∥∥∥∥

2

≤
∞∑

n=1

λn‖xn‖2 − λiλjg
(∥∥xi − xj

∥∥). (2.8)

Lemma 2.8 (Chang et al. [48]). Let E be a real uniformly smooth and strictly convex Banach space,
and C a nonempty closed convex subset of E. Let T : C → C be a closed and quasi-φ-asymptotically
nonexpansive mapping with a sequence {kn} ⊂ [1,∞), kn → 1. Then F(T) is a closed convex subset
of C.

Definition 2.9 (Chang et al. [48]). (1) Let {Si}∞i=1 : C → C be a sequence of mapping.
{Si}∞i=1 is said to be a family of uniformly quasi-φ-asymptotically nonexpansive mappings,
if ∩∞

n=1F(Sn)/= ∅, and there exists a sequence {kn} ⊂ [1,∞) with kn → 1 such that for each
i ≥ 1,

φ
(
p, Sn

i x
) ≤ knφ

(
p, x

)
, ∀p ∈ ⋂∞

n=1 F(Sn), x ∈ C, ∀n ≥ 1. (2.9)
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(2)Amapping S : C → C is said to be uniformly L-Lipschitz continuous if there exists
a constant L > 0 such that

∥
∥Snx − Sny

∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ C. (2.10)

3. Main Results

In this section, we prove the new convergence theorems for finding the set of solutions
of a general equilibrium problems and the common fixed point set of a family of closed
and uniformly quasi-φ-asymptotically nonexpansive mappings in a uniformly smooth and
strictly convex Banach space E with Kadec-Klee property.

Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E with Kadec-Klee property. Let f be a bifunction from C × C to R satisfying
(A1)–(A4). Let B be a continuous monotone mapping of C into E∗. Let {Si}∞i=1 : C → C be an
infinite family of closed uniformly Li-Lipschitz continuous and uniformly quasi-φ-asymptotically
nonexpansive mappings with a sequence {kn} ⊂ [1,∞), kn → 1 such that F := ∩∞

i=1F(Si) ∩
GEP(f, B) is a nonempty and bounded subset in C. For an initial point x0 ∈ E with x1 = ΠC1x0

and C1 = C, we define the sequence {xn} as follows:

yn = J−1
(
βnJxn +

(
1 − βn

)
Jzn

)
,

zn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)

,

un ∈ C such that f
(
un, y

)
+ 〈Byn, y − un〉 + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.1)

where J is the duality mapping on E, θn = supq∈F(kn−1)φ(q, xn), {αn,i}, {βn} are sequences in [0, 1]
and {rn} ⊂ [a,∞) for some a > 0. If

∑∞
i=0 αn,i = 1 for all n ≥ 0 and lim infn→∞αn,0αn,i > 0 for all

i ≥ 1, then {xn} converges strongly to p ∈ F, where p = ΠFx0.

Proof. We first show that Cn+1 is closed and convex for each n ≥ 0. Clearly C1 = C is closed
and convex. Suppose that Cn is closed and convex for each n ∈ N. Since for any z ∈ Cn, we
know

φ(z, un) ≤ φ(z, xn) + θn ⇐⇒ 2〈z, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2 + θn. (3.2)

So, Cn+1 is closed and convex. Therefore, ΠFx0 and ΠCnx0 are well defined. Next, we show
that F ⊂ Cn for all n ≥ 0. Indeed, put un = Trnyn for all n ≥ 0. It is clear that F1 ⊂ C1 = C.



Abstract and Applied Analysis 9

Suppose F ⊂ Cn for n ∈ N, by the convexity of ‖ · ‖2, property of φ, Lemma 2.7, and uniformly
quasi-φ-asymptotically nonexpansive of Sn for each q ∈ F ⊂ Cn, we observed that

φ
(
q, un

)
= φ

(
q, Trnyn

)

≤ φ
(
q, yn

)

= φ(q, J−1
(
βnJxn +

(
1 − βn

)
Jzn

)

=
∥
∥q

∥
∥2 − 2

〈
q, βnJxn +

(
1 − βn

)
Jzn

〉
+
∥
∥βnJxn + (1 − βn)Jzn

∥
∥2

≤ ∥
∥q

∥
∥2 − 2βn

〈
q, Jxn

〉 − 2
(
1 − βn

)〈
q, Jzn

〉
+ βn‖xn‖2 +

(
1 − βn

)‖zn‖2

= βnφ
(
q, xn

)
+
(
1 − βn

)
φ
(
q, zn

)

