Research Article

On the Critical Case in Oscillation for Differential Equations with a Single Delay and with Several Delays

Jaromír Baštinec, ${ }^{1}$ Leonid Berezansky, ${ }^{2}$ Josef Diblík, ${ }^{1,3}$ and Zdeněk Šmarda ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 61600 Brno, Czech Republic
${ }^{2}$ Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
${ }^{3}$ Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering,
Brno University of Technology, 66237 Brno, Czech Republic

Correspondence should be addressed to Leonid Berezansky, brznsky@cs.bgu.ac.il
Received 1 July 2010; Accepted 26 August 2010
Academic Editor: Allan C. Peterson
Copyright © 2010 Jaromír Baštinec et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

New nonoscillation and oscillation criteria are derived for scalar delay differential equations $\dot{x}(t)+a(t) x(h(t))=0, a(t) \geq 0, h(t) \leq t, t \geq t_{0}$, and $\dot{x}(t)+\sum_{k=1}^{m} a_{k}(t) x\left(h_{k}(t)\right)=0, a_{k}(t) \geq 0, h_{k}(t) \leq t$, and $t \geq t_{0}$, in the critical case including equations with several unbounded delays, without the usual assumption that the parameters a, h, a_{k}, and h_{k} of the equations are continuous functions. These conditions improve and extend some known oscillation results in the critical case for delay differential equations.

1. Introduction

It is well known that a scalar linear equation with delay

$$
\begin{equation*}
\dot{x}(t)+\frac{1}{e} x(t-1)=0 \tag{1.1}
\end{equation*}
$$

has a nonoscillatory solution as $t \rightarrow \infty$. This means that there exists an eventually positive solution. The coefficient $1 / e$ is called critical with the following meaning: for any $\alpha>1 / e$, all solutions of the equation

$$
\begin{equation*}
\dot{x}(t)+\alpha x(t-1)=0 \tag{1.2}
\end{equation*}
$$

are oscillatory while, for $\alpha \leq 1 / e$, there exists an eventually positive solution.

In [1] the third author considered the equation

$$
\begin{equation*}
\dot{x}(t)+a(t) x(t-\tau)=0 \tag{1.3}
\end{equation*}
$$

where $a:\left[t_{0}, \infty\right) \rightarrow(0, \infty), t_{0} \in \mathbb{R}$ (throughout this paper we assume that $t_{0} \geq 0$ is sufficiently large), is a continuous function and the delay $\tau>0$ is a constant. For the critical case, he obtained the following result.

Theorem 1.1. (a) Let an integer $k \geq 0$ exists such that $a(t) \leq a_{k}(t)$ if $t \rightarrow \infty$ where

$$
\begin{equation*}
a_{k}(t):=\frac{1}{e \tau}+\frac{\tau}{8 e t^{2}}+\frac{\tau}{8 e(t \ln t)^{2}}+\cdots+\frac{\tau}{8 e\left(t \ln t \ln _{2} t \cdots \ln _{k} t\right)^{2}} \tag{1.4}
\end{equation*}
$$

Then there exists an eventually positive solution x of (1.3).
(b) Let an integer $k \geq 2$ and $\theta>1, \theta \in \mathbb{R}$, exist such that

$$
\begin{equation*}
a(t)>a_{k-2}(t)+\frac{\theta \tau}{8 e\left(t \ln t \ln _{2} t \cdots \ln _{k-1} t\right)^{2}} \tag{1.5}
\end{equation*}
$$

if $t \rightarrow \infty$. Then all solutions of (1.3) oscillate.
In this theorem for $k \geq 1, \ln _{k} t=\ln \left(\ln _{k-1} t\right), \ln _{0} t=t, t>\exp _{k-2} 1$ where $\exp _{k} t=$ $\exp \left(\exp _{k-1} t\right), \exp _{0} t=t$, and $\exp _{-1} t=0$.

Further results on the critical case for (1.3) can be found in [2-6]. Theorem 1.1 was generalized in [7] for the following equation with a variable delay

$$
\begin{equation*}
\dot{x}(t)+a(t) x(t-\tau(t))=0 \tag{1.6}
\end{equation*}
$$

where $a:\left[t_{0}, \infty\right) \rightarrow(0, \infty), t_{0} \in \mathbb{R}$, and $\tau:\left[t_{0}, \infty\right) \rightarrow(0, \infty), t_{0} \in \mathbb{R}$, are continuous functions.
The main results of this paper include the following.
Theorem 1.2 (see [7]). Let $t-\tau(t) \geq t_{0}-\tau\left(t_{0}\right)$ if $t \geq t_{0}$. Let an integer $k \geq 0$ exists such that $a(t) \leq a_{k \tau}(t)$ for $t \rightarrow \infty$, where

$$
\begin{equation*}
a_{k \tau}(t):=\frac{1}{e \tau(t)}+\frac{\tau(t)}{8 e t^{2}}+\frac{\tau(t)}{8 e(t \ln t)^{2}}+\cdots+\frac{\tau(t)}{8 e\left(t \ln t \ln _{2} t \cdots \ln _{k} t\right)^{2}} \tag{1.7}
\end{equation*}
$$

If moreover

$$
\begin{align*}
& \int_{t-\tau(t)}^{t} \frac{1}{\tau(\xi)} d \xi \leq 1, \quad \text { when } t \longrightarrow \infty \tag{1.8}\\
& \lim _{t \rightarrow \infty} \tau(t) \cdot\left(\frac{1}{t} \ln t \ln _{2} t \cdots \ln _{k} t\right)=0 \tag{1.9}
\end{align*}
$$

then there exists an eventually positive solution x of (1.6) for $t \rightarrow \infty$.

Theorem 1.3 (see [7]). Let one assume that $t-\tau(t) \geq t_{0}-\tau\left(t_{0}\right)$ if $t \geq t_{0}$ and

$$
\begin{equation*}
a(t) \leq \frac{1}{\tau(t)} \exp \left[-\int_{t-\tau(t)}^{t} \frac{1}{\tau(\xi)} d \xi\right] \tag{1.10}
\end{equation*}
$$

as $t \rightarrow \infty$. Then there exists an eventually positive solution x of (1.6).
In this paper we obtain new nonoscillation and oscillation sufficient conditions for (1.6) in the critical case, independent of Theorems 1.1-1.3. We also obtain nonoscillation and oscillation conditions for equations with several delays, including equations with unbounded delays. To the best of our knowledge, we are the first to investigate the critical case of such equations.

2. Preliminaries

We consider a scalar delay differential equation

$$
\begin{equation*}
\dot{x}(t)+\sum_{i=1}^{m} b_{i}(t) x\left(h_{i}(t)\right)=0, \quad t \geq t_{0} \tag{2.1}
\end{equation*}
$$

subject to the following conditions:
(a1) $b_{i}:\left[t_{0}, \infty\right) \rightarrow[0, \infty), i=1, \ldots, m$, are Lebesgue measurable functions essentially bounded in each finite interval $\left[t_{0}, b\right]$ with $b>t_{0}$.
(a2) $h_{i}:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ are Lebesgue measurable functions, $h_{i}(t) \leq t, t \in\left[t_{0}, \infty\right)$, and $\lim \sup _{t \rightarrow \infty} h_{i}(t)=+\infty, i=1, \ldots, m$.

