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This paper shows that all positive solutions of a higher-order nonlinear difference equation are
bounded, extending some recent results in the literature.

1. Introduction

There is a considerable interest in studying nonlinear difference equations nowadays; see, for
example, [1–40] and numerous references listed therein.

The investigation of the higher-order nonlinear difference equation

xn = A +
x
p
n−m
xr
n−k

, n ∈ N0, (1.1)

where A, r > 0 and p ≥ 0, and k,m ∈ N, k /=m, was suggested by Stević at numerous talks
and in papers (see, e.g., [20, 28, 30, 34–38] and the related references therein).

In this paper we show that under some conditions on parameters A, r, and p all
positive solutions of the difference equation

xn = A +
x
p

n−1
xr
n−k

, n ∈ N0, (1.2)

where k ∈ N \ {1}, are bounded. To do this we modify some methods and ideas from Stević’s
papers [30, 35–37]. Our motivation stems from these four papers.
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The reader can find results for some particular cases of (1.2), as well as on some closely
related equations treated in, for example, [1, 2, 5–11, 18–20, 26, 30, 33–35, 38, 40].

2. Main Result

Here we investigate the boundedness of the positive solutions to (1.2) for the case 0 < p <

(rkk/(k − 1)k−1)1/k. The following result completely describes the boundedness of positive
solutions to (1.2) in this case. The result is an extension of one of the main results in [35].

Theorem 2.1. Assume, p, r > 0 and k ∈ N \ {1}. Then every positive solution of (1.2) is bounded if

0 < p <

(
rkk

(k − 1)k−1

)1/k

. (2.1)

Proof. First note that from (1.2) it directly follows that

xn > A, for n ∈ N0. (2.2)

Using (1.2), it follows that

xn = A +
x
p

n−1
xr
n−k

= A +

⎛
⎝xn−1

x
r/p

n−k

⎞
⎠

p

= A +

⎛
⎝ A

x
r/p

n−k
+

x
p

n−2

x
r/p

n−kx
r
n−k−1

⎞
⎠

p

= A +

⎛
⎝ A

x
r/p

n−k
+

⎛
⎝ xn−2

x
r/p2

n−k x
r/p

n−k−1

⎞
⎠

p⎞
⎠

p

= A +

⎛
⎝ A

x
r/p

n−k
+

⎛
⎝ A

x
r/p2

n−k x
r/p

n−k−1
+

x
p

n−3

x
r/p2

n−k x
r/p

n−k−1x
r
n−k−2

⎞
⎠

p⎞
⎠

p

= A +

⎛
⎝ A

x
r/p

n−k
+

⎛
⎝ A

x
r/p2

n−k x
r/p

n−k−1
+

⎛
⎝ xn−3

x
r/p3

n−k x
r/p2

n−k−1x
r/p

n−k−2

⎞
⎠

p⎞
⎠

p⎞
⎠

p

.

(2.3)
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After k steps we obtain the following formula

xn = A +

⎛
⎝ A

x
r/p

n−k
+

⎛
⎝ A

x
r/p2

n−k x
r/p

n−k−1
+

⎛
⎝ A

x
r/p3

n−k x
r/p2

n−k−1x
r/p

n−k−2

+ · · ·+
⎛
⎝ A

x
r/pk−1

n−k x
r/pk−2

n−k−1 · · ·x
r/p

n−(2k−2)
+

x
p

n−k

x
r/pk−1

n−k x
r/pk−2

n−k−1 · · ·x
r/p

n−(2k−2)x
r
n−(2k−1)

⎞
⎠

p

· · ·
⎞
⎠

p

= A +

⎛
⎝ A

x
r/p

n−k
+

⎛
⎝ A

x
r/p2

n−k x
r/p

n−k−1
+

⎛
⎝ A

x
r/p3

n−k x
r/p2

n−k−1x
r/p

n−k−2

+ · · ·+
⎛
⎝ A

x
r/pk−1

n−k x
r/pk−2

n−k−1 · · ·x
r/p

n−(2k−2)
+

x
p−(r/pk−1)
n−k

x
r/pk−2

n−k−1 · · ·x
r/p

n−(2k−2)x
r
n−(2k−1)

⎞
⎠

p

· · ·
⎞
⎠

p

.

