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The fixed point theorem of cone expansion and compression of norm type for a strict set
contraction operator is generalized by replacing the norms with a convex functional satisfying
certain conditions. We then show how to apply our theorem to prove the existence of a positive
solution to a second-order differential equation with integral boundary conditions in an ordered
Banach space. An example is worked out to demonstrate the main results.

1. Introduction

The theory of integral and differential equations in Banach spaces, as two new branches of
nonlinear functional analysis, has developed for nomore than forty years, but it has extensive
applications in such domains as the critical point theory, the theory of partial differential
equations, and eigenvalue problems. For an introduction of the basic theory of integral and
differential equations in Banach spaces, see Guo et al. [1], Guo and Lakshmikantham [2],
Lakshmikantham and Leela [3], and Demling [4], and the references therein. In recent years,
the theory of integral and differential equations in Banach spaces has become an important
area of investigation in both pure and applied mathematics (see, for instance, [5–18] and
references cited therein).

On the other hand, the theory of fixed point is an important tool to study various
boundary value problems of ordinary differential equations, difference differential equations,
and dynamic equations on time scales. An overview of such results can be found in
Guo et al. [1], in Guo and Lakshmikantham [2], and in Demling [4]. The Krasnoselskii’s fixed
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point theorem concerning cone compression and expansion of norm type is worth mentioing
here as follows (see [1, 2, 4]).

Theorem 1.1. Let Ω1 and Ω2 be two bounded open sets in Banach space E, such that 0 ∈ Ω1 and
Ω1 ⊂ Ω2. Let P be a cone in E and let operator A : P ∩ (Ω2 \ Ω1) → P be completely continuous.
Suppose that one of the following two conditions is satisfied:

(a) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1, and ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2;

(b) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2.

Then, A has at least one fixed point in P ∩ (Ω2 \Ω1).

To generalize Theorem 1.1, one may consider the weakening of one or more of the
following hypotheses: (i) the operator A, (ii) the norm.

In [19], Sun generalized Theorem 1.1 for completely continuous operator to strict set
contraction operator and obtain the following results.

Theorem 1.2. Let K be a cone of Banach space E and Kr = {x ∈ K : ‖x‖ ≤ r}, Kr,R = {x ∈ K, r ≤
‖x‖ ≤ R} with R > r > 0. Suppose that A : KR → K is a strict set contraction such that one of the
following two conditions is satisfied:

(a) ‖Ax‖ ≥ ‖x‖, ∀x ∈ K, ‖x‖ = r; ‖Ax‖ ≤ ‖x‖, ∀x ∈ K, ‖x‖ = R;

(b) ‖Ax‖ ≤ ‖x‖, ∀x ∈ K, ‖x‖ = r; ‖Ax‖ ≥ ‖x‖, ∀x ∈ K, ‖x‖ = R.

Then, A has a fixed point x ∈ Kr,R.

Recently, in [20], Anderson and Avery generalized the fixed point theorem of cone
expansion and compression of norm type by replacing the norms with two functionals
satisfying certain conditions to produce a fixed point theorem of cone expansion and
compression of functional type. In [21], Guo and Ge extended Krasnoselskii’s fixed point
theorem by choosing two functionals that satisfy certain conditions which are used in place of
the norm. In [22], Zhang and Sun generalized the classical Krasnoselskii’s fixed point theorem
concerning cone compression and expansion of norm type. The interesting point is that they
took place norm by convex functional.

In the past few years, we also notice a class of boundary value problems with integral
boundary conditions appeared in heat conduction, chemical engineering, undergroundwater
flow, thermo elasticity, and plasma physics. Such problems include two, three, multi point
and nonlocal boundary value problems as special cases and attracted the attention of
Gallardo [23], Karakostas and Tsamatos [24], Lomtatidze and Malaguti [25], and others
included in the references therein. On the other hand, we refer the reader to papers by Ahmad
et al. [26], Feng et al. [27], Boucherif [28], Infante and Webb [29], Kang et al. [30], Ma [31],
Webb [32], Webb and Infante [33, 34], Yang [35], Zhang et al. [36–38], and Chang et al.
[39] for other recent results on nonlinear boundary value problems with integral boundary
conditions.

