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By using nonsmooth analysis knowledge, we provide the conditions for existence solutions of the
variational inequalities problems in nonconvex setting. We also show that the strongly monotonic
assumption of the mapping may not need for the existence of solutions. Consequently, the results
presented in this paper can be viewed as an improvement and refinement of some known results
from the literature.

1. Introduction

Variational inequalities theory, which was introduced by Stampacchia [1], provides us with a
simple, natural, general, and unified framework to study a wide class of problems arising in
pure and applied sciences. The development of variational inequality theory can be viewed
as the simultaneous pursuit of two different lines of research. On the one hand, it reveals the
fundamental facts on the qualitative aspects of the solutions to important classes of problems.
On the other hand, it also enables us to develop highly efficient and powerful new numerical
methods for solving, for example, obstacle, unilateral, free,moving, and complex equilibrium
problems.

It should be pointed out that almost all the results regarding the existence and iterative
schemes for solving variational inequalities and related optimizations problems are being
considered in the convexity setting; see [2–5] for examples. Moreover, all the techniques are
based on the properties of the projection operator over convex sets, which may not hold
in general, when the sets are nonconvex. Notice that the convexity assumption, made by
researchers, has been used for guaranteeing the well definedness of the proposed iterative
algorithm which depends on the projection mapping. In fact, the convexity assumption may
not require for the well definedness of the projectionmapping because it may bewell defined,
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even in the nonconvex case (e.g., when the considered set is a closed subset of a finite
dimensional space or a compact subset of a Hilbert space, etc.).

The main aim of this paper is intending to consider the conditions for the existence
solutions of some variational inequalities problems in nonconvex setting. We will make use
of some recent nonsmooth analysis techniques to overcome the difficulties that arise from
the nonconvexity. Also, it is worth mentioning that we have considered when the mapping
may not satisfy the strongly monotonic assumption. In this sense, our result represents an
improvement and refinement of the known results.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let C be a nonempty closed subset of H. We denote by dC(·) the usual distance
function to the subset C; that is, dC(u) = infv∈C‖u−v‖. Let us recall the following well-known
definitions and some auxiliary results of nonlinear convex analysis and nonsmooth analysis.

Definition 2.1. Let u ∈ H be a point not lying in C. A point v ∈ C is called a closest point or
a projection of u onto C if dC(u) = ‖u − v‖. The set of all such closest points is denoted by
projC(u); that is,

projC(u) = {v ∈ C : dC(u) = ‖u − v‖}. (2.1)

Definition 2.2. Let C be a subset of H. The proximal normal cone to C at x is given by

NP
C(x) =

{
z ∈ H : ∃ρ > 0;x ∈ projC

(
x + ρz

)}
. (2.2)

The following characterization of NP
C(x) can be found in [6].

Lemma 2.3. Let C be a closed subset of a Hilbert spaceH. Then,

z ∈ NP
C(x) ⇐⇒ ∃σ > 0, 〈z, y − x〉 ≤ σ

∥
∥y − x

∥
∥2
, ∀y ∈ C. (2.3)

Clarke et al. [7] and Poliquin et al. [8] have introduced and studied a new class
of nonconvex sets, which are called uniformly prox-regular sets. This class of uniformly
prox-regular sets has played an important part in many nonconvex applications such as
optimization, dynamic systems, and differential inclusions.

Definition 2.4. For a given r ∈ (0,+∞], a subset C of H is said to be uniformly prox-regular
with respect to r if, for all x ∈ C and for all 0/= z ∈ NP

C(x), one has

〈
z

‖z‖ , x − x

〉
≤ 1
2r

‖x − x‖2, ∀x ∈ C. (2.4)

We make the convention 1/r = 0 for r = +∞.

