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We study existence of positive solutions to nonlinear higher-order nonlocal boundary value
problems corresponding to fractional differential equation of the type C%g u(t) + f(tu(t) =0,
te€(0,1),0 <t <1 ul)=pun) +ty, u'0) = ar/(n) - A1, u"(0) =0, u”"(0) = 0---u"D(0) =0,
where, n -1 <6 <n,n(>3) €N,0<n,ap <1, the boundary parameters 1;,1, € R* and CD[‘;
is the Caputo fractional derivative. We use the classical tools from functional analysis to obtain
sufficient conditions for the existence and uniqueness of positive solutions to the boundary value
problems. We also obtain conditions for the nonexistence of positive solutions to the problem. We
include examples to show the applicability of our results.

1. Introduction

Fractional calculus goes back to the beginning of the theory of differential calculus and
is developing since the 17th century through the pioneering work of Leibniz, Euler, Abel,
Liouville, Riemann, Letnikov, Weyl, and many others. Fractional calculus is the generalization
of ordinary integration and differentiation to an arbitrary order. For almost 300 years, it
was seen as interesting but abstract mathematical concept. Nevertheless the applications of
fractional calculus just emerged in the last few decades in various areas of physics, chemistry,
engineering, biosciences, electrochemistry, and diffusion processes. For details, we refer the
readers to [1-5].

The existence and uniqueness of solutions for fractional differential equations is well
studied in [6-10] and references therein. It should be noted that most of the papers and books
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on fractional calculus are devoted to the solvability of initial value problems for fractional
differential equations. In contrast, the theory of boundary value problems for nonlinear
fractional differential equations has received attention quiet recently, and many aspects of
the theory need to be further investigated.

There are some recent development dealing with the existence and multiplicity of
positive solutions to nonlinear boundary value problems for fractional differential equations,
see, for example, [11-18] and the reference therein. However, few results can be found in the
literature concerning the existence of positive solutions to nonlinear three-point boundary
value problems for fractional differential equations. For example, Li and coauthors [19]
obtained sufficient conditions for the existence and multiplicity results to the following three
point fractional boundary value problem

D, u(t)+ f(t,ut) =0, 0<t<l, 1<a<2,
(1.1)
u(©0) =0, 9 u(1)=ad u@),

where 9, is standard Riemann-Liouville fractional order derivative.
Bai [20] studied the existence and uniqueness of positive solutions to the following
three-point boundary value problem for fractional differential equations

D0, u(t) + f(t,ut) =0, 0<t<l, 1<a<2,

(1.2)
u(0) =0, ﬁu(’l) =u(l),

where 0 < ﬁq“’l <1,0<7n<1,9y, is standard Riemann-Liouville fractional order derivative.
The function f is assumed to be continuous on [0, 1] x [0, c0).

The purpose of the present work is to investigate sufficient conditions for the existence,
uniqueness, and nonexistence of positive solutions to more general boundary value problems
for higher-order nonlinear fractional differential equations

‘D0 u(t)+ f(tut)) =0, te(0,1), n-1<6<n,
(1.3)
u(l) =pu(n) +2, w©) =au'(n)-A, 4'0)=0, u"(0)=0---u""(0)=0,

where, n -1 < 6 <n,n =3,45..,0 < n,ap <1, the boundary parameters A,1, € R*
and C%g ., is the Caputo fractional derivative. The function f is assumed to be continuous
and nonnegative on [0, 1] x [0, 00). To the best of our knowledge, existence and uniqueness of
positive solution to the boundary value problem (1.3) have never been studied previously.
This paper is organized as follows: in Section 2, we recall some basic definitions and
preliminary results which are needed for our main results. In Section 3, we study existence
and uniqueness and nonexistence of positive solutions to the boundary value problem (1.3)
under certain assumptions on the function f. Moreover, examples are provided to illustrate

the applicability of main results.
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2. Background Materials and Lemmas

For the convenience of the readers, in this section, we provide definitions of Riemann-
Liouville fractional integral and fractional derivative and some of their basic properties which
will be helpful in the forth coming investigations.

Definition 2.1 (see [2, 5]). For a function ¢ : (a,0) — R, the Riemann-Liouville fractional
integral of order a > 0 is defined by

t
2200 = i [ (=9 p(5)ds, 1)

The provided that the integral on the right hand side exists. For a, § > 0, the fractional
integral satisfies the semigroup property

OS‘+Og+q§(t) = ‘”ﬁqb(t) Og+9 (t) almost everywhere on [0,1]. (2.2)

In addition, if ¢ € C[0, 1] or if a + § > 1, then the identity is true for every t € [0, 1].