Motivated by works mentioned above, we intend in this paper to generalize the fixed
point theorem of cone expansion and compression of norm type for strict set contraction
operator. The generalization allows the user to choose a convex functional that satisfies
certain conditions which are used in place of the norm. In applications to boundary value
problems, the functional will typically be maximum of the function over a specific interval.
The flexibility of using functionals instead of norms allows the theorem to be used in a
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wider variety of situations. Our results either improve or generalize the corresponding results
due to [19–22] and many of others. As an application of our main results, we consider the
existence of positive solutions for second-order differential equations with integral boundary
conditions in an ordered Banach space. On the other hand, our conditions are weaker than
those of [22].

The organization of this paper is as follows. We will introduce some lemmas and
notations in the rest of this section. In Section 2, the main results will be stated and proved.
In Section 3, as an application of our main results, the existence of positive solutions for a
second-order boundary value problem with integral boundary conditions in ordered Banach
spaces is considered. Finally, in Section 4, one example is also included to illustrate the main
results.

Basic facts about ordered Banach space E can be found in [1–4]. Here we just recall
a few of them. The cone P in E induces a partial order on E, that is, x ≤ y if and only if
y − x ∈ P . P is said to be normal if there exists a positive constant N such that θ ≤ x ≤ y
implies ‖x‖ ≤ N‖y‖. Without loss of generality, suppose, in the present paper, the normal
constant N = 1.

For a bounded set V in Banach space E, we denote α(V ) the Kuratowski measure of
noncompactness (see [1–4], for further understanding). The operator A : D → E(D ⊂ E) is
said to be a k-set contraction ifA : D → E is continuous and bounded and there is a constant
k ≥ 0 such that α(A(S)) ≤ kα(S) for any bounded S ⊂ D; a k-set contraction with k < 1 is
called a strict set contraction.

In the following, denote the Kuratowski’s measure of noncompactness by α(·).
For the application in the sequel, we first state the following definition and lemmas

which can be found in [1], and some notation.

Definition 1.3. Let S be a bounded set of a real Banach space E. Let α(S) = inf{δ > 0 : S be
expressed as the union of a finite number of sets such that the diameter of each set does not
exceed δ, that is, S =

⋃m
i=1 Si with diam(Si) ≤ δ, i = 1, 2, . . . , m}. Clearly, 0 ≤ α(S) < ∞. α(S) is

called the Kuratowski’s measure of noncompactness.

Definition 1.4. Let P be a cone of a real Banach space E. If P ∗ = {Ψ ∈ E∗ | Ψ(x) ≥ 0, ∀x ∈ P},
then P ∗ is a dual cone of cone P .

Definition 1.5. Let P be a cone of real Banach space E. ρ : P → R is said to be a convex
functional on P if ρ(tx + (1 − t)y) ≤ tρ(x) + (1 − t)ρ(y) for all x, y ∈ P and t ∈ [0, 1].

Definition 1.6. A subset X ⊂ E is said to be a retract of E if there exists a continuous mapping
r : E → X satisfying r(x) = x, x ∈ X.

Lemma 1.7. Let D ⊂ E, D be a bounded set and f uniformly continuous and bounded from J × S
into E; then

α
(
f(J × S)

)
= max

t∈J
α
(
f(t, S)

)
, ∀S ⊂ D. (1.1)

2. Main Results

Lemma 2.1 (see [22]). Let P be a cone in a real Banach space E. If ρ : P → [0,∞) is a uniformly
continuous convex functional with ρ(θ) = 0 and ρ(x) > 0 for x /= θ, then ∀r > 0, Dr = {x ∈ P :
ρ(x) ≥ r} is a retract of E.
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Lemma 2.2. Let E be a real Banach space, ‖ · ‖ the norm in E, P a cone in E, andΩ = {x ∈ E : ‖x‖ <

R}, where R is a positive real number. Suppose that A : P ∩Ω → P is a k-set contraction with k < 1
and ρ : P → [0,∞) is a uniformly continuous convex functional with ρ(θ) = 0, ρ(x) > 0, ∀x /= θ
and ρ(x) ≤ ‖x‖. If

(i) infx∈P∩∂Ωρ(x) > 0, and there exists δ > 0 such that R/infx∈P∩∂Ωρ(x) ≤ 1 + δ/k and
ρ(Ax) ≥ (k + δ)ρ(x), ∀x ∈ P ∩ ∂Ω;

(ii) Ax/=μx, μ ∈ (0, 1], ∀x ∈ P ∩ ∂Ω,

hold, then the fixed point index i(A,P ∩Ω, P) = 0.