It is well known that a closed subset of a Hilbert space is convex if and only if it is
proximally smooth of radius r > 0. Thus, in view of Definition 2.4, for the case of r = ∞,
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the uniform r-prox-regularity C is equivalent to the convexity of C. Moreover, it is clear that
the class of uniformly prox-regular sets is sufficiently large to include the class p-convex sets,
C1,1 submanifolds (possibly with boundary) of H, the images under a C1,1 diffeomorphism
of convex sets, and many other nonconvex sets; see [6, 8].

Now, let us state the following facts, which summarize some important consequences
of the uniform prox-regularity. The proof of this result can be found in [7, 8].

Lemma 2.5. Let C be a nonempty closed subset of H, r ∈ (0,+∞] and set Cr := {x ∈ H;d(x, C) <
r}. If C is uniformly r-uniformly prox-regular, then the following hold:

(1) for all x ∈ Cr , projC(x)/= ∅,
(2) for all s ∈ (0, r), projC is Lipschitz continuous with constant r/(r − s) on Cs,

(3) the proximal normal cone is closed as a set-valued mapping.

In this paper, we are interested in the following classes of nonlinear mappings.

Definition 2.6. Amapping T : C → H is said to be

(a) γ -strongly monotone if there exists a constant γ > 0 such that

〈
Tx − Ty, x − y

〉 ≥ γ
∥
∥x − y

∥
∥2

, ∀x, y ∈ C, (2.5)

(b) μ-Lipschitz if there exist a constants μ > 0 such that

‖Tx − Ty‖ ≤ μ‖x − y‖, ∀x, y ∈ C. (2.6)

3. System of Nonconvex Variational Inequalities Involving
Nonmonotone Mapping

LetH be a real Hilbert space, and let C be a nonempty closed subset ofH. In this section, we
will consider the following problem: find x∗, y∗ ∈ C such that

y∗ − x∗ − ρTy∗ ∈ NP
C(x

∗),

x∗ − y∗ − ηTx∗ ∈ NP
C

(
y∗),

(3.1)

where ρ and η are fixed positive real numbers, C is a closed subset of H, and T : C → H is a
mapping.

The iterative algorithm for finding a solution of the problem (3.1) was considered by
Moudafi [9], when C is r-uniformly prox-regular and T is a strongly monotone mapping. He
also remarked that two-step models (3.1) for nonlinear variational inequalities are relatively
more challenging than the usual variational inequalities since it can be applied to problems
arising, especially from complementarity problems, convex quadratic programming, and
other variational problems. In this section, we will generalize such result by considering the
conditions for existence solution of problem (3.1)when T is not necessary stronglymonotone.
To do so, we will use the following algorithm as an important tool.
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Algorithm 3.1. LetC be an r-uniformly prox-regular subset ofH. Assume that T : C → H is a
nonlinear mapping. Letting x0 be an arbitrary point in C, we consider the following two-step
projection method:

yn = projC
[
xn − η(Txn)

]
,

xn+1 = projC
[
yn − ρ

(
Tyn

)]
,

(3.2)

where ρ, η are positive reals number, which were appeared in problem (3.1).

Remark 3.2. The projection algorithm above has been introduced in the convex case, and its
convergence was proved see [10]. Observe that (3.2) is well defined provided the projection
on C is not empty. Our adaptation of the projection algorithm will be based on Lemma 2.5.

Now we will prove the existence theorems of problem (3.1), when C is a closed
uniformly r-prox-regular. Moreover, from now on, the number r will be understood as a
finite positive real number (if not specified otherwise). This is because, as we know, if r = ∞,
then such a set C is nothing but the closed convex set.

We start with an important remark.

Remark 3.3. Let C be a uniformly r-prox-regular closed subset of H. Let T1, T2 : C → H
be such that T1 is a μ1-Lipschitz continuous, γ -strongly monotone mapping and T2 is a μ2-

Lipschitz continuous mapping. If ξ = r[μ2
1 − γμ2 −

√
(μ2

1 − γμ2)
2 − μ2

1(γ − μ2)2]/μ2
1, then for

each s ∈ (0, ξ) we have

γts − μ2 >
√(

μ2
1 − μ2

2

)(
t2s − 1

)
, (3.3)

where ts = r/(r − s).