Along with (2.1) we consider an initial value problem

$$
\begin{gather*}
\dot{x}(t)+\sum_{i=1}^{m} b_{i}(t) x\left(h_{i}(t)\right)=f(t), \quad t \geq t_{0} \tag{2.2}\\
x(t)=\varphi(t), \quad t<t_{0}, \quad x\left(t_{0}\right)=x_{0} \tag{2.3}
\end{gather*}
$$

We also assume that the following hypothesis holds:
(a3) $f:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ is a Lebesgue measurable function essentially bounded in each finite interval $\left[t_{0}, b\right]$ with $b>t_{0}$, and $\varphi:\left(-\infty, t_{0}\right) \rightarrow \mathbb{R}$ is a Borel measurable bounded function.

Definition 2.1. A function absolutely continuous on each interval $\left[t_{0}, b\right]$ with $b>t_{0}, x: \mathbb{R} \rightarrow$ \mathbb{R}, is called a solution of problem (2.2), (2.3) if it satisfies (2.2) for almost all $t \in\left[t_{0}, \infty\right)$ and equalities (2.3) for $t \leq t_{0}$.

Lemma 2.2 (see [8]). Let (a1)(a3) hold. Then there exists exactly one solution of problem (2.2), (2.3).

Definition 2.3. One will say that (2.1) has a nonoscillatory solution if, for some problem (2.2), (2.3) with $f(t) \equiv 0, t \geq t_{0}$, there exists an eventually positive solution. Otherwise, all solutions of (2.1) oscillate.

To formulate a comparison result, consider the following equation:

$$
\begin{equation*}
\dot{x}(t)+\sum_{i=1}^{m} c_{i}(t) x\left(g_{i}(t)\right)=0 \tag{2.4}
\end{equation*}
$$

Let (a1) holds with $b_{i}(t):=c_{i}(t)$ and (a2) holds with $h_{i}(t):=g_{i}(t), i=1,2, \ldots, m$.
Lemma 2.4 (see [9, 10]). Let (2.4) have a nonoscillatory solution. If

$$
\begin{equation*}
b_{i}(t) \leq c_{i}(t), \quad g_{i}(t) \leq h_{i}(t), \quad t \geq t_{0} \tag{2.5}
\end{equation*}
$$

then (2.1) has a nonoscillatory solution as well.
Suppose that all solutions of (2.4) are oscillatory. If

$$
\begin{equation*}
b_{i}(t) \geq c_{i}(t), \quad g_{i}(t) \geq h_{i}(t), \quad t \geq t_{0} \tag{2.6}
\end{equation*}
$$

then all solutions of (2.1) are oscillatory as well.
Lemma 2.5 (see $[9,10]$). Let exist t_{0} such that

$$
\begin{equation*}
\int_{\min _{i=1, \ldots, m}\left\{\max \left\{t_{0}, h_{i}(t)\right\}\right\}}^{t} \sum_{j=1}^{m} b_{j}(s) d s \leq \frac{1}{e}, \quad t \geq t_{0} . \tag{2.7}
\end{equation*}
$$

Then there exists a positive solution of (2.1) for $t \geq t_{0}$.
Lemma 2.6 (see $[9,10]$). A nonoscillatory solution of (2.1) exists if and only if, for some t_{0}, there exists a nonnegative locally integrable function $u(t) \geq 0, t \in \mathbb{R}$, such that

$$
\begin{gather*}
u(t) \geq \sum_{i=1}^{m} b_{i}(t) e^{\int_{h_{i}(t)}^{t} u(s) d s}, \quad t \geq t_{0}, \tag{2.8}\\
u(t)=0, \quad t<t_{0} .
\end{gather*}
$$

3. Differential Equation with a Single Delay

Equation (1.6) is a special case of (2.1) for $m=1, b_{1}(t)=a(t)$, and $h_{1}(t)=t-\tau(t)$.
Our first result is a simple consequence of Theorem 1.1 and Lemma 2.4. Theorem 1.1 was obtained under the assumption that $a(t)$ and $\tau(t)$ are continuous functions. But the proof of this theorem remains valid even for more general conditions (a1)-(a2).

Theorem 3.1. (A) Let $\tau>0,0 \leq \tau(t) \leq \tau$, for $t \rightarrow \infty$, and let condition (a) of Theorem 1.1 holds. Then (1.6) has a nonoscillatory solution.
(B) Let $\tau(t) \geq \tau>0$ for $t \rightarrow \infty$, and let condition (b) of Theorem 1.1 holds. Then all solutions of (1.6) oscillate.

Proof. (A) We set $h_{1}(t):=t-\tau(t), g_{1}(t):=t-\tau$. Obviously $h_{1}(t) \geq g_{1}(t)$ for $t \rightarrow \infty$. By Theorem 1.1, (1.3) has a nonoscillatory solution. By Lemma 2.4 (with $m=1, b_{1}(t)=c_{1}(t)=$ $a(t)),(1.6)$ also has a nonoscillatory solution.
(B) The proof of this part is much the same (using Theorem 1.1 and Lemma 2.4) as the proof of part (A).

Theorems 1.2 and 1.3 can be applied to equations with one unbounded delay. Here, we want to give some new nonoscillation and oscillation conditions for equations with one delay, also including equations with unbounded delays. We remove some conditions of Theorems 1.2 and 1.3, in particular conditions (1.8) and (1.9). Moreover, the delay function $\tau(t)$ used in Theorems 1.2 and 1.3 as a coefficient appears in our conditions in both integral and nonintegral expressions.

For every integer $k \geq 0, \delta>0$, and $t \rightarrow \infty$ we define

$$
\begin{equation*}
A_{k}(t):=\frac{1}{e \delta \tau(t)}+\frac{\delta}{8 e \tau(t) s^{2}}+\frac{\delta}{8 e \tau(t)(s \ln s)^{2}}+\cdots+\frac{\delta}{8 e \tau(t)\left(s \ln s \ln _{2} s \cdots \ln _{k} s\right)^{2}} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
s=p(t):=\int_{t_{0}}^{t} \frac{1}{\tau(\xi)} d \xi \tag{3.2}
\end{equation*}
$$

Theorem 3.2. Let for t_{0} sufficiently large and $t \geq t_{0}: \tau(t)>0$ a.e. $1 / \tau(t)$ be a locally integrable function,

$$
\begin{equation*}
\lim _{t \rightarrow \infty}(t-\tau(t))=\infty, \quad \int_{t_{0}}^{\infty} \frac{1}{\tau(\xi)} d \xi=\infty \tag{3.3}
\end{equation*}
$$

and let there exists $t_{1}>t_{0}$ such that $t-\tau(t) \geq t_{0}, t \geq t_{1}$.
(a) If there exists a $\delta \in(0, \infty)$ such that

$$
\begin{equation*}
\int_{t-\tau(t)}^{t} \frac{1}{\tau(\xi)} d \xi \leq \delta, \quad t \geq t_{1} \tag{3.4}
\end{equation*}
$$

and, for a fixed integer, $k \geq 0$,

$$
\begin{equation*}
a(t) \leq A_{k}(t), \quad t \geq t_{1} \tag{3.5}
\end{equation*}
$$

then there exists an eventually positive solution of (1.6).
(b) If there exists a $\delta \in(0, \infty)$ such that

$$
\begin{equation*}
\int_{t-\tau(t)}^{t} \frac{1}{\tau(\xi)} d \xi \geq \delta, \quad t \geq t_{1} \tag{3.6}
\end{equation*}
$$

and, for a fixed integer $k \geq 2$ and $\theta>1, \theta \in \mathbb{R}$,

$$
\begin{equation*}
a(t)>A_{k-2}(t)+\frac{\theta \delta}{8 e \tau(t)\left(s \ln s \ln _{2} s \cdots \ln _{k-1} s\right)^{2}} \tag{3.7}
\end{equation*}
$$

if $t \geq t_{1}$, then all solutions of (1.6) oscillate.
Proof. (a) For the proof we will use a transformation applied to delay equations for the first time in [11]. Consider (1.6) for $t \geq t_{1}$. Denote

$$
\begin{equation*}
h(t):=t-\tau(t) \tag{3.8}
\end{equation*}
$$

Since, by (3.2), s > $0, p$ is a strictly increasing function and, hence, there exists an inverse function $t=p^{-1}(s)$. Denote

$$
\begin{equation*}
y(s):=x(t)=x\left(p^{-1}(s)\right), \quad l(s):=p(h(t))=p\left(h\left(p^{-1}(s)\right)\right) . \tag{3.9}
\end{equation*}
$$