Proof. Without loss of generality, we suppose k + δ < 1 (If k + δ > 1, then let N = k + δ.
The proof is the same as the following process). Let N = 1/(k + δ), then NA is a strict set
contraction. Considering ht(x) = tAx + (1 − t)NAx, t ∈ [0, 1], x ∈ P ∩ ∂Ω. If there exists
t0 ∈ [0, 1], x0 ∈ P ∩ ∂Ω such that x0 = t0Ax0 + (1− t0)NAx0, thenAx0 = (1/(t0 +N(1− t0)))x0,
which contradicts with (ii). Then by the homotopy invariance property of fixed point index,
we have i(NA,P ∩Ω, P) = i(A,P ∩Ω, P).

Let r = infx∈P∩∂Ωρ(x). Define Dr = {x ∈ P | ρ(x) ≥ r}. It follows from θ /∈Dr that d �
infx∈Dr‖x‖ > 0. From the fact that ρ(x) ≤ ‖x‖, we have r ≤ d ≤ R. In fact, since (P ∩ ∂)Ω ⊂ Dr,
we have d ≤ R. On the other hand, for ∀x ∈ Dr, ρ(x) = r, combining this with ρ(x) ≤ ‖x‖,
we have r ≤ ‖x‖, ∀x ∈ Dr, then r ≤ infx∈Dr‖x‖ = d. Let M = R/r, then by (i) we obtain
Mk/(k+δ) < 1 andMd > supx∈P∩Ω‖x‖, andMDr∩(P∩Ω) = ∅, whereMDr = {Mx | x ∈ Dr}.

Let H(t, x) = (1 − t)NAx + tMNAx, ∀(t, x) ∈ [0, 1] × P ∩Ω. Then, we have

α(H(t, S)) ≤ (1 − t)α(NA(S)) + tα(MNA(S))

≤ (1 − t)
k

k + δ
α(S) + t

Mk

k + δ
α(S)

<
Mk

k + δ
α(S), ∀S ⊂ P ∩Ω,

(2.1)

and then we obtain that H(t, ·) : P ∩ Ω → P is the strict set contraction. In addition, it is
obvious that H(t, x) is uniformly continuous about t for all x ∈ P ∩Ω.

If there exists x1 ∈ P ∩ ∂Ω, t1 ∈ [0, 1] such that (1 − t1)NAx1 + t1MNAx1 = x1, then
Ax1 = N(1 − t1 + t1M)−1x1, which contradicts with (ii). Thus by the homotopy invariance
property of fixed point index, we have i(MNA,P ∩Ω, P) = i(NA,P ∩Ω, P).

Since Dr is a retract of E by Lemma 2.1, there exists a retraction r : E → Dr satisfying
r(x) = x, x ∈ Dr. Let A1 = NA, A1 = r ◦ A1, then A1 is strict set contraction. From (i) and
the definition of ρ, we have

ρ(A1x) = ρ(NAx) ≥ Nρ(Ax) ≥ ρ(x) ≥ r, ∀x ∈ P ∩ ∂Ω. (2.2)

Therefore,A1(∂Ω) ⊂ Dr , that is,A1x = A1x, ∀x ∈ P ∩∂Ω. Then i(MA1, P ∩Ω, P) = i(MA1, P ∩
Ω, P).

If i(A1, P ∩ Ω, P)/= 0, then i(MA1, P ∩ Ω, P)/= 0, which implies that MA1 has a fixed
point x∗ in P ∩Ω. Thus x∗ = MA1x

∗ ∈ MDr. It is a paradox. The proof is complete.
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Lemma 2.3 (see [2]). Let P be a cone and Ω a bounded open set in E with θ ∈ Ω. Suppose that
A : P ∩Ω → P is condensing and

Ax/=μx, ∀x ∈ P ∩ ∂Ω, μ ≥ 1. (2.3)

Then i(A,P ∩Ω, P) = 1.

