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We present the results of theoretical research of the generalized hypersherical function (HS)
by generalizing two known functions related to the sphere hypersurface and hypervolume and
the recurrent relation between them. By introducing two-dimensional degrees of freedom k and
n (and the third, radius r), we develop the derivative functions for all three arguments and
the possibilities of their use. The symbolical evolution, numerical experiment, and graphical
presentation of functions are realized using the Mathcad Professional and Mathematica softwares.

1. Introduction

The hyperspherical function (HS) is a hypothetical function related to multidimensional
space and generalization of the sphere geometry. This function is primarily formed on
the basis of the interpolating power of the gamma function. It belongs to the group of
special functions, so its testing, besides gamma, is performed on the basis of the related
functions, such as Γ-gamma, ψ-psi, β-beta, erf, and so forth. Its most significant value is
in its generalizing from discrete to continuous [1]. In addition, we move from the field of
natural integers of the geometry sphere dimensions—degrees of freedom, to the set of real
and nonintegral values, thus, we obtain the prerequisites for a more concise analysis of this
function. In this paper the analysis is focused on the infinitesimal calculus application of
the hyperspherical function that is given in its generalized form. For the development of
hyperspherical and other functions of the multidimensional objects, see: Bishop and Whitlock
[2], Collins [3], Conway [4], Dodd and Coll [5], Hinton [6], Hocking and Young [1], Manning
[7], Maunder [8], Neville [9], Rohrmann and Santos [10], Rucker [11], Maeda et al. [12],
Sloane [13], Sommerville [14], Weels [15], and others; see [16–22]. Nowadays, the research
of the hypersperical functions is represented both in Euclid’s and Riemann’s geometry and
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topology (Riemann’s and Poincare’s sphere, multidimensional potentials, theory of fluids,
nuclear (atomic) physics, hyperspherical black holes, etc.)

2. The Hyperspherical Functions of a Derivative

2.1. The Hyperspherical Funcional Matrix

The former results, as it is known, [5, 23], give the functions of the hyperspherical surface
(n = 2) and volume (n = 3) therefore, we have

HS(k, 2, r) =
2
√
πkrk−1

Γ(k/2)
=

∂

∂r
HS(k, 3, r),

HS(k, 3, r) =
∫ r

0
HS(k, 2, r)dr =

√
πkrk

Γ(k/2 + 1)
.

(2.1)

In general, we have

HS(k, n, r) =
∫ r

0
HS(k, n − 1, r)dr =

∫∫ r
0
· · ·

∫ r
0
S(k, r)dr dr · · ·dr

n−2

=
∫∫ r

0
· · ·

∫ r
0

2πk/2rk−1

Γ(k/2)
dr dr · · ·dr

n−2
.

(2.2)

Thus, we give the definition of the hyperspherical function [24].

Definition 2.1. The hyperspherical function with two degrees of freedom k and n is defined
as

HS(k, n, r) =
2
√
πkrk+n−3Γ(k)

Γ(k + n − 2)Γ(k/2)
(k, n ∈ R). (2.3)

This is a function of three variables and two degrees of freedom k and n and the radius of the
hypersphere r. In real spherical entities (Figure 1) such as, diameter, circumference or cycle
surface; followed by sphere surface and volume, only the variable r exists.

By keeping the property that the derivatives on the radius r generate new functions
(the HS matrix columns), we perform “movements” to lower or higher degrees of freedom,
from the starting nth, on the basis of the following recurrent relations:

∂

∂r
HS(k, n, r) = HS(k, n − 1, r), HS(k, n + 1, r) =

∫ r
0

HS(k, n, r)dr. (2.4)

This property is fundamental and hypothetically also holds also for objects out of this
submatrix of six elements (Figures 1 and 2). The derivation example (right) shows that, we
have obtained the zeroth (n = 0) degree of freedom, if we perform the derivation of the nth



