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The singular semilinear elliptic problem −Δu + k(x)u−γ = λup in Ω, u > 0 in Ω, u = 0 on ∂Ω, is
considered, where Ω is a bounded domain with smooth boundary in RN , k ∈ Cα

loc(Ω) ∩ C(Ω), and
γ, p, λ are three positive constants. Some existence or nonexistence results are obtained for solutions
of this problem by the sub-supersolution method.

1. Introduction and Main Results

In this paper, we study the existence or the nonexistence of solutions to the following singular
semilinear elliptic problem

−Δu + k(x)u−γ = λup, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(1.1)

where Ω ⊂ RN(N ≥ 1) is a bounded domain with C2+α boundary for some α ∈ (0, 1),
k ∈ Cα

loc(Ω) ∩ C(Ω), and γ, p, and λ are three nonnegative constants. This problem arises
in the study of non-Newtonian fluids, chemical heterogeneous catalysts, in the theory of heat
conduction in electrically conducting materials (see [1–7] and their references).

Many authors have considered this problem. For examples, when k(x) < 0 in Ω,
problem (1.1) was studied in [3, 8–11]; when k(x) > 0 in Ω, problem (1.1) was considered in
[12–14]. Particularly, when k(x) ≡ 1, it has been established in Zhang [14] that there exists
λ > 0 such that problem (1.1) has at least one solution in C2+α(Ω) ∩ C(Ω) for all λ > λ and
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has no solution in C2(Ω) ∩ C(Ω) if λ < λ. After that Shi and Yao in [13] have also obtained
the same results with k ∈ C2,α(Ω) and k(x) > 0 in Ω. Recently, Ghergu and Rădulescu in [12]
considered more general sublinear singular elliptic problem with k ∈ Cα(Ω).

In this paper, we consider the case that k ∈ Cα
loc(Ω) ∩ C(Ω), and k may have zeros in

Ω. The following main results are obtained by the sub-supersolution method with restriction
on the boundary in Cui [15].

Theorem 1.1. Suppose that k ∈ Cα
loc(Ω) ∩ C(Ω), k ≥ 0, and k /= 0. Assume that 0 < γ < 1 and

0 < p < 1, then there exists λ ∈ (0,∞) such that problem (1.1) has at least one solution uλ ∈
C2+α(Ω) ∩C(Ω) and u−γ

λ ∈ L1(Ω) for all λ > λ, and problem (1.1) has no solution in C2(Ω) ∩C(Ω)
if λ < λ. Moreover, problem (1.1) has a maximal solution vλ which is increasing with respect to λ for
all λ > λ.

Remark 1.2. Theorem 1.1 generalizes Theorem 1.2 in [13] in coefficient k(x) of the singular
term. Consequently, it also generalizes Theorem 1 in [14]. Moreover, there are functions k
satisfying our Theorem 1.1 and not satisfying Theorem 1.2 in [13]. For example, let

k(x) =

⎧
⎨

⎩

− 1
ln(|x − x0|/(2d)) , x ∈ Ω \ {x0},

0, x = x0,
(1.2)

where x0 ∈ ∂Ω, and

d = diam(Ω) Δ= max
{∣
∣x − y

∣
∣ | x, y ∈ Ω

}
. (1.3)

Certainly, this example does not satisfy Theorem 1.2 in [12] yet.

Theorem 1.3. Suppose that k ∈ Cα
loc(Ω) ∩ C(Ω) and k(x) > 0 in Ω. If γ ≥ 1, problem (1.1) has no

solution in C2(Ω) ∩ C(Ω) for all λ > 0 and p > 0.

Remark 1.4. Obviously, Theorem 1.3 is a generalization of Theorem 2 in [14]. There are also
functions k(x) satisfying our Theorem 1.3 and not satisfying Theorem 2 in [14] and Theorem
1.1 in [12]. For example, let

k(x) =

⎧
⎨

⎩

− 1
ln(|x − x0|/(2d)) + ε, x ∈ Ω \ {x0},

ε, x = x0,
(1.4)

where x0 ∈ ∂Ω, ε is any positive constant and d = diam(Ω) is the diameter of Ω.
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2. Proof of Theorems

Consider the more general semilinear elliptic problem

−Δu = f(x, u), in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(2.1)

where the function f(x, s) is locally Hölder continuous in Ω × (0,∞) and continuously
differentiable with respect to the variable s. A function u is called to be a subsolution of
problem (2.1) if u ∈ C2(Ω) ∩ C(Ω), and

−Δu ≤ f
(
x, u
)
, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(2.2)

A function u is called to be a supersolution of problem (2.1) if u ∈ C2(Ω) ∩ C(Ω), and

−Δu ≥ f(x, u), in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(2.3)

According to Lemma 3 in the study of Cui [15], we can easily have the following basic
existence of classical solution to problem (2.1).