Definition 2.2 (see [2,5]). The standard Riemann-Liouville fractional derivative of order a > 0
of a function ¢ : (a,0) — Ris given by D%, ¢(t) = (d/dt)" 0" ;*p(t), wherea e R, n = [s] + 1,
provided that the right hand side is pointwise defined on (a, o).

Definition 2.3. For a given function ¢ : (a,00) — R, the Caputo fractional derivative of order
a > 0is defined by ‘D%, ¢(t) = 0":%p™ (t), where a € R, n = [s] + 1.

Lemma 2.4 (see [2]). Ifa > B > 0, then %ﬁ 00, 9(t) = Og;pd)(t). In particular, if m is positive
integer and 6 > m, then (dm/dtm)(O LP(t) = 9‘5 m(j)(t).

The following two lemmas play a fundamental role to obtain an equivalent integral
representation to the boundary value problem (1.3).

Lemma 2.5 (see [2]). Let a > 0, then
¢k( ) ik

=¢(t) +c1 + ot + 32 + o+ opt™ (2.3)

05, ‘D5, p(1) = p(t) ~ Z

where c; = pF1(0)/(k-1),i=1,2,...,nandn-1<a<n.

Lemma 2.6 (see [2]). For a > 0, the fractional differential equation “Df, ¢(t) = 0 has a general
solution p(t) = c1+ cot + c3t> + -+ + cut" !, wherec; €R,i=1,2,...,nandn-1<a<n.

For the existence of positive solutions to the boundary value problem (1.3), we use the
following fixed point theorem due to Krasnosel’skii.

Theorem 2.7 (see [21]). Let & be a Banach space, and let ) C & be a cone. Assume that Q1, Q, are
open subsets of & such that 0 € Q; C Q1 C Q. Let A : PN (2 \ Q1) — & be completely continuous
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such that either
(1) |Aull < |lull, for u € P N 0oLy and ||Aul| > ||lul|, for u € P N 0Ly, or
(ii) ||Aull > ||lull, for u € P N 0Qy and ||Aul|| < ||lull, for u € P N OLy.
Then, A has a fixed point in PN (Qy \ Q1).

3. Main Results
Lemma 3.1. Let h € C[0,1], then the unique solution of the linear problem

‘D ut)+h(t)=0, te(0,1), n-1<86<n, n(>3)€N, (3.1)

u(1) = pu(n) +a, ' ©)=aw'(n) -, u'0)=0, u"0)=0---u"D0)=0 (3.2

is given by
1 1
u(t) = f G(t,s)h(s)ds + f H(t;n,s)h(s)ds + ¢ (1), (3.3)
0 0
where,
(1-5)°"1—(t-5)%"
F(S) , s< t/
G(t,s) =
% t<g
re) -’ -
- (3.4)
ﬁ[(l —5)° = (n-5)° 1] . a[l-pn—-(1-p)t](n- s)"? ‘<
H(tns) = (1-pr®) A-o(-pre-n 0"
p-s)° .
(1-preE-1’ 1=
and ¢(t) = (1= pn - A =p)t)/ (1 = a)(1 = p))h1 + 12/ (1 - p).
Proof. In view of Lemma 2.5, (3.1) is equivalent to the integral equation
u(t) = —I8,h(t) + c1 + cot + 3t + -+ + cut" . (3.5)
Using Lemma 2.4, we obtain
W (t) = —IT h(t) + co + 2c3t + -+ + (n = 1)cut™ 2,
u'(t) = —IS2h(t) + 2c5 + -+ + (n = 1) (n = 2)c ">,
(3.6)

u V() = —12- " Vh(t) + (n - 1)lcy,
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where c1, ¢, ..., ¢, € R. The boundary conditions, #”(0) =0, 4" (0) =0,..., 1" (0) = 0, lead

tocs=0,c1=0,..., ¢n = 0. Using the boundary conditions u'(0) = au'(n)-A1, u(1) = pu(n)+A,
and the fact that IS7'h(0) = 0, we obtain

(1-a)er = —ali 'h(n) - Ay, (1-B)er+ (1= Pn)ea = I h(1) - IS, h(n) + Ao, (37)
which implies that ¢, = —(a/(1 - a))IgJ:lh(q) - (M/(1-a))and