It is worth to point out that, in Remark 3.3, we have to assume that μ2 < μ1. Thus, from
now on, without loss of generality we will always assume that μ2 < μ1.

Theorem 3.4. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T :
C → H be a nonlinear mapping. Let T1, T2 : C → H be such that T1 is a μ1-Lipschitz continuous
and γ -strongly monotone mapping, T2 is a μ2-Lipschitz continuous mapping. If T = T1 + T2 and the
following conditions are satisfied:

(a) Mρ,ηδT(C) < ξ, where δT(C) = sup{‖u − v‖;u, v ∈ T(C)};
(b) there exists s ∈ (Mρ,ηδT(C), ξ) such that

γts − μ2

ts
(
μ2
1 − μ2

2

) − ζ < ρ, η < min

{
γts − μ2

ts
(
μ2
1 − μ2

2

) + ζ,
1

tsμ2

}

, (3.4)

whereMρ,η = max{ρ, η}, ts = r/(r − s), and ζ =
√
(tsγ − μ2)2 − (μ2

1 − μ2
2)(t

2
s − 1)/ts(μ2

1 − μ2
2).

Then the problem (3.1) has a solution. Moreover, the sequence (xn, yn) which is generated by
(3.2) strongly converges to a solution (x∗, y∗) ∈ C × C of the problem (3.1).
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Proof. Firstly, by condition (b), we can easily check that yn − ρTyn and xn − ηTxn belong to
the set Cs, for all n = 1, 2, 3, . . .. Thus, from Lemma 2.5 (1), we know that (3.2) is well defined.
Consequently, from (3.2) and Lemma 2.5 (2), we have

‖xn+1 − xn‖ = ‖projC
(
yn − ρTyn

) − projC
(
yn−1 − ρTyn−1

)‖
≤ ts‖yn − yn−1 − ρ

(
Tyn − Tyn−1

)‖
≤ ts

[‖yn − yn−1 − ρ
(
T1yn − T1yn−1

)‖ + ρ‖T2yn − T2yn−1‖
]
.

(3.5)

Since the mapping T1 is γ -strongly monotone and μ1-Lipschitz continuous, we obtain

∥
∥yn − yn−1 − ρ

(
T1yn − T1yn−1

)∥∥2

=
∥
∥yn − yn−1

∥
∥2 − 2ρ〈yn − yn−1, T1yn − T1yn−1〉 + ρ2

∥
∥T1yn − T1yn−1

∥
∥2

≤ ∥∥yn − yn−1
∥∥2 − 2ργ‖yn − yn−1‖ + ρ2μ2

1

∥∥yn − yn−1
∥∥2

=
(
1 − 2ργ + ρ2μ2

1

)∥
∥yn − yn−1

∥
∥2
.

(3.6)

On the other hand, since T2 is μ2-Lipschitz continuous, we have

‖T2yn − T2yn−1‖ ≤ μ2‖yn − yn−1‖. (3.7)

Thus, by (3.5), (3.6), and (3.7), we obtain

‖xn+1 − xn‖ ≤ ts

[
ρμ2 +

√
1 − 2ργ + ρ2μ2

1

]
‖yn − yn−1‖. (3.8)

Similarly, we have

‖yn − yn−1‖ = ‖projC
(
xn − ηTxn

) − projC
(
xn−1 − ηTxn−1

)‖
≤ ts‖xn − xn−1 − η(Txn − Txn−1)‖
≤ ts

[‖xn − xn−1 − η(T1xn − T1xn−1)‖ + η‖T2xn − T2xn−1‖
]

≤ ts

[
ημ2 +

√
1 − 2ηγ + η2μ2

1

]
‖xn − xn−1‖.