Lemma 2.4. Let P be a cone and Ω a bounded open set in E. Suppose that A : P ∩ Ω → P is a
k-set contraction with k < 1 and ρ : P → [0,∞) is a uniformly continuous convex functional with
ρ(θ) = 0 and ρ(x) > 0 for x /= θ. If ρ(Ax) ≤ ρ(x) andAx/=x for x ∈ P∩∂Ω, then i(A,P∩Ω, P) = 1.

Proof. If there exist x1 ∈ P ∩ ∂Ω and μ1 ≥ 1 such that Ax1 = μ1x1, then μ1 > 1. Therefore,

ρ(x1) = ρ

(
1
μ1

Ax1

)

≤ 1
μ1

ρ(Ax1) ≤
1
μ1

ρ(x1) < ρ(x1). (2.4)

It is a paradox. From Lemma 2.3, it follows that i(A,P ∩Ω, P) = 1. The proof is complete.

Theorem 2.5. LetΩ1 be a bounded open set in E such that θ ∈ Ω1, andΩ2 = {x ∈ E | ‖x‖ < R} and
Ω1 ⊂ Ω2. Suppose thatA : P ∩ (Ω2 \Ω1) → P is a k-set contraction with k < 1 and ρ : P → [0,∞)
is a uniformly continuous convex functional with ρ(θ) = 0 and ρ(x) > 0, ∀x /= θ and ρ(x) ≤ ‖x‖. If

(a) ρ(Ax) ≤ ρ(x), ∀x ∈ P ∩ ∂Ω1;

(b) infx∈P∩∂Ω2ρ(x) > 0, and there exists δ > 0 such that R/infx∈P∩∂Ω2ρ(x) ≤ 1 + δ/k and
ρ(Ax) ≥ (k + δ)ρ(x), and Ax/=μx, μ ∈ (0, 1], ∀x ∈ P ∩ ∂Ω2

hold, then A has at least one fixed point in P ∩ (Ω2 \Ω1).

Proof. It is easy to obtain the results by Lemmas 2.2 and 2.4. So we omit it.

Theorem 2.6. Let Ω1 = {x ∈ E | ‖x‖ < R} and Ω2 a bounded open set in E such that Ω1 ⊂ Ω2.

Suppose that A : P ∩ (Ω2 \ Ω1) → P is a k-set contraction with k < 1, and ρ : P → [0,∞) is a
uniformly continuous convex functional with ρ(θ) = 0 and ρ(x) > 0, ∀x /= θ and ρ(x) ≤ ‖x‖. If

(a) infx∈P∩∂Ω1ρ(x) > 0, and there exists δ > 0 such that R/infx∈P∩∂Ω1ρ(x) ≤ 1 + δ/k and
ρ(Ax) ≥ (k + δ)ρ(x), and Ax/=μx, μ ∈ (0, 1], ∀x ∈ P ∩ ∂Ω1;

(b) ρ(Ax) ≤ ρ(x), ∀x ∈ P ∩ ∂Ω2

are satisfied, then A has at least one fixed point in P ∩ (Ω2 \Ω1).

Proof. It is easy to obtain the results by Lemmas 2.2 and 2.4. So we omit it.

Remark 2.7. If we let k = 0, then A is completely continuous. Comparing with Corollary 2.1
of [22], our conditions are weaker.
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Corollary 2.8. Let Ω1 be a bounded open set in E such that θ ∈ Ω1, Ω2 = {x ∈ E | ‖x‖ < R}, and
Ω1 ⊂ Ω2. Suppose thatA : P ∩ (Ω2 \Ω1) → P is a k-set contraction with k < 1 and ρ : P → [0,∞)
is a uniformly continuous convex functional with ρ(θ) = 0 and ρ(x) > 0, ∀x /= θ and ρ(x) ≤ ‖x‖. If

(a) ρ(Ax) ≤ ρ(x), ∀x ∈ P ∩ ∂Ω1;

(b) infx∈P∩∂Ω2ρ(x) > 0 with R/infx∈P∩∂Ω2ρ(x) ≤ 1/k, ρ(Ax) ≥ ρ(x) and Ax/=μx, μ ∈
(0, 1), ∀x ∈ P ∩ ∂Ω2

hold, then A has at least one fixed point in P ∩ (Ω2 \Ω1).