(2.4)

Two subcases can be considered now.

Case 1 (r ≥ pk). If r ≥ pk, then by (2.2) equality (2.4) implies that

xn < A +
(

A

Ar/p
+
(

A

Ar/p2+r/p
+
(

A

Ar/p3+r/p2+r/p

+· · ·+
(

A

Ar/pk−1+r/pk−2+···+r/p +
1

Ar/pk−1+r/pk−2+···+r/p+r−p

)p

· · ·
)p

< ∞,

(2.5)

for n ≥ 2k − 1. This means that (xn) is a bounded sequence.

Case 2 (pk > r). In this case we have

p − r

pk−1
> 0. (2.6)
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From (2.4) and (1.2) we further obtain

xn = A +

⎛
⎝ A

x
r/p

n−k
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r/p2

n−k x
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n−k−1
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= · · · = A +

⎛
⎜⎜⎜⎝ A

x
r/p
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⎛
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x
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z
(j)
m

n−k−m−j
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x
p−z(0)m

n−k−m(∏k−2
j=1x

z
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m
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p

,

(2.7)
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for each k ∈ N \ {1} and every n ≥ 2k +m − 1, where the sequences (z(j)m ), j = 0, 1, . . . , k − 2,
satisfy the system

z
(0)
m+1 =

z
(1)
m

p − z
(0)
m

, z
(1)
m+1 =

z
(2)
m

p − z
(0)
m

, . . . , z
(k−3)
m+1 =

z
(k−2)
m

p − z
(0)
m

, z
(k−2)
m+1 =

r

p − z
(0)
m

, (2.8)

and the initial values are given by

z
(j)
0 = rpj+1−k, j = 0, 1, . . . , k − 2. (2.9)

Note that pk > r implies that z(0)0 < p. Assume z(0)m < p for every m ∈ N0.

By a direct calculation it follows that z(j)0 < z
(j)
1 , j = 0, 1, . . . , k − 2, which, along with

(2.8) implies that (z(j)m ), j = 0, 1, . . . , k − 2, are strictly increasing sequences.
From system (2.8), we have,

z
(0)
m+1 =

r(
p − z

(0)
m

)(
p − z

(0)
m−1
)
· · ·
(
p − z

(0)
m−k+2

) , m ≥ k − 2. (2.10)

If it were z(0)m < p,m ∈ N0, then there was

lim
m→∞

z
(0)
m = z ∈ (0, p]. (2.11)

Clearly z is a solution of the equation

f(x) = x(p − x)k−1 − r = 0. (2.12)

Since

f(0) = f
(
p
)
= −r, (2.13)

and

f ′(x) =
(
p − x

)k−2(
p − kx

)
, (2.14)

we see that the function f attains its maximum at the point x = p/k.
Further, by assumption (2.1)we get

f

(
p

k

)
=

(k − 1)k−1

kk

(
pk − r

kk

(k − 1)k−1

)
< 0, (2.15)

which along with (2.13) implies that (2.12) does not have solutions on (0, p], arriving at a
contradiction.
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This implies that there is a fixed indexm0 ∈ N such that

z
(0)
m0−1 < p, z

(0)
m0 ≥ p. (2.16)

From this, inequality (2.2), and identity (2.7) withm = m0, it follows that
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⎛
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⎛
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z
(j)
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x
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)
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⎞
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A

A
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1

Ar+z(0)m0−p+
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⎞
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p
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⎞
⎟⎠

p

< ∞

(2.17)

for n ≥ 2k +m0 − 1.
From (2.17) the boundedness of the sequence (xn) directly follows, as desired.
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[29] S. Stević, “Existence of nontrivial solutions of a rational difference equation,” Applied Mathematics

Letters, vol. 20, no. 1, pp. 28–31, 2007.
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