(3.3)

and

φ
(
q, zn

)
= φ

(

q, J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

))

=
∥∥q

∥∥2 − 2

〈

q, αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

〉

+

∥∥∥∥∥
αn,0Jxn +

∞∑

i=1

αn,iJS
n
i xn

∥∥∥∥∥

2

≤ ∥∥q
∥∥2 − 2αn,0

〈
q, Jxn

〉 − 2
∞∑

i=1

αn,i

〈
q, JSn

i xn

〉
+

∥∥∥∥∥
αn,0Jxn +

∞∑

i=1

αn,iJS
n
i xn

∥∥∥∥∥

2

≤ ∥∥q
∥∥2 − 2αn,0〈q, Jxn〉 − 2

∞∑

i=1

αn,i

〈
q, JSn

i xn

〉
+ αn,0‖Jxn‖2 +

∞∑

i=1

αn,i

∥∥JSn
i xn

∥∥2

− αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥

=
∥∥q

∥∥2 − 2αn,0
〈
q, Jxn

〉
+ αn,0‖Jxn‖2 − 2

∞∑

i=1

αn,i〈q, JSn
i xn〉

+
∞∑

i=1

αn,i

∥∥JSn
i xn

∥∥2 − αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥

= αn,0φ
(
q, xn

)
+

∞∑

i=1

αn,iφ
(
q, Sn

i xn

) − αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥

≤ αn,0knφ
(
q, xn

)
+

∞∑

i=1

αn,iknφ
(
q, xn

) − αn,0αn,jg
∥∥∥Jxn − JSn

j xn

∥∥∥

≤ knφ
(
q, xn

)
.

(3.4)
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Substituting (3.4) into (3.3), we get

φ
(
q, un

) ≤ βnφ
(
q, xn

)
+
(
1 − βn

)
φ
(
q, zn

)

≤ βnφ
(
q, xn

)
+
(
1 − βn

)
knφ

(
q, xn

)

≤ βnφ
(
q, xn

)
+
(
1 − βn

)
[

φ
(
q, xn

)
+ sup

q∈F
(kn − 1)φ

(
q, xn

)
]

≤ φ
(
q, xn

)
+
(
1 − βn

)
sup
q∈F

(kn − 1)φ
(
q, xn

)

≤ φ
(
q, xn

)
+ θn.

(3.5)

This show that q ∈ Cn+1 implies that F ⊂ Cn+1 and hence, F ⊂ Cn for all n ≥ 0. Since F is
nonempty, Cn is a nonempty closed convex subset of E, and henceΠCn exist for all n ≥ 0. This
implies that the sequence {xn} is well defined. From definition of Cn+1 that xn = ΠCnx0 and
xn+1 = ΠCn+1x0,we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (3.6)

By Lemma 2.3, we also have

φ(xn, x0) = φ(ΠCnx0, x0)

≤ φ
(
q, x0

) − φ
(
q, xn

)

≤ φ
(
q, x0

)
, ∀q ∈ F ⊂ Cn, ∀n ≥ 0.

(3.7)

From (3.6) and (3.7), then {φ(xn, x0)} are nondecreasing and bounded. So, we obtain that
limn→∞φ(xn, x0) exists. In particular, by (1.6), the sequence {(‖xn‖− ‖x0‖)2} is bounded. This
implies that {xn} is also bounded. Denote

K = sup
n≥0

{‖xn‖} < ∞. (3.8)

Moreover, by the definition of {θn} and (3.8), it follows that

θn −→ 0, n −→ ∞. (3.9)

Next, we show that {xn} is a Cauchy sequence in C. Since xm = ΠCmx0 ∈ Cm ⊂ Cn, for
m > n, by Lemma 2.3, we have

φ(xm, xn) = φ(xm,ΠCnx0)

≤ φ(xm, x0) − φ(ΠCnx0, x0)

= φ(xm, x0) − φ(xn, x0).

(3.10)
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Since limn→∞φ(xn, x0) exists and we take m,n → ∞, then, we get φ(xm, xn) → 0. From
Lemma 2.1, we have limn→∞‖xm − xn‖ = 0. Thus {xn} is a Cauchy sequence and by the
completeness of E, and there exists a point p ∈ C such that xn → p as n → ∞.