Since $h(t) \leq t$, we have $l(s) \leq s$ (by (3.9) and (3.2)). From (3.9) we also have

$$
\begin{equation*}
l(s)=\int_{t_{0}}^{h(t)} \frac{1}{\tau(\xi)} d \xi \tag{3.10}
\end{equation*}
$$

Substituting $x(t)=y(s)$ in (1.6), we have $\dot{x}(t)=\dot{y}(s) / \tau(t)$ and (using (3.9))

$$
\begin{align*}
x(t-\tau(t)) & =x(h(t))=x\left(h\left(p^{-1}(s)\right)\right)=x\left(p^{-1}\left[p\left(h\left(p^{-1}(s)\right)\right)\right]\right) \tag{3.11}\\
& =x\left(p^{-1}(l(s))\right)=y(l(s))
\end{align*}
$$

Hence, (1.6) takes the form

$$
\begin{equation*}
\dot{y}(s)+\tau(t) a(t) y(l(s))=0, \tag{3.12}
\end{equation*}
$$

where $\tau(t) a(t)=\tau\left(p^{-1}(s)\right) a\left(p^{-1}(s)\right)$. Equality

$$
\begin{equation*}
y(s)=x(t) \tag{3.13}
\end{equation*}
$$

implies that the oscillation properties of (1.6) and (3.12) are equivalent. We have (by (3.2), (3.10), (3.8), and (3.4))

$$
\begin{equation*}
s-l(s)=\int_{t_{0}}^{t} \frac{1}{\tau(s)} d s-\int_{t_{0}}^{h(t)} \frac{1}{\tau(s)} d s=\int_{h(t)}^{t} \frac{1}{\tau(s)} d s=\int_{t-\tau(t)}^{t} \frac{1}{\tau(s)} d s \leq \delta \tag{3.14}
\end{equation*}
$$

Hence

$$
\begin{equation*}
l(s) \geq s-\delta \tag{3.15}
\end{equation*}
$$

Consider an equation

$$
\begin{equation*}
\dot{y}(s)+a_{k}^{*}(s) y(s-\delta)=0, \tag{3.16}
\end{equation*}
$$

where $a_{k}^{*}(s)$ is defined similar to $a_{k}(t)$ by (1.4), where τ is replaced by δ and t by s, that is,

$$
\begin{equation*}
a_{k}^{*}(s):=\frac{1}{e \delta}+\frac{\delta}{8 e s^{2}}+\frac{\delta}{8 e(s \ln s)^{2}}+\cdots+\frac{\delta}{8 e\left(s \ln s \ln _{2} s \cdots \ln _{k} s\right)^{2}} \tag{3.17}
\end{equation*}
$$

By Theorem 1.1, (3.16) has a positive solution. Equation (3.12) is of type (2.1) with

$$
\begin{equation*}
m=1, \quad b_{1}(s)=\tau\left(p^{-1}(s)\right) a\left(p^{-1}(s)\right), \quad h_{1}(s)=l(s) \tag{3.18}
\end{equation*}
$$

Now we use comparison of Lemma 2.4 where (2.4) is replaced by (3.16), that is,

$$
\begin{equation*}
m=1, \quad c_{1}(s)=a_{k}^{*}(s), \quad g_{1}(s)=s-\delta \tag{3.19}
\end{equation*}
$$

Since, by (3.5) and (3.1),

$$
\begin{equation*}
b_{1}(s)=\tau\left(p^{-1}(s)\right) a\left(p^{-1}(s)\right) \leq \tau\left(p^{-1}(s)\right) A_{k}\left(p^{-1}(s)\right)=a_{k}^{*}(s)=c_{1}(s) \tag{3.20}
\end{equation*}
$$

and, by (3.15),

$$
\begin{equation*}
g_{1}(s)=s-\delta \leq l(s)=h_{1}(s) \tag{3.21}
\end{equation*}
$$

equation (3.12) and, due to (3.13), equation (1.6) also has a positive (i.e., nonoscillatory) solution. Part (b) can be proved in much the same way.

Now we want to compare Theorem 3.2 and Theorems 1.2 and 1.3 for equations with unbounded delays. Note that Theorem 1.1 is not valid for such equations and Theorem 1.2 contains additional restrictions (1.8), (1.9). Theorem 1.3 is not explicitly valid for the critical case.

Example 3.3. Let (1.6) be of the form

$$
\begin{equation*}
\dot{x}(t)+a(t) x\left(\frac{t}{2}\right)=0, \quad t \geq t_{0}=1 \tag{3.22}
\end{equation*}
$$

where $a:[1, \infty) \rightarrow(0, \infty)$. Here

$$
\begin{equation*}
\tau(t)=\frac{t}{2}, \quad s=p(t)=\int_{t_{0}}^{t} \frac{1}{\tau(\xi)} d \xi=\int_{1}^{t} \frac{2}{\xi} d \xi=2 \ln t . \tag{3.23}
\end{equation*}
$$

We set

$$
\begin{equation*}
\delta:=\int_{t-\tau(t)}^{t} \frac{1}{\tau(\xi)} d \xi=\int_{t / 2}^{t} \frac{2}{\xi} d \xi=2 \ln 2 . \tag{3.24}
\end{equation*}
$$

In accordance with Theorem 3.2 (case (a) where $k=0$), (3.22) has a nonoscillatory solution if

$$
\begin{equation*}
a(t) \leq A_{0}(t)=\frac{1}{e \delta \tau(t)}+\frac{\delta}{8 e \tau(t) s^{2}}=\frac{1}{(e \ln 2) t}+\frac{\ln 2}{8 e t(\ln t)^{2}} . \tag{3.25}
\end{equation*}
$$