Abstract and Applied Analysis 3

n

k 2�
k = 1

⇐ d

dr
2r 2r

k = 2 2πr ⇐ d

dr
πr2 πr2

k = 3 4πr2

n = 2

⇐ d

dr

4
3
πr3 4

3
πr3

n = 3

Surf column Operations Solid column

Figure 1: Moving through the vector of real surfaces left: by deducting one degree of freedom k of the
surface sphere, we obtain circumference, and for two (degrees), we obtain the point 2. Moving through
the vector of real solids (right column), that is, by deduction of one degree of freedom k from the solid
sphere, we obtain a circle (disk), and for two (degrees), we get a line segment or diameter.

degree. With the defined value of the derivative, the HS function is also valid in the complex
domain of the hyperspherical matrix. Namely, the following expressions hold:

∂n

∂rn
HS(k, n, r) = HS(k, 0, r) or

∂2n

∂r2n
HS(k, n, r) = HS(k,−n, r). (2.5)

On the basis of the general hyperspherical function, we obtain the appropriate matrix Mk×n
(k, n ∈ R), where we also give the concrete values for the selected submatrix 9 × 9.

For example if n = 2 and k ∈N, we obtain the following relation (for k = 0, 5):

∂4

∂r4
HS(k, 2, r) = HS(k,−2, r), respectively,

∂4

∂r4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

2

2πr

4πr2

2π2r3

8π2r4

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

64π2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.6)

The matrix [M]k×n has the property that every vector of the ith column is a derivative with
respect to the radius of the next vector in the sequence according to Figure 2. This recursion
property originates from the starting assumptions (2.1). Therefore, we have the following
theorem.
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Theorem 2.2. For the columns of the matrix [M]k×n, the following equality holds:

[M]〈n−1〉 =
∂

∂r
[M]〈n〉. (2.7)

For example, for two adjacent columns of the matrix [M]〈n−1〉 and [M]〈n〉, one obtains
the recurrent vectors

[M]〈n−1〉 =
∂

∂r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rn−3

Γ(n − 2)

2rn−2

Γ(n − 1)

2πrn−1

Γ(n)

8πrn

Γ(n + 1)
...

2
√
πkrk+n−3Γ(k)

Γ(k + n − 2)Γ(k/2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rn−4

Γ(n − 3)

2rn−3

Γ(n − 2)

2πrn−2

Γ(n − 1)

8πrn−1

Γ(n)
...

2
√
πkrk+n−4Γ(k)

Γ(k + n − 1)Γ(k/2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n ∈ R). (2.8)

One obtains interesting results on the basis of horizontal (n) or vertical (k) degrees of
freedom. Therefore, one obtains the following:

2
√
πkrk

kΓ(k/2)

∣∣∣∣∣
k=3

∨ 8πrn

Γ(n + 1)

∣∣∣∣
n=3
∨ 2

√
πkrk+n−3Γ(k)

Γ(k + n − 2)Γ(k/2)

∣∣∣∣∣
k=3∧n=3

=⇒ 4
3
πr3. (2.9)

Consequently, this property is fundamental, because it leads to the same result on the basis
of two special formulas, or using only one general.

2.2. The Analysis of the Recurrent Potential Function of the Type zυ

The hyperspherical function, besides the gamma functions also contains the potential
component rk+n−3. The generalized equation of the hth derivative of the graded expression zυ

is [25]

∂hzυ

∂zh
=

Γ(υ + 1)
Γ(υ − h + 1)

zυ−h (−υ /∈N). (2.10)

Namely, it is known that the exponent with the basis of the HS function radius is υ = k+n−3.
Now the mth derivative of the hyperspherical function with respect to the radius is defined
by the relation

∂m

∂rm
HS(k, n, r) =

2
√
πkΓ(k)

Γ(k + n − 2)Γ(k/2)
· ∂

mrk+n−3

∂rm
. (2.11)
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Figure 2: The submatrix HS(k, n, r) of the function for k ∈ −3,−2, . . . , 5 and n ∈ −2,−1, . . . , 6 with six
highlighted characteristic functions (undef. are undefined values, predominately singular ±∞ of this
function value).