Now, we claim that ‖Jun − Jxn‖ → 0, as n → ∞. By definition of ΠCnx0, one has

φ(xn+1, xn) = φ(xn+1,ΠCnx0)

≤ φ(xn+1, x0) − φ(ΠCnx0, x0)

= φ(xn+1, x0) − φ(xn, x0).

(3.11)

Since limn→∞φ(xn, x0) exists, we have

lim
n→∞

φ(xn+1, xn) = 0. (3.12)

By Lemma 2.1, we obtain that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.13)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we get

lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (3.14)

From xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) + θn. (3.15)

By (3.9) and (3.12), we also have

lim
n→∞

φ(xn+1, un) = 0. (3.16)

Applying Lemma 2.1, we obtain

lim
n→∞

‖xn+1 − un‖ = 0. (3.17)

Since ‖un − xn‖ ≤ ‖un − xn+1‖ + ‖xn+1 − xn‖, we get

lim
n→∞

‖un − xn‖ = 0. (3.18)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we have

lim
n→∞

‖Jun − Jxn‖ = 0. (3.19)
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Next, we will show that xn → p ∈ F := GEP(f, B) ∩ (∩∞
i=1F(Si)).

(i) First, we show that xn → p ∈ GEP(f, B). It follows from (3.3) and (3.4)we observe
that φ(p, yn) ≤ φ(p, xn) + θn. By Lemma 2.6 and un = Trnyn, we obtain

φ
(
un, yn

)
= φ

(
Trnyn, yn

)

≤ φ
(
p, yn

) − φ
(
p, Trnyn

)

≤ φ
(
p, xn

) − φ
(
p, Trnyn

)
+ θn

= φ
(
p, xn

) − φ
(
p, un

)
+ θn

= ‖p‖2 − 2〈p, Jxn〉 + ‖xn‖2 −
(
‖p‖2 − 2〈p, Jun〉 + ‖un‖2

)
+ θn

= ‖xn‖2 − ‖un‖2 − 2〈p, Jxn − Jun〉 + θn

≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖p‖‖Jxn − Jun‖ + θn.

(3.20)

By Lemma 2.1, (3.9), (3.18), and (3.19), we have

lim
n→∞

‖un − yn‖ = 0. (3.21)

Again since J is uniformly norm-to-norm continuous, we also have

lim
n→∞

∥∥Jun − Jyn

∥∥ = 0. (3.22)

From (A2), we note that

〈
Byn, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ −f(un, y
) ≥ f

(
y, un

)
, ∀y ∈ C, (3.23)

and hence

〈
Byn, y − un

〉
+
〈
y − un,

Jun − Jyn

rn

〉
≥ f

(
y, un

)
, ∀y ∈ C. (3.24)

For twith 0 < t < 1 and y ∈ C, let yt = ty + (1 − t)p. Then yt ∈ C and hence

0 ≥ −〈Byn, yt − un

〉 −
〈
yt − un,

Jun − Jyn

rn

〉
+ f

(
yt, un

)
, ∀y ∈ C. (3.25)
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It follows that

〈Byt, yt − un〉 ≥ 〈Byt, yt − un〉 − 〈Byn, yt − un〉 −
〈
yt − un,

Jun − Jyn

rn

〉
+ f

(
yt, un

)
, ∀yt ∈ C

=
〈
Byt, yt − un

〉 − 〈
Bun, yt − un

〉
+
〈
Bun, yt − un

〉

− 〈
Byn, yt − un

〉 −
〈
yt − un,

Jun − Jyn

rn

〉
+ f

(
yt, un

)
, ∀yt ∈ C

=
〈
Byt − Bun, yt − un

〉
+
〈
Bun − Byn, yt − un

〉 −
〈
yt − un,

Jun − Jyn

rn

〉

+ f
(
yt, un

)
, ∀yt ∈ C.