Since (by Theorem 3.2, case (b) with $k=2$) all solutions of (3.22) oscillate if

$$
\begin{equation*}
a(t)>A_{0}(t)+\frac{\theta \delta}{8 e \tau(t)(s \ln s)^{2}}=\frac{1}{(e \ln 2) t}+\frac{\ln 2}{8 e t(\ln t)^{2}}+\frac{\theta \ln 2}{8 e t(\ln t)^{2}(\ln (2 \ln t))^{2}}, \tag{3.26}
\end{equation*}
$$

we conclude that the value

$$
\begin{equation*}
a(t)=a^{*}(t):=\frac{1}{(e \ln 2) t}+\frac{\ln 2}{8 e t(\ln t)^{2}} \tag{3.27}
\end{equation*}
$$

is a critical value for the nonoscillation of (3.22).
The above statement is corroborated by Lemma 2.5 since, for $m=1, h_{1}(t)=t-\tau(t)=$ $t / 2, b_{1}(t)=a^{*}(t)$, and $t \in[1,2]$,

$$
\begin{equation*}
\int_{\max \left\{t_{0}, h_{1}(t)\right\}}^{t} b_{1}(s) d s=\int_{t_{0}}^{t} a^{*}(s) d s=\int_{1}^{t} a^{*}(s) d s=\frac{\ln t}{e \ln 2} \leq \frac{1}{e} \tag{3.28}
\end{equation*}
$$

and for $t \geq 2$

$$
\begin{align*}
\int_{\max \left\{t_{0}, h_{1}(t)\right\}}^{t} b_{1}(s) d s & =\int_{h_{1}(t)}^{t} a^{*}(s) d s=\int_{t / 2}^{t} a^{*}(s) d s \tag{3.29}\\
& =\int_{t / 2}^{t} \frac{1}{(e \ln 2) s} d s=\frac{1}{e},
\end{align*}
$$

and (2.7) turns into an equality for $t \geq 2$.
To apply Theorem 1.2, we verify condition (1.8). But, unfortunately, for (3.22) we have

$$
\begin{equation*}
\int_{t-\tau(t)}^{t} \frac{1}{\tau(\xi)} d \xi=\int_{t / 2}^{t} \frac{2}{\xi} d \xi=2 \ln 2 \doteq 1.386>1 \tag{3.30}
\end{equation*}
$$

Thus, this theorem is not applicable to (3.22).

To compare Theorem 1.3 with Theorem 3.2 we set $a(t):=a^{*}(t)$ (where a^{*} is defined by (3.27)) in (3.22). By Theorem 3.2, (3.22) has a nonoscillatory solution. By Theorem 1.3, (3.22) has a nonoscillatory solution if (we set $\tau(t):=t / 2$ in (1.10))

$$
\begin{equation*}
a(t) \leq \frac{1}{\tau(t)} \exp \left[-\int_{t-\tau(t)}^{t} \frac{1}{\tau(\xi)} d \xi\right]=\frac{2}{t} \exp \left[-\int_{t / 2}^{t} \frac{2}{\xi} d \xi\right]=\frac{1}{2 t} \tag{3.31}
\end{equation*}
$$

But in our case

$$
\begin{equation*}
a(t)=a^{*}(t)=\frac{1}{(e \ln 2) t}+\frac{\ln 2}{8 e t(\ln t)^{2}} \geq \frac{1}{1.885 t}>\frac{1}{2 t^{\prime}} \tag{3.32}
\end{equation*}
$$

and Theorem 1.3 fails for this equation.

4. Differential Equation with Several Delays

We start with the following question: for what functions $b(t) \geq 0$ and delay $\sigma>0$ the equation

$$
\begin{equation*}
\dot{x}(t)+b(t) x(t-\sigma)+\frac{1}{e \tau} x(t-\tau)=0 \tag{4.1}
\end{equation*}
$$

can have a nonoscillatory solution? It is easy to see that b should be vanishing.
Theorem 4.1. Let $\liminf _{t \rightarrow \infty} b(t)=b>0, \tau>0$, and $\sigma \geq 0$. Then all solutions of (4.1) are oscillatory.

Proof. Consider first the equation

$$
\begin{equation*}
\dot{x}(t)+b x(t-\sigma)+\frac{1}{e \tau} x(t-\tau)=0 . \tag{4.2}
\end{equation*}
$$

Suppose that (4.2) has a nonoscillatory solution. We set

$$
\begin{gather*}
m=2, \\
b_{1}(t)=c_{1}(t):=b, \quad b_{2}(t)=c_{2}(t):=\frac{1}{e \tau}, \tag{4.3}\\
g_{1}(t):=t-\sigma, \quad h_{2}(t)=g_{2}(t):=t-\tau \\
h_{1}(t):=t .
\end{gather*}
$$

Since $g_{1}(t) \leq h_{1}(t)$, by Lemma 2.4, the equation

$$
\begin{equation*}
\dot{x}(t)+b x(t)+\frac{1}{e \tau} x(t-\tau)=0 \tag{4.4}
\end{equation*}
$$

has a nonoscillatory solution. After the substitution $x(t)=e^{-b t} y(t),(4.4)$ takes a form

$$
\begin{equation*}
\dot{y}(t)+\frac{e^{b \tau}}{e \tau} y(t-\tau)=0 \tag{4.5}
\end{equation*}
$$

Since $e^{b \tau}>1$, all solutions of (4.5) are oscillatory by Theorem 1.1 (b). This is a contradiction. Hence, all solutions of (4.2) are oscillatory.

For sufficiently large t_{0}, we have $b(t) \geq b, t \geq t_{0}$. We set

$$
\begin{gather*}
m=2, \\
b_{1}(t):=b(t) \geq c_{1}(t):=b, \\
b_{2}(t)=c_{2}(t):=\frac{1}{e \tau} \tag{4.6}\\
h_{1}(t)=g_{1}(t):=t-\sigma, \quad h_{2}(t)=g_{2}(t):=t-\tau .
\end{gather*}
$$

Now, Lemma 2.4 implies the statement of the theorem.
We consider general equation (2.1) with delays subject to restrictions (a1), (a2).
Theorem 4.2. (a) Let an integer $k \geq 0$ and $\tau>0$ exist such that, for all sufficiently large t, inequalities

$$
\begin{gather*}
t-h_{i}(t) \leq \tau, \quad i=1,2, \ldots, m \tag{4.7}\\
\sum_{i=1}^{m} b_{i}(t) \leq a_{k}(t) \tag{4.8}
\end{gather*}
$$

where a_{k} is defined by (1.4), are valid. Then there exists an eventually positive solution x of (2.1).
(b) Let an integer $k \geq 2, \tau>0$, and $\theta>1$ exist such that, for all sufficiently large t, inequalities

$$
\begin{gather*}
t-h_{i}(t) \geq \tau, \quad i=1,2, \ldots, m \tag{4.9}\\
\sum_{i=1}^{m} b_{i}(t) \geq a_{k-2}(t)+\frac{\theta \tau}{8 e\left(t \ln t \ln _{2} t \cdots \ln _{k-1} t\right)^{2}} \tag{4.10}
\end{gather*}
$$

where a_{k-2} is defined by (1.4), are valid. Then all solutions of (2.1) oscillate.
Proof. Let the assumptions of case (a) be valid. Then, by Theorem 1.1, the equation

$$
\begin{equation*}
\dot{x}(t)+a_{k}(t) x(t-\tau)=0 \tag{4.11}
\end{equation*}
$$

has a nonoscillatory solution. By Lemma 2.6 (with $m=1, b_{1}(t)=a_{k}(t)$, and $\left.h_{1}(t)=t-\tau\right)$, there exist a t_{0} and a locally integrable function $u: \mathbb{R} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
u(t) \geq a_{k}(t) e^{\int_{t-\tau}^{t} u(s) d s}, \quad t \geq t_{0} \tag{4.12}\\
u(t)=0, \quad t<t_{0}
\end{gather*}
$$

We have

$$
\begin{equation*}
\sum_{i=1}^{m} b_{i}(t) e^{\int_{h_{i}(t)}^{t} u(s) d s} \leq\left(\sum_{i=1}^{m} b_{i}(t)\right) e^{\int_{t-\tau}^{t} u(s) d s} \leq a_{k}(t) e^{\int_{t-\tau}^{t} u(s) d s} \tag{4.13}
\end{equation*}
$$

Hence

$$
\begin{gather*}
u(t) \geq \sum_{i=1}^{m} b_{i}(t) e^{\int_{h_{i}(t)}^{t} u(s) d s}, \quad t \geq t_{0} \tag{4.14}\\
u(t)=0, \quad t<t_{0} .
\end{gather*}
$$

Now using Lemma 2.6 again, we conclude that there exists an eventually positive solution x of (2.1).