= ﬁfﬁ h(1) - ﬂ I8 h(n) +

(1 pn) Ay
“(1-p)  (1-p)

( )
—a)(1-p) o

th(n) +

(3.8)

Hence, the unique solution of the linear fractional boundary value problem (3.1), (3.2) is
given by

) = ~I5,h0) + T8 - T2 8

+a(1 ﬁ’l) a(l ﬂ)t 61h() < 1-pn _1fa>)tl+1)‘2

1-a)(1-p) (1-a)(1-p) -p
==+ 15,01) + 8 ) - )
a(l-pn) —a(l-p)t s 1-pn t Ay
M a><1 DI 1h(")+< 1—a><1—ﬁ> W—a)“l—ﬂ
(1- (t—s)° - (59)
I r(&) h( s+ | F(6) h(s)ds
+f”<ﬂ(1 -5)" = B(n-5)"" , (a(l-py) —a(l —ﬂ)t)(fz—S)ﬁ_Z)h(S)ds
0 (1-P)I(®) (1-a)(1-p)r(6-1)
L p(1-s)%" 1-pn t Ao
A=) et ((1-@(1-;}) B 1—a>“+ﬂ
= J G(t,s)h(s)ds + jl H (t;1,s)h(s)ds + g(t).
0 0
O

Lemma 3.2. The functions G(t,s) and H(t; 1, s) satisfy the following properties:

(i) G(t,s) >0, H(t;1,s) > 0and G(t,s) < G(s,s) forall0<s,t <1,

(ii) For s € (0,1), 0 < ¢ < 7 < 1, ming<.G(t,5) > (1 - o D maxo<1G(t, s) =
(1-7"1G(s,s),

(iii) B -7 (1 -)" < 1= BT(S)H(t;7,5) <2(5 - 1)(1-35)"7,
(iv) fors € (0,1), 0 <¢ <7 <1, mingy< H(t; 77, 5) > (1 — T)maxo<1 H(E 7, 5).
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Proof. (i) For 6 > 1, in view of the expression for G(t, s), it follows that G(t,s) > 0 and G(t, s) <
G(s,s) forall0<s,t<1.

Fors<nand0<p <1, wehavel-pn—-(1-p)t>(1-pn)(1-t). Hence, H(t,1,s) > 0. Also,
we note that H(t,7,s) > 0 for s > 7.

(ii) Now,
(1= s)o!
trer}gﬁG(t, s) = W (3.10)
Since
1 61 _ (f = g1 (t-s)°"
Gts) =t ray -9 )] = maxG(ts) =
o (3.11)
> trerh;)a?G(t ,S) — 1%, te[é ],
which implies that
mmG(t s) > ( -5 >maXG(t s), forse(0,1). (3.12)
te[¢,r] te[0,1
Now, for s < 717, we have
Pla-9"" - =9 api-pr-(-p-9"
HE) = =—pmE T a-@(-pre-D
(3.13)
pA-9""  a(-9)"" _26-1(-9""

SA-pre) T A-a(-pre) - A-a(-pre)

For s > 7, obviously, H(r,s) < 2(6 - 1)(1 - $)%2/(1-a)(1 - P)T'(6). From the expression of
H(n, s), it clearly follows that

p-n*")(1-95)""

H(tn,s) > NG (3.14)
(iii) From the definition of H (¢;7, s), we have
0 o (=9
a (H(t, ", S)) = m <0. (315)
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Therefore, H (t; 7, s) is nonincreasing in t, so its minimum value occurs att = 7 for t € [¢, 7],

and its maximum value occurs at £ = 0 for ¢ € [0, 1]. That is,

pla-o" - @=9""] ap-pn--prie-5)"

minH (t;77,5) = A-p)T6) " (1-P)I(5)
pla-9" - @-9""] a@-—pn)(n-9)""
Erggagl(H(t; n,s) = (1-p)I(5) * (1-p)I(6) '

Since (1-5)°" = (1-5)" > 0and 1 - 7 < 1, therefore
-5 (g-5)"" 2 (-0 (-9 = (1-5)"").
Also, as 1 - < 1 - B, therefore
1-pn-QA-p)r21-pn-(1-pn)7t=0-7)(1-pn).

Subletting (3.18) and (3.19) in (3.16), we have

ﬁ[(l —s5)"" - (n- 5)671] a(l1-pn)(n- 5)672 }

minH (t;7,8) > (1 -7) { (1-p)I(6) TTTA-pre)

E<t<T

=(1- T)BgtagH(t; 7,5).