Proof. It follows by taking k + δ = 1.

Corollary 2.9. Let Ω1 = {x ∈ E | ‖x‖ < R} and Ω2 a bounded open set in E such that Ω1 ⊂ Ω2.

Suppose that A : P ∩ (Ω2 \ Ω1) → P is a k-set contraction with k < 1 and ρ : P → [0,∞) is a
uniformly continuous convex functional with ρ(θ) = 0 and ρ(x) > 0, ∀x /= θ and ρ(x) ≤ ‖x‖. If

(a) infx∈P∩∂Ω1ρ(x) > 0 with R/infx∈P∩∂Ω1ρ(x) ≤ 1/k, ρ(Ax) ≥ ρ(x), and Ax/=μx, μ ∈
(0, 1], ∀x ∈ P ∩ ∂Ω1;

(b) ρ(Ax) ≤ ρ(x), ∀x ∈ P ∩ ∂Ω2

hold, then A has at least one fixed point in P ∩ (Ω2 \Ω1).

Proof. It follows by taking k + δ = 1.

3. Applications

Throughout the remainder of this paper, we apply the above results to a second-order
differential equation in Banach spaces:

x′′ + f(t, x) = θ, 0 < t < 1, (3.1)

subject to the following integral boundary conditions:

x(0) =
∫1

0
g(t)x(t)dt, x(1) = θ, (3.2)

where f ∈ C([0, 1] × P, P), θ is the zero element of E, and g ∈ L1[0, 1] is nonnegative.
We consider problem (3.1)-(3.2) inC(J, E), in which J = [0, 1]. Evidently, (C(J, E), ‖·‖c)

is a Banach space with norm ‖x‖c = maxt∈J‖x(t)‖ for x ∈ C(J, E).
To establish the existence of positive solutions in C(J, E) of (3.1)-(3.2), let us list the

following assumptions.
(H) f ∈ C(J×P, P), and for any l > 0, f is uniformly continuous on J×(P ∩Tl). Further

suppose that g ∈ L1[0, 1] is nonnegative, σ ∈ [0, 1), and there exist nonnegative constants ηl
with

1
2
γηl < 1 (3.3)
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such that

α
(
f(t, S)

)
≤ ηlα(S), t ∈ J, S ⊂ P ∩ Tl, (3.4)

where Tl = {x ∈ E : ‖x‖ ≤ l}, γ = (1 +
∫1
0 sg(s)ds)/(1 − σ), and σ =

∫1
0 (1 − s)g(s)ds.

It is easy to see that the problem (3.1)-(3.2) has a solution x = x(t) if and only if x is a
solution of the operator equation

(Tx)(t) =
∫1

0
H(t, s)f(s, x(s))ds, (3.5)

where

H(t, s) = G(t, s) +
1 − t

1 − σ

∫1

0
G(s, τ)g(τ)dτ, (3.6)

G(t, s) =

⎧
⎨

⎩

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.
(3.7)

From (3.6) and (3.7), we can prove that H(t, s), G(t, s) have the following properties.

Proposition 3.1. Assume that (H) holds. Then for t, s ∈ [0, 1] we have

H(t, s) ≥ 0, G(t, s) ≥ 0. (3.8)

Proposition 3.2. For t, s ∈ [0, 1], we have

e(t)e(s) ≤ G(t, s) ≤ G(t, t) = t(1 − t) = e(t) ≤ e = max
t∈[0,1]

e(t) =
1
4
. (3.9)

Proposition 3.3. Let δ ∈ (0, 1/2), Jδ = [δ, 1 − δ]. Then for all t ∈ Jδ, s, u ∈ [0, 1], we have

G(t, s) ≥ δG(u, s). (3.10)

Proposition 3.4. Assume that (H) holds. Then for t, s ∈ [0, 1], we have

ρe(t)e(s) ≤ H(t, s) ≤ γt(1 − t) = γe(t), (3.11)
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where γ is defined in (H), and