Let the assumptions of case (b) be valid. Suppose, on the contrary, that (2.1) has a nonoscillatory solution. Using calculations similar to those of the previous part of the proof, one can deduce that (by Lemma 2.6) there exist a t_{0} and a locally integrable function $u(t) \geq 0$ such that

$$
\begin{gather*}
u(t) \geq \sum_{i=1}^{m} b_{i}(t) e^{\int_{h_{i}(t)}^{t} u(s) d s} \geq\left(a_{k-2}(t)+\frac{\theta \tau}{8 e\left(t \ln t \ln _{2} t \cdots \ln _{k-1} t\right)^{2}}\right) e^{\int_{t-\tau}^{t} u(s) d s}, \quad t \geq t_{0} \tag{4.15}\\
u(t)=0, \quad t<t_{0}
\end{gather*}
$$

Hence (using Lemma 2.6 again), an equation

$$
\begin{equation*}
\dot{x}(t)+\left(a_{k-2}(t)+\frac{\theta \tau}{8 e\left(t \ln t \ln _{2} t \cdots \ln _{k-1} t\right)^{2}}\right) x(t-\tau)=0 \tag{4.16}
\end{equation*}
$$

should have a nonoscillatory solution. Due to $\theta>1$ being arbitrary, we easily get a contradiction to statement (b) of Theorem 1.1.

Example 4.3. We show that equation of type (2.1)

$$
\begin{equation*}
\dot{x}(t)+\frac{1}{8 e t^{2}} x(t-\sigma)+\frac{1}{e} x(t-1)=0 \tag{4.17}
\end{equation*}
$$

has a nonoscillatory solution for any positive $\sigma \leq 1$. Indeed, set $m=2, \tau=1, h_{1}(t)=t-\sigma$, $h_{2}(t)=t-\tau=t-1, b_{1}(t)=1 /\left(8 e t^{2}\right)$, and $b_{2}(t)=1 / e$. Then (4.8), where $k=0$, holds and Part (a) of Theorem 4.2 is valid.

Now we consider (2.1) with unbounded delays.
Theorem 4.4. Let t_{0} be sufficiently large, for $t \geq t_{0}, \tau(t)>0$ a.e., $1 / \tau(t)$ let locally integrable function,

$$
\begin{gather*}
\lim _{t \rightarrow \infty}(t-\tau(t))=\infty, \quad \int_{t_{0}}^{\infty} \frac{1}{\tau(\xi)} d \xi=\infty \tag{4.18}\\
\lim _{t \rightarrow \infty} h_{i}(t)=+\infty, \quad t-h_{i}(t) \leq \tau(t), \quad i=1,2, \ldots, m \tag{4.19}
\end{gather*}
$$

and let there exists $t_{1}>t_{0}$ such that $t-\tau(t) \geq t_{0}$ if $t \geq t_{1}$.
(a) If there exists a $\sigma \in(0, \infty)$ such that

$$
\begin{equation*}
\int_{t-\tau(t)}^{t} \frac{1}{\tau(\xi)} d \xi \leq \sigma, \quad t \geq t_{1} \tag{4.20}
\end{equation*}
$$

and, for a fixed integer $k \geq 0$,

$$
\begin{equation*}
\sum_{i=1}^{m} b_{i}(t) \leq A_{k}(t), \quad t \geq t_{1} \tag{4.21}
\end{equation*}
$$

where $A_{k}(t)$ is defined by (3.1), (3.2), then there exists an eventually positive solution of (2.1).
(b) If there exists a $\sigma \in(0, \infty)$ such that

$$
\begin{equation*}
\int_{t-\tau(t)}^{t} \frac{1}{\tau(\xi)} d \xi \geq \sigma, \quad t \geq t_{1} \tag{4.22}
\end{equation*}
$$

and, for a fixed integer $k \geq 2$ and $\theta>1, \theta \in \mathbb{R}$,

$$
\begin{equation*}
\sum_{i=1}^{m} b_{i}(t) \geq A_{k-2}(t)+\frac{\theta \sigma}{8 e \tau(t)\left(s \ln s \ln _{2} s \cdots \ln _{k-1} s\right)^{2}}, \quad t \geq t_{1} \tag{4.23}
\end{equation*}
$$

where $A_{k-2}(t)$ is defined by (3.1), (3.2), then all solutions of (2.1) oscillate.
Proof. Let the assumptions of case (a) be valid. By Theorem 3.2, the equation

$$
\begin{equation*}
\dot{x}(t)+\left(\sum_{i=1}^{m} b_{i}(t)\right) x(t-\tau(t))=0 \tag{4.24}
\end{equation*}
$$

has a nonoscillatory solution. Equation (4.24) is of a form of (2.4) with $c_{i}(t)=b_{i}(t), g_{i}(t)=$ $t-\tau(t), i=1,2, \ldots, m$. This means that we see (4.24) as an equation with m delayed terms.

Compare (4.24) with (2.1). We have $b_{i}(t) \leq c_{i}(t)$ and, due to (4.19), $g_{i}(t) \leq h_{i}(t), i=$ $1,2, \ldots, m$. By Lemma $2.4,(2.1)$ has a nonoscillatory solution.

The proof of part (b) can be carried out in a way similar to that of the proof of part (a) and, therefore, it is omitted.

Example 4.5. Consider the equation of the type of (2.1):

$$
\begin{equation*}
\dot{x}(t)+\frac{\alpha}{t e \ln 3} x\left(\frac{t}{3}\right)+\frac{\ln 3}{8 e t(\ln t)^{2}} x\left(\frac{t}{2}\right)=0, \quad t \geq t_{0}=1 . \tag{4.25}
\end{equation*}
$$

First let $0<\alpha \leq 1$. We set $m=2, t_{1}:=3, \tau(t)=: 2 t / 3$, and

$$
\begin{equation*}
\sigma:=\int_{t-\tau(t)}^{t} \frac{1}{\tau(\xi)} d \xi=\int_{t-(2 t) / 3}^{t} \frac{3}{2 \xi} d \xi=\int_{t / 3}^{t} \frac{3}{2 \xi} d \xi=\frac{3}{2} \ln 3 \tag{4.26}
\end{equation*}
$$

Moreover, we put

$$
\begin{gather*}
h_{1}(t)=\frac{t}{3}, \quad h_{2}(t)=\frac{t}{2}, \quad b_{1}(t)=\frac{\alpha}{t e \ln 3}, \quad b_{2}(t)=\frac{\ln 3}{8 e t(\ln t)^{2}} \\
t-h_{k}(t) \leq \tau(t)=\frac{2}{3} t, \quad k=1,2 \tag{4.27}\\
s=\int_{t_{0}}^{t} \frac{1}{\tau(\xi)} d \xi=\int_{1}^{t} \frac{3}{2 \xi} d \xi=\frac{3}{2} \ln t
\end{gather*}
$$

By (3.1),

$$
\begin{equation*}
A_{0}(t)=\frac{1}{e \sigma \tau(t)}+\frac{\sigma}{8 e \tau(t) s^{2}}=\frac{1}{t e \ln 3}+\frac{\ln 3}{8 e t(\ln t)^{2}} \geq b_{1}(t)+b_{2}(t) . \tag{4.28}
\end{equation*}
$$

All conditions of Theorem 4.4 part (a) hold, hence (4.25) has a nonoscillatory solution.
Similarly, one can show (by Theorem 4.4 part (b)) that, for $\alpha>1$, all solutions of (4.25) are oscillatory.

