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We study the higher-order neutral dynamic equation {a(t)[(x(t) − p(t)x(τ(t)))Δ
m

]
α}Δ + f(t,

x(δ(t))) = 0 for t ∈ [t0,∞)
T
and obtain some necessary and sufficient conditions for the existence

of nonoscillatory bounded solutions for this equation.

1. Introduction

A time scale T is an arbitrary nonempty closed subset of the real numbers. Thus, R,Z, and N,
that is, the real numbers, the integers, and the natural numbers, are examples of time scales.
We assume throughout that the time scale T has the topology that it inherits from the real
numbers with the standard topology.

The theory of time scale, which has recently received a lot of attention, was introduced
by Hilger’s landmark paper [1], a rapidly expanding body of literature has sought to
unify, extend, and generalize ideas from discrete calculus, quantum calculus, and continuous
calculus to arbitrary time scale calculus, where a time scale is a nonempty closed subset of the
real numbers, and the cases when this time scale is equal to the real numbers or to the integers
represent the classical theories of differential and difference equations.Many other interesting
time scales exist, and they give rise to many applications (see [2]). Not only the new theory of
the so-called “dynamic equations” unifies the theories of differential equations and difference
equations but also extends these classical cases to cases “in between”, for example, to the so-
called q-difference equations when T = {1, q, q2, . . .}, which has important applications in
quantum theory (see [3]).
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On a time scale T, the forward jump operator, the backward jump operator and the
graininess function are defined as

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t, (1.1)

respectively. We refer the reader to [2, 4] for further results on time scale calculus.
In recent years, there has been much research activity concerning the oscillation and

nonoscillation of solutions of various equations on time scales, and we refer the reader to the
papers of [5–20].

In [21] Zhu and Wang studied the existence of nonoscillatory solutions to neutral
dynamic equation

[
x(t) + p(t)x(g(t))

]Δ + f(t, x(h(t))) = 0. (1.2)

Karpuz [22] studied the asymptotic behavior of delay dynamic equations having the
following form:

[x(t) +A(t)x(α(t))]Δ + B(t)F
(
x
(
β(t)

)) − C(t)G
(
x
(
γ(t)

))
= ϕ(t). (1.3)

Furthermore, Karpuz in [23] obtained necessary and sufficient conditions for the asymptotic
behaviour of all bounded solutions of the following higher-order nonlinear forced neutral
dynamic equation

[x(t) +A(t)x(α(t))]Δ
n

+ f
(
t, x

(
β(t)

)
, x

(
γ(t)

))
= ϕ(t) (1.4)

and also studied in [24] oscillation of unbounded solutions of a similar type of equations.
Li et al. [25] considered the existence of nonoscillatory solutions to the second-order

neutral delay dynamic equation of the form

[
x(t) + p(t)x(τ0(t))

]ΔΔ + q1(t)x(τ1(t)) − q2(t)x(τ2(t)) = e(t). (1.5)

In [26, 27], Zhang et al. obtained some sufficient conditions for the existence of
nonoscillatory solutions for the following higher-order equations:

[
x(t) + p(t)x(τ(t))

]Δn

+ f(t, x(t − τ1(t)), . . . , x(t − τk(t))) = 0 ,

[
x(t) + p(t)x(τ(t))

]Δn

+ f(t, x(τ1(t)), . . . , x(τk(t))) = 0,
(1.6)

respectively.
Motivated by the above studies, in this paper, we investigate the existence of

nonoscillatory solutions of the following higher order neutral dynamic equation:

{
a(t)

[
(x(t) − p(t)x(τ(t)))Δ

m
]α}Δ

+ f(t, x(δ(t))) = 0 for t ∈ [t0,∞)
T
, (1.7)
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where m ∈ N, α is the quotient of odd positive integers, t0 ∈ T, the time scale interval
[t0,∞)

T
= {t ∈ T : t ≥ t0}, a ∈ Crd([t0,∞)

T
, (0,∞)), p ∈ C([t0,∞)

T
,R), τ, δ ∈ C(T,T) with

limt→∞τ(t) = limt→∞δ(t) = ∞ and f ∈ C([t0,∞)
T
×R,R) satisfying the following conditions:

(i) uf(t, u) > 0 for any t ∈ [t0,∞)
T
and u/= 0.

(ii) f(t, u) is nondecreasing in u for any t ∈ [t0,∞)
T
.