(3.26)

Since xn → p as n → ∞ from (3.18) and (3.21), we can get un → p and yn → p as n → ∞.
Furthermore, it follows from the continuity of B that Bun − Byn → 0 as n → ∞. From rn > 0
and (3.22), we have ‖Jun − Jyn‖/rn → 0 as n → ∞. Since B is monotone, we know that
〈Byt − Bun, yt − un〉 ≥ 0. Thus, it follows from (A4) that

f
(
yt, p

) ≤ lim inf
n→∞

f
(
yt, un

)

≤ lim
n→∞

〈Byt, yt − un〉

= 〈Byt, yt − p〉.

(3.27)

From the conditions (A1) and (A4), we have

0 = f
(
yt, yt

)

≤ tf
(
yt, y

)
+ (1 − t)f

(
yt, p

)

≤ tf
(
yt, y

)
+ (1 − t)〈Byt, yt − p〉

≤ tf
(
yt, y

)
+ (1 − t)t〈Byt, y − p〉,

(3.28)

and hence

0 ≤ f
(
yt, y

)
+ (1 − t)〈Byt, y − p〉. (3.29)

Letting t → 0, we get

0 ≤ f
(
p, y

)
+ 〈Bp, y − p〉, ∀y ∈ C. (3.30)

This implies that p ∈ GEP(f, B).
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(ii) We show that xn → p ∈ ∩∞
i=1F(Si). From definition of Cn+1 and since xn+1 =

ΠCn+1x0 ∈ Cn+1, we have

φ(xn+1, zn) ≤ φ(xn+1, xn) + θn. (3.31)

Form Lemma 2.1 and (3.9), we obtain that

lim
n→∞

‖xn+1 − zn‖ = 0. (3.32)

Since J is uniformly norm-to-norm continuous, we also have

lim
n→∞

‖Jxn+1 − Jzn‖ = 0. (3.33)

From (3.1), we compute

‖Jxn+1 − Jzn‖ =

∥∥∥∥∥
Jxn+1 −

(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)∥∥∥∥∥

=

∥∥∥∥∥
αn,0Jxn+1 − αn,0Jxn +

∞∑

i=1

αn,iJxn+1 −
∞∑

i=1

αn,iJS
n
i xn

∥∥∥∥∥

=

∥∥∥∥∥
αn,0(Jxn+1 − Jxn) +

∞∑

i=1

αn,i

(
Jxn+1 − JSn

i xn

)
∥∥∥∥∥

=

∥∥∥∥∥

∞∑

i=1

αn,i

(
Jxn+1 − JSn

i xn

) − αn,0(Jxn − Jxn+1)

∥∥∥∥∥

≥
∞∑

i=1

αn,i

∥∥Jxn+1 − JSn
i xn

∥∥ − αn,0‖Jxn − Jxn+1‖,

(3.34)

and hence

∥∥Jxn+1 − JSn
i xn

∥∥ ≤ 1
∑∞

i=1 αn,i
(‖Jxn+1 − Jzn‖ + αn,0‖Jxn − Jxn+1‖). (3.35)

From (3.14), (3.33), and lim infn→∞
∑∞

i=1 αn,i > 0, we get

lim
n→∞

∥∥Jxn+1 − JSn
i xn

∥∥ = 0. (3.36)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we obtain that

lim
n→∞

∥∥xn+1 − Sn
i xn

∥∥ = 0. (3.37)
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By the triangle inequality,

∥
∥xn − Sn

i xn

∥
∥ =

∥
∥xn − xn+1 + xn+1 − Sn

i xn

∥
∥

≤ ‖xn − xn+1‖ +
∥
∥xn+1 − Sn

i xn

∥
∥.

(3.38)

Hence from (3.13) and (3.37), we have

lim
n→∞

∥
∥xn − Sn

i xn

∥
∥ = 0. (3.39)

Since J is uniformly continuous on any bounded subset of E,we obtain

lim
n→∞

∥
∥Jxn − JSn

i xn

∥
∥ = 0, ∀i ≥ 1. (3.40)

Since xn → p and J is uniformly continuous, it yields Jxn → Jp. Thus from (3.40), we get

JSn
i xn −→ Jp, ∀i ≥ 1. (3.41)

Since J−1 : E∗ → E is norm-weak∗-continuous, we have

Sn
i xn ⇀ p, ∀i ≥ 1. (3.42)

On the other hand, for each i ≥ 1, we observe that

∣∣∥∥Sn
i xn

∥∥ − ∥∥p
∥∥∣∣ =

∣∣∥∥J
(
Sn
i xn

)∥∥ − ∥∥Jp
∥∥∣∣ ≤ ∥∥J

(
Sn
i xn

) − Jp
∥∥. (3.43)