Therefore, using (2.10), the partial derivative in that case is

∂mrk+n−3

∂rm
=
rk−m+n−3Γ(k + n − 2)
Γ(k −m + n − 2)

. (2.12)

After some transforming, we obtain the form

∂m

∂rm
HS(k, n,m, r) =

2rk−m+n−3
√
πkΓ(k)

Γ(k −m + n − 2)Γ(k/2)
. (2.13)

Using the known property Γ(z + 1) = zΓ(z), we have the following theorem.
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Theorem 2.3. Themth derivative of the hyperspherical function with respect to the radius r is

∂m

∂rm
HS(k, n,m, r) =

rk−m+n−3
√
πkΓ(k + 1)

Γ(k −m + n − 2)Γ(k/2 + 1)
. (2.14)

The above equation (2.14) is recurrent by nature, and with it, we obtain every
derivative (for +m) and integral (for −m), depending on what position (n) we want to
perform these operations. That way we can define and, in appropriate cases, use a unique
operator that unites the operations of differentiating and integrating with respect to the
radius of the HS function.

Definition 2.4. The unique operator that unites the operations of differentiating and
integrating with respect to the radius of the hyperspherical function is given by:

∂±m

∂r±m
HS ≡ D±mHS, (2.15)

where ∂/∂r ≡ D.
Symbolically, the integrating (more exactly, the operator ∂−m/∂r−m) can be written in

the form

∂−m

∂r−m
HS(k, n,m, r) =

∫∫ r
0
· · ·

∫ r
0

HS(k, n, r)dr dr · · ·dr
︸ ︷︷ ︸

m

=
2rk+m+n−3

√
πkΓ(k)

Γ(k +m + n − 2)Γ(k/2)
. (2.16)

Because of the known characteristics of the gamma function, the value of the differential or
integral degreem, does not have to be an integer, as, for example, with classical differentiating
(integrating).

2.3. The Derivatives of the Dichotomic HS Functions

We now consider the case in which the hyperspherical function, with the added variable
m, can be separated on even and odd members. We form the derivatives of the function
with odd members by substituting the Legendre’s equivalent in the function HS(k, n,m, r).
Consequently, for these members, we consider the following transformation:

2
√
πkrk−m+n−3Γ(k)

Γ(k −m + n − 2)Γ(k/2)
Γ(k/2)=21−k√π(k−1)!/((k−1)/2)!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 2kπ(k−1)/2rk−m+n−3

(k −m + n − 3)!

(
k − 1

2

)
!. (2.17)

From this, we obtain the function of the mth derivative for odd members (index 1).

Theorem 2.5. Themth derivative for odd members of the hyperspherical function with respect to r is

∂m

∂rm
HS1(k, n,m, r) =

2kπ(k−1)/2rk−m+n−3

(k −m + n − 3)!

(
k − 1

2

)
!. (2.18)
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The second, complementary function, with even members (index 2), is obtained on
the basis of the second transformation

2
√
πkrk−m+n−3Γ(k + 1)

Γ(k −m + n − 2)Γ(k/2 + 1)
Γ(k/2+1)=(k/2)Γ(k/2)−−−−−−−−−−−−−−−−−−−−→ 2

√
πkrk−m+n−3(k − 1)!

(k −m + n − 3)!(k/2 − 1)!
. (2.19)

Thus, we form the second, dichotomous function.

Theorem 2.6. The mth derivative for even members of the hyperspherical function with respect to r
is

∂m

∂rm
HS2(k, n,m, r) =

2
√
πkrk−m+n−3(k − 1)!

(k −m + n − 3)!(k/2 − 1)!
. (2.20)

Taking into consideration that the dichotomous functions as well as their adequate
functional series are complementary, by differentiating the hyperspherical function the same
characteristic is retained, but for all that we must perform a substitution of variables, for odd
members, k = 2b+1, and for even ones k = 2b. So, the values of the complementary members,
are, respectively.

Corollary 2.7. One has

∂m

∂rm
HS1(k, n,m, r) =

∂m

∂rm
HS(2b + 1, n,m, r) =

22b+1πbr2b−m+n−2b!
(2b −m + n − 2)!