Since we are interested in the oscillatory behavior of solutions near infinity, we
assume that supT = ∞. By a solution of (1.7) we mean a nontrivial real-valued function
x ∈ Crd([Tx,∞)

T
,R), Tx ≥ t0, such that a(t)[(x(t) − p(t)x(τ(t)))Δ

m

]
α ∈ C1

rd
([Tx,∞)

T
,R) and

satisfies (1.7) on [Tx,∞). The solutions vanishing in some neighborhood of infinity will be
excluded from our consideration. A solution x of (1.7) is said to be oscillatory if it is neither
eventually positive nor eventually negative, otherwise it is called nonoscillatory.

2. Auxiliary Results

We state the following conditions, which are needed in the sequel:
(H1)

∫∞
t0
(a(t))−1/αΔt = ∞;

(H2) there exist constants a1, b1 ∈ [0, 1) with a1 + b1 < 1 such that −a1 ≤ p(t) ≤ b1 for
all t ∈ [t0,∞)

T
;

(H3) there exist constants a2, b2 ∈ (1,∞) such that −a2 ≤ p(t) ≤ −b2 for all t ∈ [t0,∞)
T
;

(H4) there exist constants a3, b3 ∈ (1,∞) such that a3 ≤ p(t) ≤ b3 for all t ∈ [t0,∞)
T
.

Let k be a nonnegative integer and s, t ∈ T; we define two sequences of functions
hk(t, s) and gk(t, s) as follows:

hk(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if k = 0,
∫ t

s

hk−1(τ, s)Δτ if k ≥ 1,

gk(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if k = 0,
∫ t

s

gk−1(σ(τ), s)Δτ if k ≥ 1.

(2.1)

By Theorems 1.112 and 1.60 of [2], we have

hk(t, s) = (−1)kgk(s, t) for all t, s ∈ T,

hΔt

k (t, s) =

⎧
⎨

⎩

0 if k = 0,

hk−1(t, s) if k ≥ 1,

gΔt

k (t, s) =

⎧
⎨

⎩

0 if k = 0,

gk−1(σ(t), s) if k ≥ 1,

(2.2)
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where gΔt

k (t, s) and hΔt

k (t, s) denote for each fixed s the derivatisve of gk(t, s) and
hk(t, s) with respect to t, respectively.

Lemma 2.1 (see [23, 24]). Assume that s, t ∈ T and g ∈ Crd(T × T,R), then

∫ t

s

[∫ t

η

g
(
η, ζ

)
Δζ

]

Δη =
∫ t

s

[∫σ(ζ)

s

g
(
η, ζ

)
Δη

]

Δζ. (2.3)

Lemma 2.2 (see [23, 24]). Let n be a nonnegative integer, h ∈ Crd(T, [0,∞)), and s ∈ T. Then each
of the following is true:

(i)
∫∞
s gn(σ(θ), s)h(θ)Δθ < ∞ implies that

∫∞
t gn(σ(θ), t)h(θ)Δθ < ∞ for all t ∈ T;

(ii)
∫∞
s gn(σ(θ), s)h(θ)Δθ = ∞ implies that

∫∞
t gn(σ(θ), t)h(θ)Δθ = ∞ for all t ∈ T.

Lemma 2.3 (see [23]). Let n be a nonnegative integer, h ∈ Crd(T, [0,∞)) and s ∈ T. Then

∫∞

s

gn(σ(θ), s)h(θ)Δθ < ∞ (2.4)

implies that each of the following is true:

(i)
∫∞
t gj(σ(θ), t)h(θ)Δθ is decreasing for all t ∈ T and all 0 ≤ j ≤ n.

(ii) limt→∞
∫∞
t gj(σ(θ), t)h(θ)Δθ = 0 for all 0 ≤ j ≤ n.

(iii)
∫∞
t gj(σ(θ), t)h(θ)Δθ < ∞ for all t ∈ T and all 0 ≤ j ≤ n − 1.

Lemma 2.4 (see [28]). Letm ∈ N and fΔm ∈ Crd([t0,∞)
T
,R). Then

(1) lim inft→∞fΔm
(t) > 0 implies limt→∞fΔi

(t) = ∞ for all 0 ≤ i ≤ m − 1.

(2) lim supt→∞f
Δm

(t) < 0 implies limt→∞fΔi
(t) = −∞ for all 0 ≤ i ≤ m − 1.

Lemma 2.5 (see [29]). Let z(t) be bounded for t ∈ [t0,∞)
T
with zΔ

n
(t) > 0, where n ∈ N. Then

(−1)n−izΔi
(t) > 0 for 1 ≤ i ≤ n and

lim
t→∞

zΔ
i

(t) = 0 for 1 ≤ i ≤ n − 1. (2.5)

In the sequel, write

y(t) = x(t) − p(t)x(τ(t)). (2.6)

Lemma 2.6. Assume that p(t) is bounded and (H1) holds. If x(t) is a bounded nonoscillatory solution
of (1.7), then x(t)yΔm

(t) > 0 eventually.