ρ =

∫1
0 e(τ)g(τ)dτ

1 − σ
. (3.12)

Proof. By (3.6) and (3.9), we have

H(t, s) = G(t, s) +
1 − t

1 − σ

∫1

0
G(s, τ)g(τ)dτ

≥ 1 − t

1 − σ

∫1

0
G(s, τ)g(τ)dτ

≥
∫1
0 G(s, τ)g(τ)dτ

1 − σ
t(1 − t)

≥
∫1
0 e(τ)g(τ)dτ

1 − σ
t(1 − t)s(1 − s)

= ρe(t)e(s), t ∈ [0, 1].

(3.13)

On the other hand, noticing G(t, s) ≤ s(1 − s), we obtain

H(t, s) = G(t, s) +
1 − t

1 − σ

∫1

0
G(s, τ)g(τ)dτ

≤ s(1 − s) +
1 − t

1 − σ

∫1

0
s(1 − s)g(τ)dτ

≤ s(1 − s)

[

1 +
1

1 − σ

∫1

0
g(τ)dτ

]

≤ s(1 − s)
1 +

∫1
0 sg(s)ds
1 − σ

= γe(s), t ∈ [0, 1].

(3.14)

Proposition 3.5. Assume that (H) holds. Then for all t ∈ Jδ, s, u ∈ [0, 1], we have

H(t, s) ≥ δH(u, s). (3.15)
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Proof. By (3.10), we have

H(t, s) = G(t, s) +
1 − t

1 − σ

∫1

0
G(s, τ)g(τ)dτ

≥ δG(u, s) +
δ

1 − σ

∫1

0
G(s, τ)g(τ)dτ

≥ δG(u, s) +
δ(1 − u)
1 − σ

∫1

0
G(s, τ)g(τ)dτ

= δH(u, s), s, u ∈ [0, 1].

(3.16)

We construct a cone K by

K =
{
x ∈ Q : x(t) ≥ δx(s), t ∈ Jδ, s ∈ [0, 1]

}
, (3.17)

where

Q = {x ∈ C(J, E) : x(t) ≥ θ, t ∈ J}. (3.18)

It is easy to see that K is a cone of C(J, E).
We will make use of the following lemmas.

Lemma 3.6. Suppose that (H) holds. Then for each l > 0, T is strict set contraction on Q ∩ Bl,
that is, there exists a constant 0 ≤ kl < 1 such that α(T(S)) ≤ klα(S) for any S ⊂ Q ∩ Bl, where
Bl = {x ∈ C[J, E], ‖x‖c ≤ l}.

Proof. By (H), we know that f is uniformly continuous on J × (P ∩ Tl). Hence, f is bounded
on J × (P ∩ Tl). This together with (3.4) and Lemma 1.7 implies that

α
(
f(J × S)

)
= max

t∈J
α
(
f(t, S)

)
≤ ηlα(S), for S ⊂ Q ∩ Bl. (3.19)

From f being uniformly continuous and bounded on S ⊂ Q ∩ Bl, we can obtain that T is
continuous and bounded from Q ∩ Bl into Q.

On the other hand, it is clear that 0 ≤ H(t, s) ≤ (1/4)γ and using a similar method as
in the proof of Lemma 2 in [40], we can get that

α(T(S)) ≤ 2
1
4
γηlα(S). (3.20)

Therefore,

α(T(S)) ≤ klα(S), S ⊂ Q ∩ Bl, (3.21)

where kl = (1/2)γηl, 0 ≤ kl < 1. The proof is complete.
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Lemma 3.7. Suppose that (H) holds. Then T(K) ⊂ K and T : K → K is a strict set contraction.

Proof. From (3.5) and (3.15), we obtain

min
t∈Jδ

(Tx)(t) = min
t∈Jδ

∫1

0
H(t, s)f(s, x(s))ds

≥ δ

∫1

0
H(u, s)f(s, x(s))ds

≥ δ(Tx)(u), u ∈ J.

(3.22)

Therefore, T(x) ∈ K, that is, T(K) ⊂ K.
Next by Lemma 3.6, one can prove that T : K → K is a strict set contraction. So it is

omitted.

