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We establish the Weyl-Titchmarsh theory for singular linear Hamiltonian dynamic systems on a
time scale T, which allows one to treat both continuous and discrete linear Hamiltonian systems
as special cases for T = R and T = Z within one theory and to explain the discrepancies between
these two theories. This paper extends the Weyl-Titchmarsh theory and provides a foundation for
studying spectral theory of Hamiltonian dynamic systems. These investigations are part of a larger
program which includes the following: (i) M(λ) theory for singular Hamiltonian systems, (ii) on
the spectrum of Hamiltonian systems, (iii) on boundary value problems for Hamiltonian dynamic
systems.

1. Introduction

1.1. Differential Equations

The study of spectral problems for differential operators has played an important role not
only in theoretical but also in practical aspects. The study of spectral theory of differential
equations has a long history. For this, we refer to [1–12] and references therein along this line.

Spectral problems of differential operators fall into two classifications. First, those
defined over finite intervals with well-behaved coefficients are called regular. Fine spectral
properties can be expected. For example, the spectral set is discrete, infinite, and unbounded,
and the eigenfunction basis is complete for a corresponding space.

Spectral problems that are not regular are called singular. These are considerably more
difficult to discuss because the spectral set can be much more complicated and, as a result,
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have only been examined closely during the last century. The Weyl-Titchmarsh theory is
an important milestone in the study of spectral problems for linear ordinary differential
equations [13]. It has started with the celebrated work by H. Weyl in 1910 [14]. He gave a
dichotomy of the limit-point and limit-circle cases for singular spectral problems of second-
order formally self-adjoint linear differential equations. He was followed by Titchmarsh [12]
and many others. From 1910 until 1945, these mathematicians developed and polished the
theory of self-adjoint differential operators of the second order to a high degree. Their work
was continued by Coddington and Levinson [3], and so forth. in the late 1940s and 1950s. Not
only were additional results found for operators of the second order, but operators of higher
orders were also examined. At the same time, the Russian school, led by Kreı̆n, Naı̆mark,
Akhiezer, and Glazman, also made major contributions. For a far more comprehensive
survey of this work, we recommend the second volume of Dunford and Schwartz [4], where
numerous contributions made by many mathematicians are summarized. Further study
continued in the 1960s and 1970s with the work of Atkinson [1] on regular Hamiltonian
systems

x′(t) = A(t)x(t) + (B(t) + λW2(t))u(t),

u′(t) = (C(t) − λW1(t))x(t) −A∗(t)u(t)
(1.1)

and Everitt and Kumar [15, 16] on higher-order scalar problems. The work for this period is
summarized by Atkinson [1], and Everitt and Kumar [15, 16]. Again, there were many other
contributors. One contribution, perhaps, deserves special mention. Walker [17] showed that
every scalar self-adjoint problem of an arbitrary order can be reformulated as an equivalent
self-adjoint Hamiltonian system. This removed the need to discuss scalar problems and
systems separately.

In the 1980s and 1990s, Hinton and Shaw [5–9, 11], Krall [18–20], and Remling [21]
have made great progress by considering singular spectral problems in the Hamiltonian
system format, following the lead of Atkinson [1]. In the 2000s, Brown and Evans [22],
Clark and Gesztesy [23], Qi and Chen [24], Qi [25], Remling [21], Shi [26], Sun et al. [27],
Zheng and Chen [28] have made progress by considering spectral problems for Hamiltonian
differential systems.

1.2. Difference Equations

Spectral problems of discrete linear Hamiltonian systems

Δx(t) = A(t)x(t + 1) + (B(t) + λW2(t))u(t),

Δu(t) = (C(t) − λW1(t))x(t + 1) −A∗(t)u(t)
(1.2)

are also divided into two groups: regular and singular problems. Singular spectral problems
of second-order self-adjoint scalar difference equations over infinite intervals were first
studied by Atkinson [1]. His work was followed by Agarwal et al. [29], Bohner [30], Bohner
et al. [31], Clark and Gesztesy [32], Shi [33, 34], and Sun et al. [35]. In [1], Atkinson first
studied the Weyl-Titchmarsh theory and the spectral theory for the system (1.2). Following
him, Hinton and Shaw have made great progress by considering Weyl-Titchmarsh theory
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and spectral theory for the system (1.2). Shi studied Weyl-Titchmarsh theory and spectral
theory for the system (1.2) in [33, 34]; Clark and Gesztesy established the Weyl-Titchmarsh
theory for a class of discrete Hamiltonian systems that include system (1.2) [23]. Sun et al.
established the GKN-theory for the system (1.2) [35].