5. Differential Equation with Two Delays

In [12] the authors consider a differential equation with two delays

$$
\begin{equation*}
\dot{x}(t)+b_{1}(t) x\left(h_{1}(t)\right)+b_{2}(t) x\left(h_{2}(t)\right)=0, \quad t \geq t_{0} \tag{5.1}
\end{equation*}
$$

where $b_{i}:\left[t_{0}, \infty\right) \rightarrow[0, \infty), i=1,2$,

$$
\begin{equation*}
h_{1}(t)=t-\tau, \quad h_{2}(t)=t-\sigma, \tag{5.2}
\end{equation*}
$$

and τ, σ are positive constants. Let

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} b_{1}(t)=p, \quad \liminf _{t \rightarrow \infty} b_{2}(t)=q \tag{5.3}
\end{equation*}
$$

In accordance with [12] we say that (5.1) is in a critical state if there exists $\lambda_{0} \geq 0$ such that

$$
\begin{equation*}
\lambda_{0}=p e^{\lambda_{0} \tau}+q e^{\lambda_{0} \sigma} \tag{5.4}
\end{equation*}
$$

and, for any $\lambda>0, \lambda \neq \lambda_{0}$, we have

$$
\begin{equation*}
\lambda<p e^{\lambda \tau}+q e^{\lambda \sigma} \tag{5.5}
\end{equation*}
$$

Theorem 5.1 (see [12]). Let (5.1) be in a critical case, $p>0, q>0$, and

$$
\begin{align*}
& \liminf _{t \rightarrow \infty}\left[b_{1}(t+\tau)-p\right] t=\alpha, \\
& \liminf _{t \rightarrow \infty}\left[b_{2}(t+\sigma)-q\right] t=\beta, \tag{5.6}
\end{align*}
$$

where $-\infty<\alpha, \beta \leq+\infty$. If $\alpha e^{\lambda_{0} \tau}+\beta e^{\lambda_{0} \sigma}>0$, then all solutions of (5.1) oscillate.
Theorem 5.2 (see [12]). Let

$$
\begin{gather*}
\liminf _{t \rightarrow \infty} b_{1}(t)=\frac{1}{e \tau}, \quad \liminf _{t \rightarrow \infty} b_{2}(t)=0 \\
\liminf _{t \rightarrow \infty}\left[b_{1}(t+\tau)-\frac{1}{e \tau}\right] t=\alpha, \quad \liminf _{t \rightarrow \infty} t b_{2}(t+\sigma)=\beta \tag{5.7}
\end{gather*}
$$

where $-\infty<\alpha \leq+\infty, \beta>0$. If e $\alpha+e^{\sigma / \tau} \beta>0$, then all solutions of (5.1) oscillate.
The aim of the following theorems is to obtain nonoscillation conditions for (5.1) in the above-mentioned critical case. This will complete the oscillation results given by Theorems 5.1 and 5.2. Note that, in Theorems 5.3 and 5.4 below, delays h_{1} and h_{2} being not defined by (5.2) are arbitrary and subject only to the restrictions indicated.

Theorem 5.3. Let $t-h_{1}(t) \leq \tau$ and $t-h_{2}(t) \leq \sigma$ for $t \geq t_{0}$,

$$
\begin{align*}
& \limsup _{t \rightarrow \infty}\left[b_{1}(t)-p\right] t=\alpha, \\
& \limsup _{t \rightarrow \infty}\left[b_{2}(t)-q\right] t=\beta, \tag{5.8}
\end{align*}
$$

where $-\infty<\alpha, \beta<+\infty$, and let there exists a $\lambda_{0}>0$ such that

$$
\begin{align*}
& \lambda_{0} \geq p e^{\lambda_{0} \tau}+q e^{\lambda_{0} \sigma} \tag{5.9}\\
& \alpha e^{\lambda_{0} \tau}+\beta e^{\lambda_{0} \sigma}<0 . \tag{5.10}
\end{align*}
$$

Then (5.1) has a nonoscillatory solution.

Proof. There exist $t_{1}>t_{0}+\max (\tau, \sigma)$ and $\epsilon>0$ such that, owing to (5.8) and (5.10),

$$
\begin{align*}
& b_{1}(t) \leq p+\frac{\alpha+\epsilon}{t} \\
& b_{2}(t) \leq q+\frac{\beta+\epsilon}{t} \tag{5.11}\\
&(\alpha+\epsilon) e^{\lambda_{0} \tau}+(\beta+\epsilon) e^{\lambda_{0} \sigma} \leq 0
\end{align*}
$$

if $t \geq t_{1}$. By Lemma 2.4, with $m=2$,

$$
\begin{gather*}
c_{1}(t):=p+\frac{\alpha+\epsilon}{t} \\
c_{2}(t):=q+\frac{\beta+\epsilon}{t} \tag{5.12}\\
g_{1}(t):=t-\tau \\
g_{2}(t):=t-\sigma
\end{gather*}
$$

in (2.4), the existence of a nonoscillatory solution of the equation

$$
\begin{equation*}
\dot{x}(t)+\left(p+\frac{\alpha+\epsilon}{t}\right) x(t-\tau)+\left(q+\frac{\beta+\epsilon}{t}\right) x(t-\sigma)=0 \tag{5.13}
\end{equation*}
$$

implies the existence of a nonoscillatory solution of (5.1).
By Lemma 2.6, for the existence of a positive solution of (5.13), it is sufficient to find a nonnegative solution of the inequality

$$
\begin{equation*}
u(t) \geq\left(p+\frac{\alpha+\epsilon}{t}\right) e^{\int_{t-\tau}^{t} u(s) d s}+\left(q+\frac{\beta+\epsilon}{t}\right) e^{\int_{t-\sigma}^{t} u(s) d s} \tag{5.14}
\end{equation*}
$$

where $t \geq t_{1}$. Substituting $u(t)$ for λ_{0} in inequality (5.14), we have

$$
\begin{equation*}
\lambda_{0} \geq p e^{\lambda_{0} \tau}+q e^{\lambda_{0} \sigma}+\frac{(\alpha+\epsilon) e^{\lambda_{0} \tau}+(\beta+\epsilon) e^{\lambda_{0} \sigma}}{t} \tag{5.15}
\end{equation*}
$$

Due to (5.9) and (5.11), we conclude that the last inequality holds, and, consequently, $u(t)=$ λ_{0} is a solution of inequality (5.14). By Lemma 2.6, (5.13) has a nonoscillatory solution. Hence, (5.1) has a nonoscillatory solution, too.