,

∂m

∂rm
HS2(k, n,m, r) =

∂m

∂rm
HS(2b, n,m, r) =

πbr2b−m+n−3(2b)!
(2b −m + n − 3)!b!

.

(2.21)

Examples 1. (i) m is an integer: The derivative degree m can be integer, noninteger or
consequently, from the field of real numbers. So, for example, we give its following
representative values, which give the same result. In this case, we obtain the second
derivative of the HS function related to the degree of freedom, n = 5, as

∂2

∂r2
HS1(k, 5, 2, r) =

πb(2r)2b+1b!
(2b + 1)!

,

∂2

∂r2
HS2(k, 5, 2, r) =

πbr2b

b!
,

(2.22)

and, in another case, by integrating the HS function, when n = 2 (surfhypersphere)

∂−1

∂r−1
HS1(k, 2,−1, r) =

πb(2r)2b+1b!
(2b + 1)!

,

∂−1

∂r−1
HS2(k, 2,−1, r) =

πbr2b

b!
.

(2.23)
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(ii) m is noninteger (fractional): With the use of noninteger (fractional) degrees of the
derivative, for example, m = ±1/2, starting with, for example, fixed degrees of freedom
n = 7/2 and n = 5/2, we obtain the same results as with the procedure of integer
differentiating/integrating (2.22) and (2.23). We obtain, respectively

∂1/2

∂r1/2
HS1

(
k,

7
2
,

1
2
, r

)
=
πb(2r)2b+1b!
(2b + 1)!

,

∂1/2

∂r1/2
HS2

(
k,

7
2
,

1
2
, r

)
=
πbr2b

b!
,

(2.24)

and with noninteger integrating (m < 0)

∂−1/2

∂r−1/2
HS1

(
k,

5
2
,−1

2
, r

)
=
πb(2r)2b+1b!
(2b + 1)!

,

∂−1/2

∂r−1/2
HS2

(
k,

5
2
,−1

2
, r

)
=
πbr2b

b!
.

(2.25)

The values (pairs) of the expressions (2.22), (2.23), (2.24), and (2.25) match the dichotomous
values of the hyperspherical function for n = 3 therefore, we have

HS1(2b + 1, 3, r) =
πb(2r)2b+1b!
(2b + 1)!

,

HS2(2b, 3, r) =
πbr2b

b!
.

(2.26)

By integrating the above complementary functions, we obtain the hyperspherical functions
series, that describes the solid geometrical entities (n = 3 ∧ k ∈N) in the form

∞∑
k=0

HS(k, 3, r) =
∞∑
k=0

√
πkrk

Γ(k/2 + 1)
=
∞∑
b=0

πb(2r)2b+1b!
(2b + 1)!

+
∞∑
b=0

πbr2b

b!

= eπr
2

erf
(
r
√
π
)
+ eπr

2
= eπr

2[
1 + erf

(
r
√
π
)]

= eπr
2

erfc
(
r
√
π
)
,

(2.27)

which is Mittag-Leffler’s [26], that is, Freden’s solution (1993) for the solid hyperspherical
function series [27]. In the previous expression complementary error functions originated
from the expression erf(z) + erfc(z) = 1. By generalizing (2.4), we obtain the following
differential equation:

∂n

∂rn

∞∑
k=0

HS(k, n, r) −
∞∑
k=0

HS(k, 0, r) = 0. (2.28)

which describes the relation between the columns of the hyperspherical matrix for n ∈N.



Abstract and Applied Analysis 9

2.4. The Gradient of the Hyperspherical Function

Taking into consideration its differentiability and multidimensionality, we can apply the
gradient on the hyperspherical function. As this function has three variables k, n, and r, we
obtain the solution of gradient functions ∇k,n,r in the following form:

∇k,n,r{HS(k, n, r)} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂k
HS(k, n, r)

∂

∂n
HS(k, n, r)

∂

∂r
HS(k, n, r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= HS(k, n, r)

⎡
⎢⎢⎢⎢⎢⎢⎣

ln 2r
√
π +

1
2
ψ0

(
k + 1

2

)
− ψ0(k + n − 2)

ln r − ψ0(k + n − 2)

1
r
(k + n − 3)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(2.29)

where ψ0(z) = (d/dz) lnΓ(z) is digamma function.
This function has a special use in determining the extreme values of the contour HS

functions.