Lemma 2.1. Let f ∈ Cα
loc(Ω × (0,∞)) be continuously differentiable with respect to the variable s.

Suppose that problem (2.1) has a supersolution u and a subsolution u such that

u(x) ≤ u(x), in Ω, (2.4)

then problem (2.1) has at least one solution u ∈ C2+α(Ω) ∩ C(Ω) satisfying

u(x) ≤ u(x) ≤ u(x), in Ω. (2.5)

Let λ1 be the first eigenvalue of the eigenvalue problem

−Δu = λu, in Ω,

u = 0, on ∂Ω,
(2.6)

and ϕ1 > 0 in Ω the corresponding eigenfunction. Then ϕ1 ∈ C2+α(Ω). Moreover one has the
following lemma.
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Lemma 2.2 (see [10]). One has

∫

Ω
ϕr
1 dx < ∞ (2.7)

if and only if r > −1.

Now we give the proof of our theorems.

Proof of Theorem 1.1. Let p ∈ (0, 1), and let u∗ denote the unique solution of

−Δu = up, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(2.8)

where u∗ belongs to C2(Ω) (see [16]). Then u = λ1/(1−p)u∗ is a solution of

−Δu = λup, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(2.9)

where 0 < p < 1 and λ > 0. Then fix λ > 0 and set

u = λ1/(1−p)u∗, (2.10)

thus we can easily obtain that u is a supersolution of problem (1.1).
Now, we want to find a subsolution of problem (1.1). Let

u = Mϕ
2/(1+γ)
1 , (2.11)

where M is a positive constant; now we will prove that u is a subsolution of problem (1.1).
By Hopf’s maximum principle in [17], there exist δ > 0 and ε0 > 0 such that

∣
∣∇ϕ1

∣
∣ ≥ δ, on Ω \Ω′,

ϕ1 ≥ δ, on Ω′,
(2.12)

where Ω′ = {x ∈ Ω | dist(x, ∂Ω) > ε0}. On Ω′, we choose M ≥ M1
Δ= ((‖k‖∞(1 +

γ))/λ1δ2)1/(1+γ), then we have

k(x)

Mγϕ
2γ/(1+γ)
1

≤ λ1M

1 + γ
ϕ
2/(1+γ)
1 , (2.13)
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where ‖k‖∞ = max{|k(x)| | x ∈ Ω} for k ∈ C(Ω). On Ω \ Ω′, we choose M ≥ M2
Δ=

(‖k‖∞(1 + γ)2/2(1 − γ)δ2)1/(1+γ), then one obtains

k(x)

Mγϕ
2γ/(1+γ)
1

≤ 2
(
1 − γ

)
M
∣
∣∇ϕ1

∣
∣2

(
1 + γ

)2
ϕ
2γ/(1+γ)
1

. (2.14)

Thus, we choose M ≥ max{M1,M2}, then fixing M, let λ > λ′ Δ= (3λ1M1−p)/(1 +
γ) ‖ϕ1‖2(1−p)/(1+γ)∞ , it follows from (2.13) and (2.14) that

−Δu + k(x)u−γ
λ = −MΔϕ

2/(1+γ)
1 +

k(x)

Mγϕ
2γ/(1+γ)
1

= −M
(

2
(
1 − γ

)

(
1 + γ

)2

∣
∣∇ϕ1

∣
∣2ϕ

−2γ/(1+γ)
1 +

2
1 + γ

ϕ
(1−γ)/(1+γ)
1 Δϕ1

)

+
k(x)

Mγϕ
2γ/(1+γ)
1

=
2λ1M
1 + γ

ϕ
2/(1+γ)
1 +

k(x)

Mγϕ
2γ/(1+γ)
1

− 2
(
1 − γ

)
M
∣
∣∇ϕ1

∣
∣2

(
1 + γ

)2
ϕ
2γ/(1+γ)
1

≤ 3λ1M
1 + γ

ϕ
2/(1+γ)
1

≤ λ
(
Mϕ

2/(1+γ)
1

)p

= λu
p

λ.