Proof. Without loss of generality, assume that there is some t1 ≥ t0 such that x(t) > 0 and
x(δ(t)) > 0 for t ≥ t1. From (1.7)we have

{a(t)[yΔm

(t)]
α}Δ = −f(t, x(δ(t))) < 0 for t ≥ t1. (2.7)
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Thus, R(t) = a(t)[yΔm
(t)]α is strictly decreasing on [t1,∞)

T
. If there exists t2 ≥ t1 such that

R(t2) < 0, then

yΔm

(t) ≤
[
R(t2)
a(t)

]1/α
for t ≥ t2. (2.8)

Therefore, we have

yΔm−1
(t) − yΔm−1

(t2) ≤
∫ t

t2

[
R(t2)
a(s)

]1/α
Δs. (2.9)

By condition (H1), we obtain limt→∞yΔm−1
(t) = −∞. Then it follows from Lemma 2.4 that

limt→∞y(t) = −∞, which is a contradiction since x(t) and p(t) are bounded. Hence, yΔm
(t) =

[R(t)/a(t)]1/α > 0 for all t ≥ t1. The proof is completed.
Let BCrd([t0,∞)

T
,R) be the Banach space of all bounded rd-continuous functions on

[t0,∞)
T
with sup norm ‖x‖ = supt≥t0 |x(t)|. Let X ⊂ BCrd([t0,∞)

T
,R), we say that X is

uniformly Cauchy if for any given ε > 0, there exists t1 > t0 such that for any x ∈ X,
|x(u) − x(v)| < ε for all u, v ∈ [t1,∞)

T
. X is said to be equicontinuous on [a, b]

T
if, for any

given ε > 0, there exists δ > 0 such that, for any x ∈ X and u, v ∈ [a, b]
T
with |u − v| < δ,

|x(u)−x(v)| < ε. S : X → BCrd([t0,∞)
T
,R) is called completely continuous if it is continuous

and maps bounded sets into relatively compact sets.

Lemma 2.7 (see [21]). Suppose that X ⊂ BCrd([t0,∞)
T
,R) is bounded and uniformly Cauchy.

Further, suppose that X is equi-continuous on [t0, t1]T
for any t1 ∈ [t0,∞)

T
. Then X is relatively

compact.

Lemma 2.8 (see [21]). Suppose that X is a Banach space and Ω is a bounded, convex, and closed
subset of X. Suppose further that there exist two operatorsU and S : Ω → X such that

(i) Ux + Sy ∈ Ω for all x, y ∈ Ω,

(ii) U is a contraction mapping,

(iii) S is completely continuous.

ThenU + S has a fixed point in Ω.

3. Main Results and Examples

Now, we state and prove our main results.

Theorem 3.1. Assume that (H1) and (H2) hold. Then (1.7) has a nonoscillatory bounded solution
x(t) with lim inft→∞|x(t)| > 0 if and only if there exists some constant K/= 0 such that

∫∞

t0

gm−1(σ(s), t0)
[

1
a(s)

∫∞

s

f(θ, |K|)Δθ

]1/α
Δs < ∞. (3.1)

Proof. Sufficiency. Assume that (1.7) has a nonoscillatory bounded solution x(t) on [t0,∞)
T

with lim inft→∞|x(t)| > 0. Without loss of generality, we assume that there is a constantK > 0
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and some t1 ≥ t0 such that x(t) > K and x(δ(t)) > K for t ≥ t1. It follows from Lemma 2.6 that
yΔm

(t) > 0 for t ≥ t1. By assumption that x(t) is bounded and condition (H2), we see that y(t)
is bounded. Thus, by Lemma 2.5 we get that there exists t2 ≥ t1 such that

(−1)m−kyΔk

(t) > 0 for t ≥ t ≥ t2 , 1 ≤ k ≤ m. (3.2)

Integrating (1.7) from t(≥ t2) to∞, we have

a(t)
(
yΔm

(t)
)α ≥

∫∞

t

f(s, x(δ(s)))Δs ≥
∫∞

t

f(s,K)Δs for t ≥ t2. (3.3)

Therefore, it follows from (3.2) and (3.3) that, for t ≥ t2,

∫∞

t

gm−1(σ(θ), t)
[

1
a(θ)

∫∞

θ

f(s,K)Δs

]1/α
Δθ

≤
∫∞

t

yΔm

(θ)gm−1(σ(θ), t)Δθ

= yΔm−1
(θ)gm−1(θ, t)