Remark 3.3. For Ay, 1y > 0, ming<<r¢r(t) > (1 — 7)maxog<1 ¢ (t).

Proof. As (d/dt)g(t) = =11/ (1 — a) <0, therefore s(t) is a decreasing function. Hence,

_ (=Pl A2
B0 O oa-p " a-py

, R L e O L
BRrO == 0asy T

1-7/1-pn
> 1—,5( 1_a)»1+)tz>

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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= (1-m)max ¢ (f).

(3.21)

Thus, we have ming<<r ¢r(t) > (1 — T)maxo<<1 ¢ (£).
Let B = C[0, 1] be endowed with the norm ||u|| = maxo<<1|u(t)|. Define a cone P C B
by

p = {u €B: ggisrlu(t) > (1-7)||ul }, (3.22)

and an operator ¢/ : B — B by

1

1
Au(t) = Jo G(t,s)f(s,u(s))ds + 4[0 H(t;n,s) f(s,u(s))ds + ¢(t). (3.23)

By Lemma 3.1, the boundary value problem (1.3) has a solution if and only if «# has a fixed
point. O

Lemma 3.4. The operator A4 : ) — D is completely continuous.
Proof. Firstly, we show that &#(P) C P. From (3.23), Lemma 3.2, and Remark 3.3, we have

1

1
?SltiSI;(Ju(t)) > <1 _ T6—1) J‘ G(s,8)f(s,u(s))ds+(1-7) 4[0 trggﬁH(t; 1n,8)f(s,u(s))ds

0

+(1 —T)tg}gﬁt/f(t)

>(1-1) Jj G(s,s)f(s,u(s))ds + I: trerba}]H(t; 1n,5) f(s,u(s))ds + trer}&ﬁqr(t)

> (1-71)||<Au].
(3.24)

Hence, we have 4 (P) C P.
Next, we show that </ is uniformly bounded. For fixed ¢ > 0, consider a bounded
subset M of P defined by

M={uep:|u|<e R}, (3.25)
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and define X = maxg<y<¢ f(t, u(t)) + 1, then for u € M, we have

1 1
|Au(t)| < L G(t,s)|f(s,u(s))|ds + J;J H(t;n,s)|f (s, u(s))|ds + trer}g,ﬁ(p(t)

£ (' 61 24(6-1) ! o2, (I=pm)hi+(1-a)k
Smfo(l—s) ds+(1—a)(1—[3)r(6) fo (1-5)""ds+ (1—a)(1—[3)
X

5 5 (1 - ﬂTl))Ll + (1 - d))tz
S Toaop (0 228.0) s
Bo-1)K A-pph+ (1 -a)),

THl-wm(l-p6-1) (1-a)(1-p)
(3.26)

Hence, 4 (M) is bounded.

Finally, we show that </ is equicontinuous. Define o = 6(1 — a)I'(6)e/X[6(1 — a) +
an” 1+ 14] and choose t > T such that t — 7 < . Then, for all ¢ > 0 and u € _#, we have

1

1
|Au(t) — Au(t)| = Jo (G(t,8) = G(t,9)) f(s,u(s))ds + .[0 (H(tm,s) —H(t1,5))f(s,u(s))ds

A
- 1_0{(1‘—7)

1 1
SJCf G(t,s) —G(T,s)ds+f H(t;n,s) - H(t;n,s)ds + 1)Lla(t—7')
0 0 -

_ 1 t 5— 65— a(t—T)
_Jcmfo((t—s) ' (r-5) 1>ds+—(1—a)r(6—l)

1 5-2 M
Xfo (n-s) ds+1_a(t—7')

A . s
_6F(6)[t 70+ - (t-1)|.

(3.27)

Using the mean value theorem, we obtain t° — 7% < 6(t — ) < 60. Hence, it follows that

Ko[6(1—a) +an™! + \4]
|Au(t) — Au(t)| < HENG) <e. (3.28)

By means of Arzela-Ascoli theorem «f : ) — [ is completely continuous operator.
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For convenience, we introduce following notations:

v s 615 g (1) \ ) Q-7 B
Jca,ﬂ,ﬁ = <3Io+(lf1(1) + m) ’ chﬂ"ré 1— ﬂ 9 ‘FZ(T) ’ (3.29)

_lae Lo _ g
c,,,—3(1 a), Cp—3(1 ), y=1-7"

Theorem 3.5. If there exist constants p1, p, € R* such that p, > py and functions ¢, ¢, € L[0,1]
such that

D) f(tu) 2 paK3 5 sg2(D), for (tu) € [0,1] x [yp2, p2],

(i) f(tu) < P1JC1[; @1(t), for (t,u) € [0,1] x [0, p1],

then the boundary value problem (1.3) has at least one positive solution for A1, Ao small enough and
has no positive solution for Ay, A, large enough.