Let

Δ =
∫1−δ

δ

H

(
1
2
, s

)

ds. (3.23)

Theorem 3.8. Assume that (H) holds and P is normal. If there exist a, b with 0 < a < b such

that Ψ(f(t, x)) ≥ Δ−1a for t ∈ Jδ, ‖x‖ ≤ a, and ‖f(t, x)‖ ≤ 6γ−1b for t ∈ Jδ, ‖x‖ ≤ δ
−1
b, where

Ψ ∈ P ∗, ‖Ψ‖ = 1, then problem (3.1)-(3.2) has at least one positive solution.

Proof. Let T be the cone preserving, strict set contraction that was defined by (3.5).
Let ρ(x) = supt∈Jδ

‖x(t)‖. Then ρ : K → [0,+∞) is a uniformly continuous convex
functional with ρ(θ) = 0 and ρ(x) > 0 for x /= θ. Let

Ω1 = {x ∈ C[J, E] | ‖x‖c < a}, Ω2 =
{
x ∈ C[J, E] | ρ(x) < b

}
. (3.24)

It is clear thatΩ1 andΩ2 are open sets inC[J, E]with θ ∈ Ω1 andΩ1 ⊂ Ω2. If x ∈ K∩Ω2,

we have ‖x‖c ≤ δ
−1
b which implies that K ∩Ω2 is bounded.

If x ∈ K ∩ ∂Ω1, then ‖x‖c = a.

ρ(Tx) = sup
t∈Jδ

‖(Tx)(t)‖ ≥
∥
∥
∥
∥(Tx)

(
1
2

)∥
∥
∥
∥

≥ Ψ
(

(Tx)
(
1
2

))

=
∫1

0
H

(
1
2
, s

)

Ψ
(
f(s, x(s))

)
ds

≥
∫1−δ

δ

H

(
1
2
, s

)

Ψ
(
f(s, x(s))

)
ds

≥
∫1−δ

δ

H

(
1
2
, s

)

dsΔ−1a = a = ‖x‖c ≥ ρ(x).

(3.25)
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If x ∈ K ∩ ∂Ω2, then ρ(x) = b and ‖x‖c ≤ δ
−1
b.

ρ(Tx) = sup
t∈Jδ

‖(Tx)(t)‖ ≤ sup
t∈Jδ

∫1

0
H(t, s)

∥
∥f(s, x(s))

∥
∥ds ≤ 6γ−1b sup

t∈Jδ

∫1

0
H(t, s)ds = b = ρ(x).

(3.26)

Hence, the proof is finished by Corollary 2.9.

4. Example

Example 4.1. To illustrate how our main results can be used in practice, we present an
example. For the convenience of computation, we study a two-point boundary value
problem. Now we consider the following boundary value problem:

−x′′ = f(t, x), 0 < t < 1,

x(0) = 0, x(1) = 0,
(4.1)

where g(t) = 0, and

f(t, x) =

⎧
⎪⎨

⎪⎩

10te−x + 25, 0 < t < 1, 0 ≤ x ≤ 10,

1
324

(x − 100)2 + 10te−10, 0 < t < 1, x ≥ 10.
(4.2)

Hence σ = 0, γ = 1. In this case E = R, P = R+, and k = 0. Let Ψ ≡ 1, δ = 1/10; then Δ = 2/5.
Select a = 10, b = 20; then we can see that

∣
∣f(t, x)

∣
∣ ≥ 10 × 1

10
× e−10 + 25 > 25 = Δ−1a, ∀t ∈

[
1
10

,
9
10

]

, x ≤ 10,

∣
∣f(t, x)

∣
∣ ≤ 1

324
× 1002 + 10 × 1

10
× e−10 < 60 = 6γ−1a, ∀t ∈

[
1
10

,
9
10

]

, x ≤ 200.

(4.3)

Hence, the conditions of the Theorem 3.8 are satisfied. Then problem (4.1) has at least one
positive solution.

Remark 4.2. Example 4.1 implies that there is a large number of functions that satisfy the
conditions of Theorem 3.8. In addition, the conditions of Theorem 3.8 are also easy to check.
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