Theorem 5.4. Let $t-h_{1}(t) \leq \tau, t-h_{2}(t) \leq \sigma$ for $t \geq t_{0}$,

$$
\begin{gather*}
\limsup _{t \rightarrow \infty}\left[b_{1}(t)-\frac{1}{e \tau}\right] t=\alpha \tag{5.16}\\
\underset{t \rightarrow \infty}{\limsup } t b_{2}(t)=\beta
\end{gather*}
$$

where $\alpha, \beta \in \mathbb{R}$. If

$$
\begin{equation*}
e \alpha+e^{\sigma / \tau} \beta<0 \tag{5.17}
\end{equation*}
$$

then (5.1) has a nonoscillatory solution.
Proof. There exist $t_{1}>t_{0}+\max (\tau, \sigma)$ and $\epsilon>0$ such that, owing to (5.16) and (5.17),

$$
\begin{gather*}
b_{1}(t) \leq \frac{1}{e \tau}+\frac{\alpha+\epsilon}{t} \\
b_{2}(t) \leq \frac{\beta+\epsilon}{t} \tag{5.18}\\
e(\alpha+\epsilon)+e^{\sigma / \tau}(\beta+\epsilon) \leq 0
\end{gather*}
$$

if $t \geq t_{1}$. By Lemma 2.4, with $m=2$,

$$
\begin{gather*}
c_{1}(t)=\frac{1}{e \tau}+\frac{\alpha+\epsilon}{t}, \\
c_{1}(t)=\frac{\beta+\epsilon}{t} \tag{5.19}\\
g_{1}(t)=t-\tau \\
g_{2}(t)=t-\sigma
\end{gather*}
$$

in (2.4), the existence of a nonoscillatory solution of the equation

$$
\begin{equation*}
\dot{x}(t)+\left(\frac{1}{e \tau}+\frac{\alpha+\epsilon}{t}\right) x(t-\tau)+\left(\frac{\beta+\epsilon}{t}\right) x(t-\sigma)=0 \tag{5.20}
\end{equation*}
$$

implies the existence of a nonoscillatory solution of (5.1). By Lemma 2.6, it is sufficient to find a nonnegative solution of the inequality

$$
\begin{equation*}
u(t) \geq\left(\frac{1}{e \tau}+\frac{\alpha+\epsilon}{t}\right) e^{\int_{t-\tau}^{t} u(s) d s}+\left(\frac{\beta+\epsilon}{t}\right) e^{\int_{t-\sigma}^{t} u(s) d s} \tag{5.21}
\end{equation*}
$$

where $t \geq t_{1}$. Put $u(t)=1 / \tau, t \geq t_{1}$ in inequality (5.21). We have

$$
\begin{equation*}
\frac{1}{\tau} \geq \frac{1}{e \tau} e+\frac{e(\alpha+\epsilon)+e^{\sigma / \tau}(\beta+\epsilon)}{t} \tag{5.22}
\end{equation*}
$$

Due to (5.18), we conclude that the last inequality holds, and, consequently, $u(t)=1 / \tau$ is a solution of inequality (5.21). Let $u(t)=0$ for $t<t_{1}$. By Lemma 2.6, (5.20) has a nonoscillatory solution. Hence, (5.1) also has a nonoscillatory solution.

Example 5.5. Consider (5.1) with

$$
\begin{equation*}
b_{1}(t)=\frac{1}{e \tau}+\frac{|\sin t|-2}{t}, \quad b_{2}(t)=\frac{|\cos t|+1}{t} \tag{5.23}
\end{equation*}
$$

and with $h_{1}(t), h_{2}(t)$ defined by (5.2), that is,

$$
\begin{equation*}
\dot{x}(t)+\left(\frac{1}{e \tau}+\frac{|\sin t|-2}{t}\right) x(t-\tau)+\frac{|\cos t|+1}{t} x(t-\sigma)=0 \tag{5.24}
\end{equation*}
$$

where $t \geq t_{0}$. Since

$$
\begin{gather*}
\liminf _{t \rightarrow \infty} b_{1}(t)=\frac{1}{e \tau}, \quad \liminf _{t \rightarrow \infty} b_{2}(t)=0 \\
\liminf _{t \rightarrow \infty}\left[b_{1}(t+\tau)-\frac{1}{e \tau}\right] t=-2 \tag{5.25}\\
\liminf _{t \rightarrow \infty} t b_{2}(t+\sigma)=1
\end{gather*}
$$

then, by Theorem 5.2 (with $\alpha=-2$ and $\beta=1$), all solutions of (5.24) oscillate if

$$
\begin{equation*}
\frac{\sigma}{\tau}>1+\ln 2 \tag{5.26}
\end{equation*}
$$

Since

$$
\begin{gather*}
\limsup _{t \rightarrow \infty}\left[b_{1}(t)-\frac{1}{e \tau}\right] t=-1 \tag{5.27}\\
\limsup _{t \rightarrow \infty} t b_{2}(t)=2
\end{gather*}
$$

by Theorem 5.4 (with $\alpha=-1$ and $\beta=2$), (5.24) has a nonoscillatory solution if

$$
\begin{equation*}
\frac{\sigma}{\tau}<1-\ln 2 \tag{5.28}
\end{equation*}
$$

5.1. Generalization for Equations with Several Delays

It is easy to generalize Theorem 5.3 for a general equation (2.1) with several delays. Denote

$$
\begin{equation*}
p_{i}:=\liminf _{t \rightarrow \infty} b_{i}(t) \tag{5.29}
\end{equation*}
$$

where $i=1,2, \ldots, m$. We omit the proof of this generalization since it is similar to that of Theorem 5.3.

Theorem 5.6. Let $\tau_{i}, i=1,2, \ldots, m$, be positive constants such that

$$
\begin{equation*}
t-h_{i}(t) \leq \tau_{i} \tag{5.30}
\end{equation*}
$$

for $t \geq t_{0}$,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left[b_{i}(t)-p_{i}\right] t=\alpha_{i} \tag{5.31}
\end{equation*}
$$

where $\alpha_{i} \in \mathbb{R}$, and let there exists a $\lambda_{0}>0$ such that

$$
\begin{align*}
& \lambda_{0} \geq \sum_{i=1}^{m} p_{i} e^{\lambda_{0} \tau_{i}} \\
& \sum_{i=1}^{m} \alpha_{i} e^{\lambda_{0} \tau_{i}}<0 \tag{5.32}
\end{align*}
$$

Then (2.1) has a nonoscillatory solution.
The following statement generalizes Theorem 5.4. We will formulate this result for (2.4).

Theorem 5.7. Let $I \subset\{1, \ldots, m\}$ be a set of indices such that

$$
g_{k}(t) \leq \begin{cases}h_{1}(t), & \text { if } k \in I \tag{5.33}\\ h_{2}(t), & \text { if } k \notin I\end{cases}
$$

where $h_{i}:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ and $h_{i}(t) \leq t$. Let

$$
\begin{equation*}
b_{1}(t):=\sum_{k \in I} c_{k}(t), \quad b_{2}(t):=\sum_{k \notin I} c_{k}(t) . \tag{5.34}
\end{equation*}
$$

If, for functions $b_{i}, h_{i}, i=1,2$, all assumptions of Theorem 5.4 are true, then (2.4) has a nonoscillatory solution.

The proof of Theorem 5.7 is omitted as it can be done easily using Lemma 2.4 and Theorem 5.4.