(2.15)

Thus we proved that u = Mϕ
2/(1+γ)
1 is a subsolution of problem (1.1) for all λ > λ′.

According to Lemma 4 in [14], there exists a positive constant C such that

ϕ1(x) ≤ Cu∗(x), in Ω. (2.16)

Set λ ≥ λ′′ Δ= (MC‖ϕ1‖(1−γ)/(1+γ)∞ )1−p, then we have

u = λ1/(1−p)u∗ ≥ u = Mϕ
2/(1+γ)
1 , in Ω. (2.17)

Thus we choose λ∗ = max{λ′, λ′′}; via Lemma 2.1, problem (1.1) has at least one solution
uλ ∈ C2+α(Ω) ∩ C(Ω) and satisfying

u(x) ≤ uλ(x) ≤ u(x), in Ω, (2.18)

for all λ ≥ λ∗.
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Since uλ ≥ Mϕ
2/(1+γ)
1 in Ω for all λ ≥ λ∗ and −2γ/(1 + γ) > −1, according to Lemma 2.2

one has

∫

Ω
u
−γ
λ (x)dx ≤ 1

Mγ

∫

Ω
ϕ
−2γ/(1+γ)
1 (x)dx < +∞. (2.19)

So we obtain u
−γ
λ

∈ L1(Ω).
Let Ωj = {x ∈ Ω | dist(x, ∂Ω) > r/2j}, j = 1, 2, 3, . . . , and let uj be the unique solution

of

−Δu + k(x)u−γ
j−1 = λu

p

j−1, in Ωj ,

u = uj−1, on Ω \Ωj ,
(2.20)

for j = 1, 2, 3, . . ., and with u0 = u = λ1/(1−p)u∗, where

r = max
x∈Ω

min
y∈∂Ω

∣
∣x − y

∣
∣. (2.21)

We claim that uj is nonincreasing with respect to j in Ω for all j ∈ N. Indeed, since u is a
supersolution of problem (1.1) for all λ > 0, then we have

−Δ(u0 − u1) = −Δu0 + Δu1

= −Δu0 + k(x)u−γ
0 − λu

p

0

= −Δu + k(x)u−γ
λ

− λu
p

λ

> 0,

(2.22)

for all x ∈ Ω1. Since u1 = u0 in Ω \Ω1, so by the maximum principle, one has u0 ≥ u1 in Ω. So
when j = 0 our claim is true. We assume that our claim is true when j = n; that is, un ≤ un−1
in Ω. Then we obtain

−Δ(un − un+1) = −Δun + Δun+1

= λ
(
u
p

n−1 − u
p
n

)
+ k(x)

(
u
−γ
n − u

−γ
n−1
)

> 0,

(2.23)

for all x ∈ Ωn+1. Since un = un+1 in Ω \Ωn+1, so by the maximum principle, one has un ≥ un+1

in Ω. Thus by the induction, one obtains

uj+1 ≤ uj, in Ω, (2.24)
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for all j ∈ N. Then by the monotonicity of uj , we have

−Δuj = λu
p

j−1 − k(x)u−γ
j−1

≥ λu
p

j − k(x)u−γ
j ,

(2.25)

for all x ∈ Ωj and j ∈ N+. According to the definitions of uj and u0, we obtain that uj is a
supersolution of problem (1.1) for all j ∈ N+. Let uλ be a classical solution of problem (1.1),
thus one has

uλ(x) ≤ uj+1(x) ≤ uj(x) ≤ u0(x), in Ω. (2.26)

Assume that vλ(x) = limj→∞uj(x) for all x ∈ Ω, then by standard elliptic arguments (see
[17]) it follows that vλ is a solution of problem (1.1), and vλ ≥ uλ in Ω for any uλ. Therefore,
vλ is the maximal solution of problem (1.1). According to the above arguments, problem (1.1)
has a maximal solution for λ ≥ λ∗.