Proof. By Lemma 3.4, the operator +/ is completely continuous. The proof is divided into two
steps.

Step 1. We prove that the boundary value problem (1.3) has at least one positive solution.

Define €, = {u € B : |[ul]| < p1} an open subset of B and choose 1, A, such that
M < cap1 and Ay < cppr. Then, for any u € P N oL, we have [[ul| = p; and in view of
Lemma 3.2 and (3.23), it follows that

|Au(t)] =

f: G(t,s)f (s, u(s))ds + Ll H(t1,5) f(s,u(s))ds + <1 (_16”“_)((11__5)”>)q + 1{2[5

(1 - ,67])/\1 + (1 — Dl))tz
(1-a)(1-p)

<&ﬂmm»——jﬁ—5®7@mm+

16 1‘[«‘1(1) ] A + Ao
—a)(1-p) 1-p

<K [Iaqnm ;

<2 BB,

(3.30)

which implies that ||4u|| < [lu||, for u € P N 0Q,,.
Define Q,, = {u € P : |lu|| < p2}. Forany t € [¢, 7] and u € P N 0Q,,, using Lemma 3.2,
we have

min u(t) > ( -1)||u||. (3.31)

¢<t<t
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Therefore, by (3.3) and Remark 3.3, we have the following estimate:

|Au(t)| = f:G(t,s)f(s,u(s))ds+£H(t;q,s)f(s,u(s))ds+ <1(_1‘i”a;<(11__[?t>h+ T3
[ pA-n"") 1-pn-(1-p)t
2_(1 0 ) -5 ]f+f(T,tt(T))+<—(1 P >)L1 ﬂ
1 6-1
>P2J‘gﬂrﬁ[<1 ) ﬂ(1 Tﬁ )] I g2(7)
x2 <( Sl 1)>1 (7) = p2 = |ul
=p2 ¢,p,T,0 1- ﬁ +2\T p2 = 1lul,
(3.32)

which implies that [|Aul| > [|u|| for u € P N 0Q,,
Hence, by Theorem 2.7, it follows that <# has a fixed point w in J N (ﬁpz \ Q).

Step 2. Now, we prove that for large values of 14, 1, the boundary value problem (1.3) has
no positive solution. Otherwise, for i = 1,2, there exists 0 < Aj; < Aip-++ < i < --+, with
limy, _, .o Lin = +00, such that for any positive integer n, the boundary value problem

‘D0 u(t) + f(tu(t) =0, te(0,1), 0<t<1,

u(1) = pu(y) +lan, ©(0) =ard'(n) - Ay, u'(0)=0, u"(0)=0---u"(0)=0
(3.33)

has a positive solution given by

1 1 _Bn—(1—
u,(t) = J:) G(t,s)f(s,un(s))ds + -[o H(t,s)f(s,un(s))ds + (Wﬂ_(lﬁ)t>/\1n + A2n

1-a)(1-p) 1-p
(3.34)

If t > n, then u,(t) > (1 -HAi, /(1 —a)(1 - p) + X2/ (1 - P) and if t < n, then u,(t) > (1 -
Mlin/ (1 —a)(1 = p) + A2, /(1 = ). Therefore, u, — ccasn — oo.



12 Abstract and Applied Analysis

Let p1 = min((1/2)p2, M/ ca, X2/ cp) and define Q5 = {u € P : p1 < |[u,|| < p1}. For
u € Qj,, using (3.3) and Remark 3.3, we have

1 1
[ (D) > fo G(t,s)f(s,un(s))ds + 4[0 H(tn,s)f(s,un(s))ds

1- ﬁrl (1 :B)t )L2n
+< 1-a)(1-p) >)‘1" 1-p

6-1
2%[<1_T ) ﬂ(ll ”p )] 00, (1, un(1)) (3.35)

““ (=B (1-7") +p(1-n"") | 2L42(1)
> 21 > 2l

which is a contradiction. Hence, the boundary value problem (1.3) have no positive solution
for Ay, A, large enough. O