In view of (3.41), we obtain ‖Sn
i xn‖ → ‖p‖ for each i ≥ 1. Since E has the Kadec-Klee property,

we get

Sn
i xn −→ p, for each i ≥ 1. (3.44)

By the assumption that for each i ≥ 1, Si is uniformly Li-Lipschitz continuous, we have

∥∥∥Sn+1
i xn − Sn

i xn

∥∥∥ ≤
∥∥∥Sn+1

i xn − Sn+1
i xn+1

∥∥∥ +
∥∥∥Sn+1

i xn+1 − xn+1

∥∥∥ + ‖xn+1 − xn‖ +
∥∥xn − Sn

i xn

∥∥

≤ (Li + 1)‖xn+1 − xn‖ +
∥∥∥Sn+1

i xn+1 − xn+1

∥∥∥ +
∥∥xn − Sn

i xn

∥∥.

(3.45)

From (3.13) and (3.39), it yields that ‖Sn+1
i xn −Sn

i xn‖ → 0. From Sn
i xn → p, we get Sn+1

i xn →
p, that is SiS

n
i xn → p. In view of closeness of Si, we have Sip = p, for all i ≥ 1. This implies

that p ∈ ∩∞
i=1F(Si).
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Finally, we show that xn → p = ΠFx0. Let u = ΠFx0. From xn = ΠCnx0 and u ∈ F ⊂ Cn,
we have

φ(xn, x0) ≤ φ(u, x0), ∀n ≥ 0. (3.46)

This implies that

φ
(
p, x0

)
= lim

n→∞
φ(xn, x0) ≤ φ(u, x0). (3.47)

By definition of p = ΠFx0, we have p = u. Therefore, xn → p = ΠFx0. This completes the
proof.

If Si = S for each i ∈ N, then Theorem 3.1 is reduced to the following corollary.

Corollary 3.2. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E with Kadec-Klee property. Let f be a bifunction from C × C to R satisfying
(A1)–(A4). Let B be a continuous monotone mapping of C into E∗. Let S : C → C be a
closed uniformly L-Lipschitz continuous and quasi-φ-asymptotically nonexpansive mappings with
a sequence {kn} ⊂ [1,∞), kn → 1, such that F := F(S) ∩ GEP(f, B) is a nonempty and bounded
subset in C. For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, we define the sequence {xn} as
follows:

yn = J−1
(
βnJxn +

(
1 − βn

)
Jzn

)
,

zn = J−1(αnJxn + (1 − αn)JSnxn),

un ∈ C such that f
(
un, y

)
+ 〈Byn, y − un〉 + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.48)

where J is the duality mapping on E, θn = supq∈F(kn−1)φ(q, xn), {αn}, {βn} are sequences in [0, 1],
and {rn} ⊂ [a,∞) for some a > 0. If lim infn→∞αn(1 − αn) > 0, then {xn} converges strongly to
p ∈ F, where p = ΠFx0.

For a special case that i = 1, 2, we can obtain the following results on a pair of quasi-φ-
asymptotically nonexpansive mappings immediately from Theorem 3.1.

Corollary 3.3. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E with Kadec-Klee property. Let f be a bifunction from C × C to R satisfying
(A1)–(A4). Let B be a continuous monotone mapping of C into E∗. Let S, T : C → C be two
closed quasi-φ-asymptotically nonexpansive mappings and uniformly LS, LT -Lipschitz continuous,
respectively with a sequence {kn} ⊂ [1,∞), kn → 1 such that F := F(S) ∩ F(T) ∩ GEP(f, B) is a
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nonempty and bounded subset in C. For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, we
define the sequence {xn} as follows:

yn = J−1
(
βnJxn +

(
1 − βn

)
Jzn

)
,

zn = J−1
(
αnJxn + βnJS

nxn + γnJT
nxn

)
,

un ∈ C such that f
(
un, y

)
+ 〈Byn, y − un〉 + 1

rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.49)

where J is the duality mapping on E, θn = supq∈F(kn − 1)φ(q, xn), {αn,i}, {βn} are sequences in
[0, 1], and {rn} ⊂ [a,∞) for some a > 0. If αn + βn + γn = 1 for all n ≥ 0 and lim infn→∞αnβn > 0
and lim infn→∞αnγn > 0, then {xn} converges strongly to p ∈ F, where p = ΠFx0.