To complete the proof of Theorem 1.1, setting

σ =
{
λ > 0 | problem (1.1) has at least one solution uλ

}
,

λ = inf σ,
(2.27)

then [λ∗,+∞) ⊂ σ, λ ≤ λ∗. It suffices to prove that if λ0 ∈ σ, then [λ0,+∞) ⊂ σ; that is, assume
that λ > λ0, then problem (1.1) has at least one solution. Let uλ0 be a solution of problem (1.1)
corresponding to λ0, then uλ0 is a subsolution of problem (1.1) with every fixed λ > λ0. Since
u = λ1/(1−p)u∗ is a supersolution of problem (1.1) for any λ > 0, then one has

λ1/(1−p)u∗ ≥ λ
1/(1−p)
0 u∗ ≥ uλ0 , in Ω, (2.28)

for all λ > λ0. According to Lemma 2.1, problem (1.1) has at least one solution uλ ∈ C2+α(Ω)∩
C(Ω) for all λ > λ0. Moreover,

uλ0(x) ≤ uλ(x) ≤ u(x), in Ω. (2.29)

Consequently, the maximal solution vλ of problem (1.1) is increasing with respect to λ for all
λ > λ. So the proof of Theorem 1.1 is completed.

Proof of Theorem 1.3. Suppose to the contrary that there exists λ > 0 such that problem (1.1)
has one solution uλ ∈ C2(Ω) ∩ C(Ω). Let e be the unique solution of

−Δu = 1, in Ω,

u = 0, on ∂Ω,
(2.30)
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e ∈ C2+α(Ω). By the maximum principle, e > 0 in Ω. We claim that for any solution uλ of
problem (1.1), there exists a constant M = M(λ) > 0 such that

Me(x) > uλ(x), in Ω. (2.31)

Indeed, let M = λ‖uλ‖p∞ + 1, then one obtains

−Δ(Me − uλ) = −MΔe + Δuλ

= λ‖uλ‖p∞ + 1 − λu
p

λ(x) + k(x)u−γ
λ

> 0,

(2.32)

for all x ∈ Ω. Since (Me − uλ)|∂Ω = 0, by the maximum principle we have

Me(x) > uλ(x), in Ω. (2.33)

According to Lemma 4 in [14], there exists a positive constant C such that

e(x) ≤ Cϕ1(x), in Ω. (2.34)

Since γ ≥ 1, from Lemma 2.2, it follows that

∫

Ω
u
−γ
λ (x)dx ≥ 1

(CM)γ

∫

Ω
ϕ
−γ
1 (x)dx = +∞. (2.35)

Thus we obtain

∫

Ω
u
−γ
λ
dx = +∞. (2.36)

Set

Ωi =
{
x ∈ Ω | dist(x, ∂Ω) >

r

2i
, i ∈ N+

}
, (2.37)

and Ω =
⋃∞

i=1 Ωi, then Ωi ⊂ Ω and uλ ∈ C2(Ωi), satisfying

−Δuλ + k(x)u−γ
λ

= λu
p

λ
, (2.38)

for all x ∈ Ωi and i ∈ N+. Consequently, integrating (2.38) we have

−
∫

Ωi

Δuλdx +
∫

Ωi

k(x)u−γ
λ
dx = λ

∫

Ωi

u
p

λ
dx ≤ λ

∫

Ω
u
p

λ
dx, (2.39)
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noting that

∫

Ωi

Δuλdx =
∫

∂Ωi

∂uλ

∂n
ds, (2.40)

where n denotes the outward normal to ∂Ωi. From (2.39) and (2.40), letting i → ∞, one has

∫

Ω
k(x)u−γ

λ
dx −

∫

∂Ω

∂uλ

∂n
ds ≤ λ‖uλ‖p∞|Ω|, (2.41)

where |Ω| denotes the Lebesgue measure of Ω. According to (2.36) and k(x) > 0 in Ω, one
obtains

∫

∂Ω

∂uλ

∂n
ds = +∞. (2.42)

But this is impossible, by Hopf’s maximum principle, we have

∂uλ

∂n
< 0, (2.43)

for all x ∈ ∂Ω, where n denotes the outward normal to ∂Ω at x. Therefore Theorem 1.3 is
true.
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