∣∣∣
∞

t
−
∫∞

t

yΔm−1
(θ)gm−2(σ(θ), t)Δθ

= − lim
θ→∞

(−1)m−(m−1)yΔm−1
(θ)gm−1(θ, t) −

∫∞

t

yΔm−1
(θ)gm−2(σ(θ), t)Δθ

≤ −
∫∞

t

yΔm−1
(θ)gm−2(σ(θ), t)Δθ

= −yΔm−2
(θ)gm−2(θ, t)

∣∣∣
∞

t
+ (−1)2

∫∞

t

yΔm−2
(θ)gm−3(σ(θ), t)Δθ

≤ (−1)2
∫∞

t

yΔm−2
(θ)gm−3(σ(θ), t)Δθ

· · · · · · · · · · · ·

≤ (−1)m−1
∫∞

t

yΔ(θ)Δθ

= (−1)m−1y(θ)
∣∣∣
∞

t
< ∞.

(3.4)

By Lemma 2.2, we see that (3.1) holds.
Necessity. Suppose that there exists some constant K > 0 such that

∫∞

t0

gm−1(σ(s), t0)A(s)Δs < ∞, (3.5)
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where A(s) = [
∫∞
s f(θ,K)Δθ]1/α/a(s). Then by Lemma 2.3 there exists t1 ≥ t0 such that

∫∞

t

gm−1(σ(s), t)A(s)Δs <
1 − b1
n

K (3.6)

and min{δ(t), τ(t)} ≥ t0 for t ≥ t1, where n > 2(1 − b1)/(1 − b1 − a1) is a constant. Let

Ω =
{
x ∈ BCrd([t0,∞)

T
,R) :

n(1 − b1 − a1) − 2(1 − b1)
n

K ≤ x(t) ≤ K for t ≥ t0

}
. (3.7)

It is easy to verify that Ω is a bounded, convex, and closed subset of BCrd([t0,∞)
T
,R).

Now we define two operators S and T : Ω → BCrd([t0,∞)
T
,R) as follows:

(Sx)(t) = p(t∗)x(τ(t∗)),

(Tx)(t) =
(n − 1)(1 − b1)

n
K + (−1)m

∫∞

t∗
gm−1(σ(s), t∗)A(s, x)Δs,

(3.8)

where u∗ = max{u, t1} for any u ∈ [t0,∞)
T
and A(s, z) = [

∫∞
s f(θ, z(δ(θ)))Δθ]1/α/a(s) for

any z ∈ Ω. Now we show that S and T satisfy the conditions in Lemma 2.8.
(1)We will show that Sx + Ty ∈ Ω for any x, y ∈ Ω. In fact, for any x, y ∈ Ω and t ≥ t0,

x(t), y(t) ∈ [[n(1 − b1 − a1) − 2(1 − b1)]K/n,K],

(Sx)(t) +
(
Ty

)
(t) =

(n − 1)(1 − b1)
n

K + p(t∗)x(τ(t∗))

+ (−1)m
∫∞

t∗
gm−1(σ(s), t∗)A(s, x)Δs

≤ (n − 1)(1 − b1)
n

K + b1K +
1 − b1
n

K

= K,

(Sx)(t) +
(
Ty

)
(t) =

(n − 1)(1 − b1)
n

K + p(t∗)x(τ(t∗))

+ (−1)m
∫∞

t∗
gm−1(σ(s), t∗)A(s, x)Δs

≥ (n − 1)(1 − b1)
n

K − a1K − 1 − b1
n

K

=
n(1 − b1 − a1) − 2(1 − b1)

n
K,

(3.9)

which implies that Sx + Ty ∈ Ω for any x, y ∈ Ω.
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(2) We will show that S is a contraction mapping. Indeed, for any x, y ∈ Ω and t ≥ t0,
we have

∣∣(Sx)(t) − (
Sy

)
(t)

∣∣ =
∣∣p(t∗)x(τ(t∗)) − p(t∗)y(τ(t∗))

∣∣

≤ max{a1, b1}
∥∥x − y

∥∥.
(3.10)

Therefore, we have

∥∥Sx − Sy
∥∥ ≤ max{a1, b1}

∥∥x − y
∥∥, (3.11)

which implies that S is a contraction mapping.
(3)We will show that T is a completely continuous mapping.

(i) By the proof of (1), we see that [n(1 − b1 − a1) − 2(1 − b1)]K/n ≤ (Tx)(t) ≤ K for
t ∈ [t0,∞)

T
. That is, TΩ ⊂ Ω.