Remark 3.4. Corollary 3.3 improves and extends [44, Theorem 3.1] in the following senses:

(i) for the mappings, we extend the mappings from two closed relatively quasi-
nonexpansive mappings to an infinite family of closed and uniformly quasi-φ-
asymptotically mappings,

(ii) from a solution of the classical equilibrium problem to the generalized equilibrium
problem,

(iii) for the framework of spaces, we extend the space from a uniformly smooth and
uniformly convex Banach space to a uniformly smooth and strictly convex Banach
space with the Kadec-Klee property.

Corollary 3.5. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E with Kadec-Klee property. Let f be a bifunction from C × C to R satisfying
(A1)–(A4). Let B be a continuous monotone mapping of C into E∗. Let {Si}∞i=1 : C → C be an
infinite family of closed quasi-φ-nonexpansive mappings such that F := ∩∞

i=1F(Si) ∩ GEP(f, B)/= ∅.
For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, we define the sequence {xn} as follows:

yn = J−1
(
βnJxn +

(
1 − βn

)
Jzn

)
,

zn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJSixn

)

,

un ∈ C such that f
(
un, y

)
+
〈
Byn, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.50)

where J is the duality mapping on E, {αn,i}, {βn} are sequences in [0, 1], and {rn} ⊂ [a,∞) for some
a > 0. If

∑∞
i=0 αn,i = 1 for all n ≥ 0 and lim infn→∞αn,0αn,i > 0 for all i ≥ 1, then {xn} converges

strongly to p ∈ F, where p = ΠFx0.
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Proof. Since {Si}∞i=1 : C → C is an infinite family of closed quasi-φ-nonexpansive mappings, it
is an infinite family of closed and uniformly quasi-φ-asymptotically nonexpansive mappings
with sequence kn = 1. Hence the conditions appearing in Theorem 3.1 F is a bounded subset
in C and for each i ≥ 1, Si is uniformly Li-Lipschitz continuous are of no use here. By virtue
of the closeness of mapping Si for each i ≥ 1, it yields that p ∈ F(Si) for each i ≥ 1, that
is, p ∈ ∩∞

i=1F(Si). Therefore, all conditions in Theorem 3.1 are satisfied. The conclusion of
Corollary 3.5 is obtained from Theorem 3.1 immediately.

Corollary 3.6. Let C be a nonempty closed and convex subset of a uniformly smooth and strictly
convex Banach space E with Kadec-Klee property. Let f be a bifunction from C × C to R satisfying
(A1)–(A4). Let B be a continuous monotone mapping ofC into E∗. Let {Si}∞i=1 : C → C be an infinite
family of closed and uniformly quasi-φ-asymptotically nonexpansive mappings with a sequence {kn} ⊂
[1,∞), kn → 1 and uniformly Li-Lipschitz continuous such that F := ∩∞

i=1F(Si) ∩ GEP(f, B) is a
nonempty and bounded subset in C. For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, we
define the sequence {xn} as follows:

yn = J−1
(

αn,0Jxn +
∞∑

i=1

αn,iJS
n
i xn

)

,

un ∈ C such that f
(
un, y

)
+
〈
Byn, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn) + θn

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.51)

where J is the duality mapping on E, θn = supq∈F(kn − 1)φ(q, xn), {αn,i} is a sequence in [0, 1], and
{rn} ⊂ [a,∞) for some a > 0. If

∑∞
i=0 αn,i = 1 for all n ≥ 0 and lim infn→∞αn,0αn,i > 0 for all i ≥ 1,

then {xn} converges strongly to p ∈ F, where p = ΠFx0.

Proof. Setting βn ≡ 0 in Theorem 3.1, then, we get that yn = zn. Thus, the method of proof of
Theorem 3.1 we obtain Corollary 3.6 immediately.