(3.9)

Combining (3.8) and (3.9), we get

‖xn+1 − xn‖ ≤ t2sθρθη‖xn − xn−1‖, (3.10)
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where θρ := ρμ2 +
√
1 − 2ργ + ρ2μ2

1 and θη := ημ2 +
√
1 − 2ηγ + η2μ2

1. Moreover, by (3.4), we
know that tsθρ and tsθη are elements of the interval (0, 1). Thus, from (3.10), it follows that

‖xn+1 − xn‖ ≤ κn‖x1 − x0‖ (3.11)

for all n = 1, 2, 3, . . ., where κ := t2sθρθη. Hence, for any m ≥ n > 1, it follows that

‖xm − xn‖ ≤
m−1∑

i=n

‖xi+1 − xi‖ ≤
m−1∑

i=n

κi‖x1 − x0‖ ≤ κn

1 − κ
‖x1 − x0‖. (3.12)

Since κ < 1, it follows that κn → 0 as n → ∞, and this implies that {xn} ⊂ C is a Cauchy
sequence. Consequently, from (3.9), we also have that {yn} is a Cauchy sequence in C. Thus,
by Lemma 2.5 (3), the closedness property of C implies that there exists (x∗, y∗) ∈ C ×C such
that (xn, yn) → (x∗, y∗) as n → ∞.

We claim that (x∗, y∗) ∈ C × C is a solution of the problem (3.1). Indeed, by the
definition of the proximal normal cone, from (3.2), we have

(
xn − yn

) − η(Txn) ∈ NP
C

(
yn

)
,

(
yn − xn+1

) − ρ
(
Tyn

) ∈ NP
C(xn+1).

(3.13)

By letting n → ∞, using the closedness property of the proximal cone together with the
continuity of T , we have

x∗ − y∗ − η(Tx∗) ∈ NP
C

(
y∗),

y∗ − x∗ − ρ
(
Ty∗) ∈ NP

C(x
∗).

(3.14)

This completes the proof.

Immediately, by setting T2 = 0, we have the following result.

Theorem 3.5. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H. Let T : C →
H be a μ-Lipschitz continuous and γ -strongly monotone mapping. If the following conditions are
satisfied:

(a) Mρ,ηδT(C) < ξ, where δT(C) = sup{‖u − v‖;u, v ∈ T(C)};
(b) there exists s ∈ (Mρ,ηδT(C), ξ) such that

γ

μ2 − ζ < ρ, η <
γ

μ2 + ζ, (3.15)

where ζ =
√
(tsγ)2 − (μ2

1)(t
2
s − 1)/ts(μ2

1) and ts = r/(r − s).
Then the problem (3.1) has a solution. Moreover, the sequence (xn, yn) which is generated by

(3.2) strongly converges to a solution (x∗, y∗) ∈ C × C of the problem (3.1).
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In view of proving Theorem 3.4, we can obtain the following result, which contains a
recent result presented by Moudafi [9] as a special case.

Theorem 3.6. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T :
C → H be a mapping. Let T1, T2 : C → H be such that T1 is a μ1-Lipschitz continuous and γ -
strongly monotone mapping, T2 is a μ2-Lipschitz continuous mapping. If T = T1 + T2 and there exists
s ∈ (0, ξ) such that

γts − μ2

ts
(
μ2
1 − μ2

2

) − ζ < ρ < min

{
γts − μ2

ts
(
μ2
1 − μ2

2

) + ζ,
1

tsμ2
,

s

1 + ‖Tyn‖

}

,

γts − μ2

ts
(
μ2
1 − μ2

2

) − ζ < η < min

{
γts − μ2

ts
(
μ2
1 − μ2

2

) + ζ,
1

tsμ2
,

s

1 + ‖Txn‖

} (3.16)

for all n = 1, 2, 3, . . ., where ts = r/(r − s), ζ =
√
(tsγ − μ2)

2 − (μ2
1 − μ2

2)(t
2
s − 1)/ts(μ2

1 −μ2
2) and the

sequence (xn, yn) was generated by (3.2), then the sequence (xn, yn) strongly converges to a solution
(x∗, y∗) ∈ C ×C of the problem (3.1).