(ii) We consider the continuity of T . Let xn ∈ Ω and ‖xn − x‖ → 0 as n → ∞, then
x ∈ Ω and |xn(t) − x(t)| → 0 as n → ∞ for any t ∈ [t0,∞)

T
. Consequently, for any

s ∈ [t1,∞)
T
, we have

lim
n→∞

∣∣gm−1(σ(s), t1)[A(s, xn) −A(s, x)]
∣∣ = 0. (3.12)

Since

∣∣gm−1(σ(s), t1)[A(s, xn) −A(s, x)]
∣∣ ≤ 2gm−1(σ(s), t1)A(s) (3.13)

and, for any t ∈ [t0,∞)
T
,

|(Txn)(t) − (Tx)(t)| ≤
∫∞

t1

gm−1(σ(s), t1)|A(s, xn) −A(s, x)|Δs, (3.14)

we have

‖Txn − Tx‖ ≤
∫∞

t1

gm−1(σ(s), t1)|A(s, xn) −A(s, x)|Δs. (3.15)

By Chapter 5 in [4], we see that the Lebesgue dominated convergence theorem
holds for the integral on time scales. Then

lim
n→∞

‖Txn − Tx‖ = 0, (3.16)

which implies that T is continuous on Ω.
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(iii) We show that TΩ is uniformly Cauchy. In fact, for any ε > 0, take t2 > t1 so that

∫∞

t2

gm−1(σ(s), t2)A(s)Δs < ε. (3.17)

Then for any x ∈ Ω and u, v ∈ [t2,∞)
T
, we have

|(Tx)(u) − (Tx)(v)| < 2ε, (3.18)

which implies that TΩ is uniformly Cauchy.

(iv) We show that TΩ is equicontinuous on [t0, t2]T
for any t2 ∈ [t0,∞)

T
. Without

loss of generality, we assume t2 ≥ t1. For any ε > 0, choose δ = ε/(1 +∫∞
t0
gm−2(σ(s), t0)A(s)Δs), then when u, v ∈ [t0, t2] with |u − v| < δ, we have by

Lemma 2.1 that for any x ∈ Ω,

|(Tx)(u) − (Tx)(v)| =
∣∣∣∣

∫∞

u∗
gm−1(σ(s), u∗)A(s, x)Δs −

∫∞

v∗
gm−1(σ(s), v∗)A(s, x)Δs

∣∣∣∣

=
∣∣∣∣

∫∞

u∗
hm−1(u∗, σ(s))A(s, x)Δs −

∫∞

v∗
hm−1(v∗, σ(s))A(s, x)Δs

∣∣∣∣

=

∣∣∣∣∣

∫∞

u∗

[∫u∗

σ(s)
hm−2(θ, σ(s))A(s, x)Δθ

]

Δs

−
∫∞

v∗

[∫v∗

σ(s)
hm−2(θ, σ(s))A(s, x)Δθ

]

Δs

∣∣∣∣∣

=
∣∣∣∣

∫∞

u∗

[∫∞

θ

hm−2(θ, σ(s))A(s, x)Δs

]
Δθ

−
∫∞

v∗

[∫∞

θ

hm−2(θ, σ(s))A(s, x)Δs

]
Δθ

∣∣∣∣

=
∣∣∣∣

∫∞

u∗

[∫∞

θ

gm−2(σ(s), θ)A(s, x)Δs

]
Δθ

−
∫∞

v∗

[∫∞

θ

gm−2(σ(s), θ)A(s, x)Δs

]
Δθ

∣∣∣∣

=

∣∣∣∣∣

∫v∗

u∗

[∫∞

θ

gm−2(σ(s), θ)A(s, x)Δs

]
Δθ

∣∣∣∣∣

≤
∣∣∣∣∣

∫v∗

u∗

[∫∞

t0

gm−2(σ(s), t0)A(s, x)Δs

]

Δθ

∣∣∣∣∣

= |u∗ − v∗|
∫∞

t0

gm−2(σ(s), t0)A(s, x)Δs

≤ δ

∫∞

t0

gm−2(σ(s), t0)A(s)Δs < ε,

(3.19)

which implies that TΩ is equi-continuous on [t0, t2]T
for any t2 ∈ [t0,∞)

T
.
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By Lemma 2.7, we see that T is a completely continuous mapping. It follows from
Lemma 2.8 that there exists x ∈ Ω such that (U + S)x = x, which is the desired bounded
solution of (1.7)with lim inft→∞|x(t)| > 0. The proof is completed.

Theorem 3.2. Assume that (H1) and (H3) hold, and that τ has the inverse τ−1 ∈ C(T,T). Then
(1.7) has a nonoscillatory bounded solution x(t) with lim inft→∞|x(t)| > 0 if and only if there exists
some constant K/= 0 such that (3.1) holds.