2.5. The Contour Graphics of the Derivatives of the Hyperspherical Functions

The derivative functions hs1 = ∂HS/∂k = ∇k{HS} and sh1 = ∂HS/∂n = ∇n{HS}, also belong
to the family of the hyperspherical functions. According to the degrees of freedom k and n,
we can split them into two groups of functions.

Definition 2.8. The function of the first derivative with respect to the degree of freedom k is

hs1(k, n, r) =
∂

∂k
HS(k, n, r) = HS(k, n, r)

[
ln 2r

√
π +

1
2
ψ0

(
k + 1

2

)
− ψ0(k + n − 2)

]
. (2.30)

The function hs1(k, n, r) has a special use in determining the maximum of the hyperspherical
functions, for example, for a unit radius and the domain k ∈ R (Figure 3). Here, on the basis
of the known criteria, for each member of the derivative functions family we determine the
maximum of the HS function by equaling its derivative with zero. Other than the maximum,
there is the “optimal” value k0. Consequently

hs1(k, n, r) = 0,
∂2

∂k2
HS(k, n, r) > 0 =⇒ max HS(k, n, r) ∧ k0. (2.31)
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Figure 3: The parallel presentation of the orginal hyperspherical functions (for n = 2 and n = 3) of the unit
radius, and corresponding functions of their first derivatives for −25 ≤ k ≤ 20.

Example 2.9. For the volume hyperspherical function with the radius r = 1, the derivative
function is after transforming [24]

hs1(k, 3, 1) =
HS(k, 3, 1)

2

[
lnπ − ψ0

(
k

2
+ 1

)]
=

√
πk

kΓ(k/2)
(
lnπ + γ −Hk/2

)
, (2.32)

where Hk/2 is a harmonious number. This number is obtained on the basis of the sum [28]

Hk =
k∑
j=1

1
j

or Hk/2 =
k/2∑
j=1

1
j
= 1 +

1
2
+ · · · + k

2
. (2.33)

The relation between the harmonious number and psi (digamma function) is the following:

Hk = γ + ψ0(k + 1), respectively, Hk/2 = γ + ψ0

(
k

2
+ 1

)
. (2.34)

The graphical representation of the original HS(k, 3, 1) and its derivative are given in Figure 4.

2.6. The Extreme Values of the HS Function from the Degree of
Freedom k Point of View

On the basis of the above expressions (2.31) and (2.32), we define the greatest volume for
the “optimal” dimension k0. We find that k0 ≈ 5.2569, and the corresponding volume is
max HS(k, 3, 1) = HS(k0, 3, 1) ≈ 5.2777. For other hyperspherical functions, we can also
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Figure 4: The contour function of the hyperspherical solid HS(3, n, 1) with the maximum value max HS
and optimal degree of freedom k0 (for −2 ≤ k ≤ 18).

Table 1

Dimension n Dimension k0 max HS Error ε
0 10.70042116863070 1871.481745773695 ∼0
1 9.377568346255670 237.5057633480618 −1.055·10−13

2 7.256946404860572 33.16119448496195 7.363·10−15

3 5.256946404860572 5.277768021113411 3.516·10−15

4 2.506537984190255 1.054723774914521 ∼0
5 0 1/2 0
...

...
...

...
n 0 1/(n − 3)! 0

determine the maximum values on the numerical bases (Table 1). However, for the degrees
of freedom n ≥ 5, the maximum is a function of its factorial.

So, we have

lim
k→ 0

HS(k, 5, 1) =
1
2
, lim

k→ 0
HS(k, 6, 1) =

1
6
, lim

k→ 0
HS(k, 7, 1) =

1
24
, (2.35)

and in general

lim
k→ 0

HS(k, n, 1) =
1

Γ(n − 2)
=

1
(n − 3)!