Theorem 3.6. Assume that (A) is satisfied and there exists real-valued function ¢(t) € L[0,1] such
that

|f(t/u) _f(t/v)l < ¢(t)|u —U|, fOT te [0/1]/ u,v e [O/ OO),

28 d(1) 2 281p(1) <1 (330
R — a— <1,
O+¢ (1_0()(1_[5) 0+ ¢
then the boundary value problem (1.3) has a unique positive solution.
Proof. For u,v € P, using (3.23) and Lemma 3.2, we obtain
1
|Au(t) — Av(t)| < I G(t,s)|f(s,u(s)) - f(s,v(s))|ds
0
1
+I H(t;n,s)|f(s,u(s)) - f(s,v(s))|ds
0
(3.37)

(1-s)°" 12(6-1)(1-5)2
< Ju- U”U S s+ [ (1—a)(1—ﬁ)r(6)¢(s)ds]

= |lu-ol| [08+¢<1> + 03+1¢<1>] <|lu-vl,

2
(1-a)(1-p)
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where we have taken into account (1 — s)‘sf1 < (1- 5)672, we obtain the relation Og LP(1) <
1/ - 1))93;14)(1). Hence, it follows by Banach contraction principle that the boundary
value problem (1.3) has a unique positive solution. O

Example 3.7. Consider the boundary value problem

t2e®/2t + 1 £u?(1 +sint)

c
g, u(t) = s+ | 16w '

te(0,1),

(3.38)
u(l) =pu(n) + Ay, u'0)=au'(n)-A, u"(0)=0, u"(0)=0,

where, 6 =7/2,1=1/2,a =2/3,and p = 1/3. Let f(t,u) = (e®/2" +1)/8(1 + £?) + 2u*(1 +
sint)/16ar, (t,u) € [0,1] x [0, 00]. For p; =1, p, = 550, we observe that

f(tu) < é(e + %)tZ, for (t,u) € [0,1] x [0,1],

(3.39)

ftu) > <\/LE>$' for (t,u) € [0,1] x [283,550].

Taking ¢1(t) = t* and () = /(1 + ?). For ¢ = 1/4, T = 3/4, by computations,
we find that ¢, = 1/9, ¢g = 2/9, Ing(pz(T) = (1/60+/7)(49+/7tan"1(1/2/7) — tan™'(+/2) —
1132+/2/21) = 0.001291, also Og+(p1(1) = 128/10395+/7r. Therefore, JC}l,ﬂ,ﬁ = 0.583566 and

K2, 5 = 0.000993874. Hence,

f(tu) < plx;,ﬁ,5¢1(t) = 0.583566t%, for (t,u) € [0,1] x [0,1],

) (3.40)

t
ft,u)> szCéﬂ/Tléqrp_(t) = 0.546631 < :

" t2>' for (t,u) € [0,1] x [283,550].

Assumptions (i) and (ii) of the Theorem 3.5 are satisfied. Therefore, the boundary value
problem (3.38) has a positive solution for A; € [0,1/9], A, € [0,2/9] and no positive solution
for 1\1 > 1/9, .)LQ > 2/9

Example 3.8. Consider the boundary value problem

e (11/me® cos(25t) + 500 sin’t ) u?
(14+/7 + 425e1/8)t) (1 + u)

26 ut) = (3.41)

u(l) = pu(n) + 2, u'(0) =o' () -\, u"(0)=0, u"(0)=0, (3.42)
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where 6 = 7/2, a = 2/3, p = 3/5, n = 1/2, and A,y € R. Let f(t,u) =
e 3 (11y/me® cos(25t) + 500 sin’t)u? / (14+/7r + 425eV/9) (1 + u), (t,u) € [0,1] x [0, oo]. For
u,v e p,te[0,1], we have the following estimate:

6_33t(11\/fe33t + 500) <|u - U|(u +0+ uv) >
(14\/E + 4258(1/8)t) 1+u)(1+0)

u? v?

1+u+1+v

|f(t,u) - f(t,0)| <

e™3% (11/e® + 500)
(14/7 + 425e(1/9)t)

(3.43)

e (11/ae™ + 500)
T (144 + 425e(1/9))

(lu = ).

Let ¢(t) = e (11y/me® + 500)/(14y/7 + 425e1/9), then by computations, we have
2571¢(1) = 0.013469, (26-a-1)05' (1) / (6-1) (1-a)(1-p) = 0.215504 < 1. All the conditions
of Theorem 3.6 are satisfied. Therefore, by Theorem 3.6, the boundary value problem (3.41),
(3.41) has a unique positive solution.
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