Proof. The proof of sufficiency is similar to that of Theorem 3.1.
Necessity. Suppose that there exists some constant K > 0 such that

∫∞

t0

gm−1(σ(s), t0)A(s)Δs < ∞, (3.20)

where A(s) = [
∫∞
s f(θ,K)Δθ]1/α/a(s). Then by Lemma 2.3 there exists t1 ≥ t0 such that

∫∞

τ−1(t)
gm−1

(
σ(s), τ−1(t)

)
A(s)Δs <

b2
n
K, (3.21)

and min{δ(τ−1(t)), τ−1(t)} ≥ t0 for t ≥ t1, where n > 2b2/(b2 − 1) is a constant. Let

Ω =
{
x ∈ BCrd([t0,∞)

T
,R) :

(n − 2)b2 − n

a2n
K ≤ x(t) ≤ K for t ≥ t0

}
. (3.22)

It is easy to verify that Ω is a bounded, convex and closed subset of BCrd([t0,∞)
T
,R).

Now we define two operators S and T : Ω → BCrd([t0,∞)
T
,R) as follows:

(Sx)(t) =
x
(
τ−1(t∗)

)

p
(
τ−1(t∗)

) +
(n − 1)b2K
−np(τ−1(t∗))

(Tx)(t) =
1

p
(
τ−1(t∗)

) (−1)m−1
∫∞

τ−1(t∗)
gm−1

(
σ(s), τ−1(t∗)

)
A(s, x)Δs,

(3.23)

where u∗ = max{u, t1} for any u ∈ [t0,∞)
T
and A(s, z) = [

∫∞
s f(θ, z(δ(θ)))Δθ]1/α/a(s) for

any z ∈ Ω. Now we show that S and T satisfy the conditions in Lemma 2.8.
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We will show that Sx + Ty ∈ Ω for any x, y ∈ Ω. In fact, for any x, y ∈ Ω and t ≥ t0,
x(t), y(t) ∈ [[(n − 2)b2 − n]K/a2n,K],

(Sx)(t) +
(
Ty

)
(t) =

x
(
τ−1(t∗)

)

p
(
τ−1(t∗)

) +
1

−p(τ−1(t∗))
[
(n − 1)b2

n
K

+(−1)m
∫∞

τ−1(t∗)
gm−1

(
σ(s), τ−1(t∗)

)
A(s, x)Δs

]

≤ 1
b2

[
(n − 1)b2

n
K +

b2
n
K

]

= K,

(Sx)(t) +
(
Ty

)
(t) =

x
(
τ−1(t∗)

)

p
(
τ−1(t∗)

) +
1

−p(τ−1(t∗))
[
(n − 1)b2

n
K

+(−1)m
∫∞

τ−1(t∗)
gm−1

(
σ(s), τ−1(t∗)

)
A(s, x)Δs

]

≥ 1
a2

[
(n − 1)b2

n
K −K − b2

n
K

]

=
(n − 2)b2 − n

a2n
K,

(3.24)

and |(Tx)(t)| ≤ b2K/n, which implies that Sx + Ty ∈ Ω for any x, y ∈ Ω and TΩ is uniformly
bounded.

Now we show that TΩ is equicontinuous on [t0, t2]T
for any t2 ∈ [t0,∞)

T
. Without

loss of generality, we assume that t2 ≥ t1. Since 1/p(τ−1(t)), τ−1(t) are continuous on [t0, t2]T
,

so they are uniformly continuous on [t0, t2]T
. For any ε > 0, choose δ > 0 such that when

u, v ∈ [t0, t2]T
with |u − v| < δ, we have

∣∣∣∣∣
1

p
(
τ−1(u)

) − 1
p
(
τ−1(v)

)

∣∣∣∣∣
<

ε

1 +
∫∞
t0
gm−1(σ(s), t0)A(s)Δs

∣∣∣τ−1(u) − τ−1(v)
∣∣∣ <

ε

1 +
∫∞
t0
gm−2(σ(s), t0)A(s)Δs

.

(3.25)

Then, it follows from Lemma 2.1 that, for any x ∈ Ω,

|(Tx)(u) − (Tx)(v)| =
∣∣∣∣∣

1
p
(
τ−1(u∗)

)
∫∞

τ−1(u∗)
gm−1

(
σ(s), τ−1(u∗)

)
A(s, x)Δs

− 1
p
(
τ−1(v∗)

)
∫∞

τ−1(v∗)
gm−1

(
σ(s), τ−1(v∗)

)
A(s, x)Δs

∣∣∣∣∣
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≤
∣∣∣∣∣

[
1

p
(
τ−1(u∗)

) − 1
p
(
τ−1(v∗)

)

]∫∞

τ−1(u∗)
gm−1

(
σ(s), τ−1(u∗)