6. Concluding Remarks

In conclusion we note that there exist numerous results on nonoscillation for various classes of delay differential equations in a noncritical case. We refer, for example, to monographs $[6,9,13,14]$, recent papers [15-22], and references therein. Some of the books and papers mentioned discuss the critical case from various points of view different from our approach, and we mentioned them above. In the paper we investigate the critical case for delayed
differential equations. It will be interesting as a motivation for further investigation along these lines to consider cases, critical is a sense to other classes of equations, in particular, for integrodifferential equations, differential equations with distributed delay, or differential equations of a neutral type. Finally, for nonoscillation results for difference equations we refer to [23-28].

Acknowledgments

J. Baštinec was supported by the Grant 201/10/1032 of the Czech Grant Agency (Prague), by the Council of Czech Government Grant MSM 0021630529 and by the Grant FEKT-S-103 of Faculty of Electrical Engineering and Communication, Brno University of Technology. L. Berezansky was partially supported by grant 25/5 "Systematic support of international academic staff at Faculty of Electrical Engineering and Communication, Brno University of Technology" (Ministry of Education, Youth and Sports of the Czech Republic) and by the Grant 201/10/1032 of the Czech Grant Agency (Prague). J. Diblík was supported by the Grant 201/08/0469 of the Czech Grant Agency (Prague), by the Council of Czech Government Grant MSM 0021630519 and by the Grant FEKT-S-10-3 of Faculty of Electrical Engineering and Communication, Brno University of Technology. Z. Šmarda was supported by the Council of Czech Government Grant MSM 0021630503 and MSM 00216 30529, and by the Grant FEKT-S-10-3 of Faculty of Electrical Engineering and Communication, Brno University of Technology.

References

[1] J. Diblík, "Positive and oscillating solutions of differential equations with delay in critical case," Journal of Computational and Applied Mathematics, vol. 88, no. 1, pp. 185-202, 1998.
[2] J. Diblík and N. Koksch, "Positive solutions of the equation $\dot{x}(t)=-c(t) x(t-\tau)$ in the critical case," Journal of Mathematical Analysis and Applications, vol. 250, no. 2, pp. 635-659, 2000.
[3] Y. Domshlak and I. P. Stavroulakis, "Oscillations of first-order delay differential equations in a critical state," Applicable Analysis, vol. 61, no. 3-4, pp. 359-371, 1996.
[4] Á. L. Elbert and I. P. Stavroulakis, "Oscillation and nonoscillation criteria for delay differential equations," Proceedings of the American Mathematical Society, vol. 123, no. 5, pp. 1503-1510, 1995.
[5] V. E. Slyusarchuk, "The Necessary and sufficient conditions for the oscillation of solutions of nonlinear differential equations with impulse action in a Banach space," Ukrainian Mathematical Journal, vol. 51, no. 1, pp. 98-109, 1999.
[6] R. P. Agarwal, M. Bohner, and W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, vol. 267, Marcel Dekker, New York, NY, USA, 2004.
[7] J. Diblík, Z. Svoboda, and Z. Šmarda, "Explicit criteria for the existence of positive solutions for a scalar differential equation with variable delay in the critical case," Computers \mathcal{E} Mathematics with Applications, vol. 56, no. 2, pp. 556-564, 2008.
[8] N. Azbelev, V. Maksimov, and L. Rakhmatullina, Introduction to the Theory of Linear FunctionalDifferential Equations, vol. 3 of Advanced Series in Mathematical Science and Engineering, World Federation, Atlanta, Ga, USA, 1995.
[9] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations, The Clarendon Press Oxford University Press, New York, NY, USA, 1991.
[10] L. Berezansky and E. Braverman, "On non-oscillation of a scalar delay differential equation," Dynamic Systems and Applications, vol. 6, no. 4, pp. 567-580, 1997.
[11] G. Ladas, Y. G. Sficas, and I. P. Stavroulakis, "Asymptotic behavior of solutions of retarded differential equations," Proceedings of the American Mathematical Society, vol. 88, no. 2, pp. 247-253, 1983.
[12] Y. Domshlak and I. P. Stavroulakis, "Oscillations of differential equations with deviating arguments in a critical state," Dynamic Systems and Applications, vol. 7, no. 3, pp. 405-414, 1998.
[13] R. P. Agarwal, D. O'Regan, and P. J. Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic, Dodrecht, The Netherlands, 1999.
[14] L. H. Erbe, Q. Kong, and B. G. Zhang, Oscillation Theory for Functional-Differential Equations, vol. 190, Marcel Dekker, New York, NY, USA, 1995.
[15] A. Babakhani, "Positive solutions for system of nonlinear fractional differential equations in two dimensions with delay," Abstract and Applied Analysis, vol. 2010, Article ID 536317, 16 pages, 2010.
[16] T. Candan and R. S. Dahiya, "Positive solutions of first-order neutral differential equations," Applied Mathematics Letters, vol. 22, no. 8, pp. 1266-1270, 2009.
[17] I. Culáková, L. Hanuštiaková, and R. Olach, "Existence for positive solutions of second-order neutral nonlinear differential equations," Applied Mathematics Letters. An International Journal of Rapid Publication, vol. 22, no. 7, pp. 1007-1010, 2009.
[18] B. Dorociaková and R. Olach, "Existence of positive solutions of delay differential equations," Tatra Mountains Mathematical Publications, vol. 43, pp. 63-70, 2009.
[19] J. M. Ferreira and S. Pinelas, "Nonoscillations in retarded systems," Journal of Mathematical Analysis and Applications, vol. 308, no. 2, pp. 714-729, 2005.
[20] M. I. Gil, "Positive solutions of equations with nonlinear causal mappings," Positivity, vol. 11, no. 3, pp. 523-535, 2007.
[21] Ö. Öcalan, "Existence of positive solutions for a neutral differential equation with positive and negative coefficients," Applied Mathematics Letters, vol. 22, no. 1, pp. 84-90, 2009.
[22] Ch. G. Philos, "Positive increasing solutions on the half-line to second order nonlinear delay differential equations," Glasgow Mathematical Journal, vol. 49, no. 2, pp. 197-211, 2007.
[23] J. Baštinec and J. Diblík, "Subdominant positive solutions of the discrete equation $\Delta u(k+n)=$ -p(k)u(k)," Abstract and Applied Analysis, no. 6, pp. 461-470, 2004.
[24] J. Baštinec, J. Diblík, and Z. Šmarda, "Existence of positive solutions of discrete linear equations with a single delay," Journal of Difference Equations and Applications, vol. 16, no. 9, pp. 1047-1056, 2010.
[25] L. Berezansky and E. Braverman, "On existence of positive solutions for linear difference equations with several delays," Advances in Dynamical Systems and Applications, vol. 1, no. 1, pp. 29-47, 2006.
[26] G. E. Chatzarakis, R. Koplatadze, and I. P. Stavroulakis, "Oscillation criteria of first order linear difference equations with delay argument," Nonlinear Analysis: Theory, Methods \& Applications, vol. 68, no. 4, pp. 994-1005, 2008.
[27] R. Medina and M. Pituk, "Nonoscillatory solutions of a second-order difference equation of Poincaré type," Applied Mathematics Letters, vol. 22, no. 5, pp. 679-683, 2009.
[28] I. P. Stavroulakis, "Oscillation criteria for first order delay difference equations," Mediterranean Journal of Mathematics, vol. 1, no. 2, pp. 231-240, 2004.