Remark 3.7. (i) An inspection of Theorem 3.6 shows that the sequences {Txn} and {Tyn} are
bounded.

(ii) By setting T2 =: 0, we see that Theorem 3.6 reduces to a result presented byMoudafi
[9].

Remark 3.8. If C is a convex set, by the definition of the proximal normal cone, we can
reformulate (3.1) as follows: find x∗, y∗ ∈ C × C such that

〈
ρT

(
y∗) + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈
ηT(x∗) + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ C.

(3.17)

The problem (3.17)was introduced and studied by Verma [10], when T is a strong monotone
mapping. Hence, Theorem 3.4 extends and improves the results presented by Verma [10]. For
further recent results related to the problem (3.17), see also [2, 3, 5, 11–13].

4. Further Results

By using the techniques as in Theorem 3.4, we can also obtain an existence theorem of the
following problem: find x∗ ∈ C such that

−Tx∗ ∈ NP
C(x

∗). (4.1)

The problem of type (4.1) was studied by Noor [14] but in a finite dimension Hilbert space
setting. In this section, we intend to consider the problem (4.1) in an infinite dimension
Hilbert space. To do this, the following remark is useful.
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Remark 4.1. Let T : C → C be a γ -strongly monotone and μ-Lipschitz continuous mapping.
Then, the function f : (1, μ2/(μ2 − γ2)) → (0,∞) which is defined by

f(t) =

√
t2
(
γ2 − μ2

)
+ μ2

tμ2
, ∀t ∈

(

1,
μ2

μ2 − γ2

)

, (4.2)

is a continuous decreasing function on its domain.

We now close this section by proving an existence theorem to the problem (4.1) in a
nonconvex infinite dimensional setting.

Theorem 4.2. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T :
C → H be a γ -strongly monotone and μ-Lipschitz continuous mapping. If 0 < δT(C) ≤ γr, then the
problem (4.1) has a solution.

Proof. Firstly, by using an elementary calculation, we know that the function h : [1, μ2/(μ2 −
γ2)) → (0,∞)which is defined by

h(t) =
r(t − 1)
tδT(C)

+ f(t), ∀t ∈
[

1,
μ2

μ2 − γ2

)

, (4.3)

is a continuous increasing function on [1,
√
(μ2r2 − δ2

T(C))/r
2(μ2 − γ2)]. Moreover, we see that

the net {ts}s∈(0,r) which is defined by ts =: r/(r − s) converges to 1 as s ↓ 0. Using these
observations, together with the fact that h(t) ↓ γ/μ2 as t ↓ 1, we can find s∗ ∈ (0, r(r2γ2 −
δ2
T(C))/(μ

2r2 − δ2
T(C))) such that μ2h(ts∗) > γ . It is worth to notice that, from the choice of s∗,

we have γ/μ2 − f(ts∗) < s∗/δT(C).
Now, we choose a fixed positive real number ρ such that

γ

μ2 − f(ts∗) < ρ < min

{
γ

μ2 + f(ts∗),
s∗

δT(C)

}
. (4.4)

Next, let us start with an element x0 ∈ C and use an induction process to obtain a sequence
{xn} ⊂ C satisfying

xn+1 = projC
(
xn − ρTxn

)
, ∀n = 0, 1, 2, . . . . (4.5)

Note that, because of the choice of ρ, we can easily check that xn − ρTxn ∈ Cs∗ for all n =
1, 2, 3, . . .. Following the proof of Theorem 3.4, we know that {xn} is a Cauchy sequence in
C. If xn → x∗ as n → ∞, the closedness property of the proximal cone together with the
continuity of T , from (4.5), we see that x∗ is a solution of the problem (4.1). This completes
the proof.

Remark 4.3. Theorems 3.4, 3.5, and 4.2 not only give the conditions for the existence solution
of the problems (3.1) and (4.1), respectively, but also provide the algorithm to find such
solutions for any initial vector x0 ∈ C.
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