, lim
k→ 0+

HS(k, n, r) =
rn−3

(n − 3)!
. (2.36)

On the following surface 3D graphic HS(k, n, 1) (Figure 5) we notice the extreme, that is,
the maximum value of this function with the 0th freedom degree n = 0, which is a global
maximum in the domain k, n ∈N as well.
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Figure 5: The graphic of the hyperspherical function with the constant radius r = 1 and for the degrees of
freedom 0 < n ≤ 4 and 0 < k ≤ 25.

2.7. The Extreme Values of the HS Function from the Degree of
Freedom n Point of View

Definition 2.10. The function of the first derivative with respect to the degree of freedom n, is

sh1(k, n, r) =
∂

∂n
HS(k, n, r) = HS(k, n, r)

[
ln r − ψ0(k + n − 2)

]
. (2.37)

The function sh1(k, n, r) is in fact the general solution of the HS function of the degree of
freedom n.

On the basis of the known differentiating procedure, besides the local maximum of the
contour HS functions, we obtain the corresponding optimal values n0 as well. Consequently

sh1(k, n, r) = 0,
∂2

∂n2
HS(k, n, r) > 0 =⇒ max HS(k, n, r) = HS(k, n0, r) ∧ n0. (2.38)

These functions can have a significant role with further research of hyperspherical functions.
By calculating the extreme and optimal values of the HS function, we obtain Table 2.

We can conclude that the following optimal degrees of freedom n0 and k0

n0 = 0, 6π5 < k0 <
128
21

π5 (2.39)

generate a global value maximum of the hyperspherical function, taking only the domain of
the natural numbers (k, n ∈N).

As in the previous analysis, we determine the value of k0, the optimal vector is

[
k0

n0

]
=

[
10.7004211686307

0

]
=⇒ max HS(k, n, 1) = HS(k0, n0, 1) ≈ 1871.481745773695.

(2.40)

The graphical representation of the original HS(3, n, 1) and its derivate are given in Figure 6.
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Figure 6: The contour function of the hypersolid HS(3, n, 1) with the local maximum max HS ≈ 28.379 and
the optimal degree of freedom n0 ≈ 0.4616, for k ∈N.

Table 2

Dimension k Dimension n∗ max HS Error ε
0 3.461632144968362 1.129173885450133 1.08·10−16

1 2.461632144968362 2.258347770900258 1.086·10−15

2 1.461632144968362 7.094808766311162 ∼0

3 0.461632144968362 28.37923506524463 2.665·10−15

4 0 12π2 0

5 0 32π2 0

...
...

...
...

10 0 6π5 ≈ 1836.18109 0

11 0
128
21

π5 ≈ 1865.26284 0

12 0
11
6
π6 ≈ 1762.54685 0

...
...

...
...

∞ 0 lim
k→∞

HS(k, 0, 1) = 0 0

2.8. The Derivatives of the Hyperspherical Functions of
the Higher Order with Respect to the Argument k

The derivatives of the hyperspherical functions with respect to any argument retain the
characteristics similar the original HS function. This is especially noticeable in the graphical
representation. In addition, it would be interesting to test the regularities in the structure
of this function of the higher derivation degree. In the following, we give, analytically and
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graphically, the derivative functions on argument k (the more complex case) and n (the
simpler case).

The second derivative of the hyperspherical function with respect to argumen k is:

hs2(k, n, r)

=
∂2

∂k2
HS(k, n, r)

= HS(k, n, r)

{
ψ1(k)−ψ1(k+n−2)+

[
ψ0(k+n−2)− 1

2
ψ0

(
k+1

2

)
−ln 2r

√
π

]2 1
4
ψ1

(
k

2

)}
.

(2.41)

Here: ψ0(z) = (d/dz) lnΓ(z) digamma and ψ1(z) = (d2/dz2) ln Γ(z) trigamma function. The
concrete value of this derivative for the selected parameters is the following:

∂2

∂k2
HS(3, 3, 1)

=
2π
9

[(
3γ − 8

)
lnπ + γ

(
3γ
2
− 8

)
+ 6

(
γ + ln 2π − 8

3

)
ln 2 +

3
4

(
2ln2π − π2

)
+

52
3

]
.