)
A(s, x)Δs

∣∣∣∣∣

+

∣∣∣∣∣
1

p
(
τ−1(v∗)

)

[∫∞

τ−1(u∗)
gm−1

(
σ(s), τ−1(u∗)

)
A(s, x)Δs

−
∫∞

τ−1(v∗)
gm−1

(
σ(s), τ−1(v∗)

)
A(s, x)Δs

]∣∣∣∣∣

=

∣∣∣∣∣

[
1

p
(
τ−1(u∗)

) − 1
p
(
τ−1(v∗)

)

]∫∞

τ−1(u∗)
gm−1

(
σ(s), τ−1(u∗)

)
A(s, x)Δs

∣∣∣∣∣

+

∣∣∣∣∣
1

p
(
τ−1(v∗)

)
∫ τ−1(v∗)

τ−1(u∗)

[∫∞

θ

gm−2(σ(s), θ)A(s, x)Δs

]
Δθ

∣∣∣∣∣

≤
∣∣∣∣∣

[
1

p
(
τ−1(u∗)

) − 1
p
(
τ−1(v∗)

)

]∫∞

t0

gm−1(σ(s), t0)A(s)Δs

∣∣∣∣∣

+

∣∣∣∣∣
1

p
(
τ−1(v∗)

)
∫ τ−1(v∗))

τ−1(u∗)

[∫∞

t0

gm−2(σ(s), t0)A(s)Δs

]

Δθ

∣∣∣∣∣

≤ ε +
∣∣∣τ−1(u∗) − τ−1(v∗)

∣∣∣
∫∞

t0

gm−2(σ(s), t0)A(s)Δs

< 2ε,

(3.26)

which implies that TΩ is equi-continuous on [t0, t2]T
for any t2 ∈ [t0,∞)

T
.

The rest of the proof is similar to that of Theorem 3.1. The proof is completed.

Theorem 3.3. Assume that (H1) and (H4) hold and that τ has the inverse τ−1 ∈ C(T,T). Then (1.7)
has a nonoscillatory bounded solution x(t) with lim inft→∞|x(t)| > 0 if and only if there exists some
constant K/= 0 such that (3.1) holds.

Proof. The proof of sufficiency is similar to that of Theorem 3.1.
Necessity. Suppose that there exists some constant K > 0 such that

∫∞

t0

gm−1(σ(s), t0)A(s)Δs < ∞, (3.27)

where A(s) = [
∫∞
s f(θ,K)Δθ]1/α/a(s). Then by Lemma 2.3 there exists t1 ≥ t0 such that

∫∞

τ−1(t)
gm−1

(
σ(s), τ−1(t)

)
A(s)Δs <

a3 − 1
n

K (3.28)
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and min{δ(τ−1(t)), τ−1(t)} ≥ t0 for t ≥ t1, where n > 2 is a constant. Let

Ω =
{
x ∈ BCrd([t0,∞)

T
,R) :

(n − 2)(a3 − 1)
n(b3 − 1)

K ≤ x(t) ≤ K for t ≥ t0

}
. (3.29)

It is easy to verify that Ω is a bounded, convex, and closed subset of BCrd([t0,∞)
T
,R).

Now we define two operators S and T : Ω → BCrd([t0,∞)
T
,R) as follows:

(Sx)(t) =
x
(
τ−1(t∗)

)

p
(
τ−1(t∗)

) +
(n − 1)(a3 − 1)K

np
(
τ−1(t∗)

) ,

(Tx)(t) =
1

p
(
τ−1(t∗)

) (−1)m−1
∫∞

τ−1(t∗)
gm−1

(
σ(s), τ−1(t∗)

)
A(s, x)Δs,

(3.30)

where u∗ = max{u, t1} for any u ∈ [t0,∞)
T
and A(s, z) = [

∫∞
s f(θ, z(δ(θ)))Δθ]1/α/a(s) for

any z ∈ Ω. Now we show that S and T satisfy the conditions in Lemma 2.8.
We will show that Sx + Ty ∈ Ω for any x, y ∈ Ω. In fact, for any x, y ∈ Ω and t ≥ t0,

x(t), y(t) ∈ [(n − 2)(a3 − 1)K/n(b3 − 1), K],

(Sx)(t) +
(
Ty

)
(t) =

x
(
τ−1(t∗)

)

p
(
τ−1(t∗)

) +
1

p
(
τ−1(t∗)

)

×
[
(n − 1)(a3 − 1)

n
K + (−1)m−1

∫∞

τ−1(t∗)
gm−1

(
σ(s), τ−1(t∗)

)
A(s, x)Δs

]

≤ 1
a3

[
(n − 1)(a3 − 1)

n
K +K +

a3 − 1
n

K

]