Remark 3.7. Theorem 3.1, Corollary 3.3, and Corollary 3.5, improve and extend the corre-
sponding results in Qin et al. [49] and Zegeye [50] in the following senses:

(i) from a solution of the classical equilibrium problem to the generalized equilibrium
problem with an infinite family of quasi-φ-asymptotically mappings,

(ii) for the mappings, we extend the mappings from nonexpansive mappings,
relatively quasi-nonexpansive mappings or quasi-φ-nonexpansive mappings and a
finite family of closed relatively quasi-nonexpansive mappings to an infinite family
of quasi-φ-asymptotically nonexpansive mappings,

(iii) for the framework of spaces, we extend the space from a uniformly smooth and
uniformly convex Banach space to a uniformly smooth and strictly convex Banach
space with the Kadec-Klee property.
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4. Applications

If E = H, a Hilbert space, then H is uniformly smooth and strictly convex Banach space E
with Kadec-Klee property and closed relatively quasi-nonexpansive mappings reducing to
closed quasi-nonexpansive mappings. Moreover, J = I, identity operator on H and ΠC = PC,
projection mapping fromH into C. Thus, the following corollaries hold.

Theorem 4.1. Let C be a nonempty closed and convex subset of a Hilbert space H. Let f be a
bifunction from C × C to R satisfying (A1)–(A4). Let B be a continuous monotone mapping of C
into H. Let {Si}∞i=1 : C → C be an infinite family of closed and uniformly quasi-φ-asymptotically
nonexpansive mappings with a sequence {kn} ⊂ [1,∞), kn → 1 and uniformly Li-Lipschitz
continuous such that F := ∩∞

i=1F(Si) ∩ GEP(f, B) is a nonempty and bounded subset in C. For
an initial point x0 ∈ H with x1 = PC1x0 and C1 = C, we define the sequence {xn} as follows:

yn = βnxn +
(
1 − βn

)
zn,

zn = αn,0xn +
∞∑

i=1

αn,iS
n
i xn,

un ∈ C such that f(un, y) +
〈
Byn, y − un

〉
+

1
rn

〈
y − un, un − yn

〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ‖z − un‖ ≤ αn‖z − xn‖ + (1 − αn)‖z − zn‖ ≤ ‖z − xn‖ + θn},
xn+1 = PCn+1x0, ∀n ≥ 0,

(4.1)

where θn = supq∈F(kn − 1)‖q − xn‖, {αn,i}, {βn} are sequences in [0, 1], and {rn} ⊂ [a,∞) for some
a > 0. If

∑∞
i=0 αn,i = 1 for all n ≥ 0 and lim infn→∞αn,0αn,i > 0 for all i ≥ 1, then {xn} converges

strongly to p ∈ F, where p = ΠFx0.

Corollary 4.2. Let C be a nonempty closed and convex subset of a Hilbert space H. Let f be
a bifunction from C × C to R satisfying (A1)–(A4). Let B be a continuous monotone mapping
of C into H. Let {Si}∞i=1 : C → C be an infinite family of closed and quasi-φ-nonexpansive
mappings with a sequence {kn} ⊂ [1,∞), kn → 1 and uniformly Li-Lipschitz continuous such
that F := ∩∞

i=1F(Si)∩GEP(f, B) is a nonempty and bounded subset in C. For an initial point x0 ∈ H
with x1 = PC1x0 and C1 = C, we define the sequence {xn} as follows:

yn = βnxn +
(
1 − βn

)
zn,

zn = αn,0xn +
∞∑

i=1

αn,iS
n
i xn,

un ∈ C such that f
(
un, y

)
+
〈
Byn, y − un

〉
+

1
rn

〈
y − un, un − yn

〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ‖z − un‖ ≤ αn‖z − xn‖ + (1 − αn)‖z − zn‖ ≤ ‖z − xn‖},
xn+1 = PCn+1x0, ∀n ≥ 0,

(4.2)

where {αn,i}, {βn} are sequences in [0, 1] and {rn} ⊂ [a,∞) for some a > 0. If
∑∞

i=0 αn,i = 1 for all n ≥
0 and lim infn→∞αn,0αn,i > 0 for all i ≥ 1, then {xn} converges strongly to p ∈ F, where p = ΠFx0.
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Remark 4.3. Theorem 4.1 improves and extends the Corollary 3.7 in Zegeye [50] in the aspect
for the mappings; we extend the mappings from a finite family of closed relatively quasi-
nonexpansive mappings to more general a infinite family of closed and uniformly quasi-φ-
asymptotically nonexpansive mappings.
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