(2.42)

The mixed derivative of the hyperspherical function is

∂2

∂k∂n
HS(k, n, r) = HS(k, n, r)

{
ψ0(k + n − 2)

[
ψ0(k + n − 2) − 1

2
ψ0

(
k + 1

2

)
− ln 2r2√π

]

+ ln r
[

ln 2r
√
π +

1
2
ψ0

(
k + 1

2

)]
− ψ1(k + n − 2)

}
.

(2.43)

Example 2.11. After introducing some values of k and n it follows that

∂2

∂k∂n
HS(3, 3, 1) =

π

9

[(
ln 4π + γ

)(
6γ + 11

)
− 2

(
π2 + 8γ

)
+

137
3

]
. (2.44)

The fifth derivative of the hyperspheric function on argument n and for its unique radius is

∂5

∂n5
HS(k, n, r) = − HS(k, n, r)

{(
ψ0(k+n−2)−ln r

)5−10
(
ψ0(k+n−2)−ln r

)3
ψ1(k+n−2)

+10
(
ψ0(k+n−2)−ln r

)2
ψ2(k+n−2)+15

(
ψ0(k+n−2)−ln r

)2

× ψ2
1(k + n − 2) − 5ψ3(k + n − 2)

(
ψ0(k + n − 2) − ln r

)

− 10ψ1(k + n − 2)ψ2(υ + 1) + ψ4(k + n − 2)
}
.

(2.45)
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Figure 7: The graphics of the fifth derivative of the hyperspherical functions with respect to the argument n.

Namely, the fifth derivative values of this function for degrees of freedom k = 0, n = 0 are

∂5

∂k5
HS(0, 0, 1)

= sh5(0, 0, 1) = 40
(
2γ − 3

)
ζ(3) + 10γ

[
π2(3 − γ

)
+ 6γ

(
1 − γ

(
1 −

γ

6

))]
− π2(10 − ζ(2)).

(2.46)

Generally, the hyperspherical function of themth derivative on the argument n can be defined
on the basis of the product for poligamma (psi) of the polynominal of the mth degree and the
hyperspherical function. Its general form is the following:

shm(k, n, r) =
∂m

∂nm
HS(k, n, r) = HS(k, n, r) · fm

{
ψ(m−1)(k + n − 2), r

}
. (2.47)

So, for example, the functions of the fifth derivative are in Figure 7.

3. Conclusion

The research of the hyperspherical function leaves the following problems unsolved:
continual dimensions which include noninteger values, the zeroth dimension, the domain
of the dimensions less than zero, consequently the domain of the more complex degrees
of freedom, and so forth. In any case, the negative dimensions matrix demands special
structuring and deeper mathematical analysis. The hyperspheres present one part of the
multigeometrical objects. It is known that a sphere is the most symmetrical geometrical object.
Some other objects have such characteristics but not entirely. Namely, a cube is symmetrical
on orthogonal coordinates, if its centre is in the intersection of space diagonals, and the
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axes of the coordinate system are parallel to cube edges. Some other polyhedrons have
this characteristic, too. A cube, because of orthogonality, retains the characteristic that its
derivatives of the solid-entity functions create the function of surfentity. The objects that do
not have the characteristic that recurrence is created on the basis of the derivative function,
must introduce new degrees of freedom depending on the object complexity. The next object
that has some characteristics similar to sphere is cylinder (this similarity is caused by the
equality of the cylinder height and diameter). Its symmetry is dual and is not unambigous on
all coordinate axes like the sphere is. These characteristics are the fundamental assumptions
for defining the recurrent relations that would determine the relation between functions of
some entities and both on rows and columns of a cube, that is, cylinder. The considered
analysis of the multidimensional space and the formula of this geometry lead into the
conclusion of its complexity and the relations with special functions and the other geometry
fields. Special problems not analysed in this paper, refer to zeros and singular values of this
function, and some ot them can be seen in the matrix (Figure 2).
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