= K,

(Sx)(t) +
(
Ty

)
(t) =

x
(
τ−1(t∗)

)

p
(
τ−1(t∗)

) +
1

p
(
τ−1(t∗)

)

×
[
(n − 1)(a3 − 1)

n
K + (−1)m−1

∫∞

τ−1(t∗)
gm−1

(
σ(s), τ−1(t∗)

)
A(s, x)Δs

]

≥ 1
b3

[
(n − 1)(a3 − 1)

n
K +

(n − 2)(a3 − 1)K
n(b3 − 1)

− a3 − 1
n

K

]

=
(n − 2)(a3 − 1)K

n(b3 − 1)
(3.31)

and |(Tx)(t)| ≤ (a3 − 1)K/n, which implies that Sx + Ty ∈ Ω for any x, y ∈ Ω and TΩ
is uniformly bounded. The rest of the proof is similar to that of Theorem 3.2. The proof is
completed.

According to the proofs of Theorem 3.1, Theorem 3.2, and Theorem 3.3 in [23], we
have
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Lemma 3.4. Assume that (H1) holds. Suppose that one of the following holds:

(i) p(t) satisfies condition (H2),

(ii) p(t) satisfies condition (H3) and τ has the inverse τ−1 ∈ C(T,T),

(iii) p(t) satisfies condition (H4) and τ has the inverse τ−1 ∈ C(T,T).

If x(t) is a bounded nonoscillatory solution of (1.7), then lim inft→∞|x(t)| = 0 implies that
limt→∞x(t) = 0.

By Lemma 3.4, Theorem 3.1,Theorem 3.2 and Theorem 3.3, we have.

Corollary 3.5. Assume that (H1) holds. Suppose that one of the following holds:

(i) p(t) satisfies condition (H2),

(ii) p(t) satisfies condition (H3) and τ has the inverse τ−1 ∈ C(T,T),

(iii) p(t) satisfies condition (H4) and τ has the inverse τ−1 ∈ C(T,T).

Then every bounded solution of (1.7) is oscillation or converges to zero at infinity if and only if there
exists some constant K/= 0 such that

∫∞

t0

gm−1(σ(s), t0)
[

1
a(s)

∫∞

s

f(θ, |K|)Δθ

]1/α
Δs = ∞. (3.32)

Example 3.6. Let T = {qn : n ∈ Z} ∪ {0} with q > 1. Consider the following higher order
dynamic equation:

{
tα
[
(x(t)−pk(t)x(qt))Δ

m
]α}Δ

+
qgα

m−1
(
q2t, 0

)−gα
m−1

(
qt, 0

)

(
q−1)qt2gα

m−1
(
q2t, 0

)
gα
m−1

(
qt, 0

)x2r+1
(
qr+3t

)
= 0 for t ∈ [1,∞)

T
,

(3.33)

where m, r ∈ N, α is the quotient of odd positive integers, pk(t) = −2[(−1)kk2 + (−1)logqt]/5,,
where k = 1, 2, 3, a(t) = tα, τ(t) = qt, δ(t) = q3+r t and f(t, u) = (qgα

m−1(q
2t, 0) − gα

m−1(qt, 0)/(q −
1)qt2gα

m−1(q
2t, 0)gα

m−1(qt, 0))u
2r+1.

It is easy to verify that pk(t) satisfies condition (Hk+1) and τ−1 ∈ C(T,T). On the other
hand, we have

∫∞

1

[
1

a(t)

]1/α
Δt =

∫∞

1

[
1
tα

]1/α
Δt = ∞ (3.34)
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andfor any constant K > 0,

∫∞

1
gm−1(σ(s), 1)

[
1

a(s)

∫∞

s

f(θ,K)Δθ

]1/α
Δs

= K(2r+1)/α
∫∞

1
gm−1(σ(s), 1)

⎧
⎨

⎩
1
sα

∫∞

s

[
−1

θgα
m−1(σ(θ), 0)

]Δ
⎫
⎬

⎭

1/α

Δs

= K(2r+1)/α
∫∞

1
gm−1(σ(s), 1)

[
1
sα

1
sgα

m−1(σ(s), 0)

]1/α

Δs

= K(2r+1)/α
∫∞

1

1
s1+1/α

Δs

= K

2r + 1
α

q1/α
(
q − 1

)

q1/α − 1
< ∞.

(3.35)

That is, conditions (H1) and (3.1) hold. By Theorem 3.1, Theorem 3.2, and Theorem 3.3, we
see that (3.33) has a nonoscillatory bounded solution x(t) with lim inft→∞|x(t)| > 0.

Remark 3.7. Results of this paper can be extended to the case with several delays easily.
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