1.3. Dynamic Equations

A time scale T is an arbitrary nonempty closed subset of the real numbers. The theory of time
scales was introduced by Hilger in his Ph.D. thesis in 1988 in order to unify continuous and
discrete analysis [36]. Several authors have expounded on various aspects of this new theory;
see the survey paper by Agarwal et al. [37, 38] and references cited therein. A book on the
subject of time scales, by Bohner and Peterson [39], summarizes and organizes much of the
time scale calculus. We refer also to the book by Bohner and Peterson [40] for advances in
dynamic equations on time scales and to the book by Lakshmikantham et al. [41].

This paper is devoted to the Weyl-Titchmarsh theory for linear Hamiltonian dynamic
systems

xΔ(t) = A(t)xσ(t) + (B(t) + λW2(t))u(t),

uΔ(t) = (C(t) − λW1(t))xσ(t) −A∗(t)u(t),
(1.3)

where t takes values in a time scale T, σ(t) := inf{s ∈ T | s > t} is the forward jump
operator on T, xσ = x ◦ σ, and Δ denotes the Hilger derivative. A universal method we
provided here allows one to treat both continuous and discrete linear Hamiltonian systems
as special cases within one theory and to explain the discrepancies between them. This paper
extends the Weyl-Titchmarsh theory and provides a foundation for studying spectral theory
of Hamiltonian dynamic systems on time scales. Some ideas in this paper are motivated by
some works in [5–9, 11, 18–20, 34, 35, 42].

The paper is organized as follows. Some fundamental theory for Hamiltonian systems
is given in Section 2. Some regular spectral problems are considered in Section 3. The Weyl
matrix disks are constructed and their properties are studied in Section 4. These matrix
disks are nested and converge to a limiting set of the matrix circle. The results are some
generalizations of the Weyl-Titchmarsh theory for both Hamiltonian differential systems
[6, 9, 18, 20, 26] and discrete Hamiltonian systems [34]. These investigations are part of
a larger program which includes the following: (i) M(λ) theory for singular Hamiltonian
systems, (ii) on the spectrum of Hamiltonian systems, (iii) on boundary value problems for
Hamiltonian dynamic systems.

2. Assumptions and Preliminary Results

Throughout we use the following assumption.

Assumption 1. ˜T is a time scale that is unbounded above, that is, ˜T is a closed subset of R such
that sup ˜T = ∞. We let a ∈ ˜T and define T = ˜T ∩ [a,∞).
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In this section, we shall study the fundamental theory and properties of solutions for
the Hamiltonian dynamic system (1.3), that is,

JyΔ(t) := (λW(t) + P(t))ỹ(t) for t ∈ T, (2.1)

where

y =

(

x

u

)

, ỹ =

(

xσ

u

)

, P =

(−C A∗

A B

)

, W =

(

W1 0

0 W2

)

, J =

(

0 −In
In 0

)

(2.2)

are subject to the following assumptions.

Assumption 2. A, B,C,W1,W2 are n×n complex-valuedmatrix functions belonging toCrd(T),
A∗(t) is the complex conjugate transpose of A(t), and B(t), C(t), W1(t), W2(t) are Hermitian,
W1(t),W2(t) are nonnegative definite, and

˜A(t) := In − μ(t)A(t) is nonsingular on T, (2.3)

In is the n × n identity matrix, and μ is the graininess of T defined by μ(t) := σ(t) − t.

Remark 2.1. If T = R, then xΔ = x′ and all points in T satisfy σ(t) = t, and (1.3) becomes (1.1).
If T = Z, then xΔ = Δx and all points in T satisfy σ(t) = t + 1, and (1.3) turns into (1.2).

Assumption 3. We always assume that the following definiteness condition holds: for any
nontrivial solution y of (2.1), we have

∫ c

a

ỹ∗(τ)W(τ)ỹ(τ)Δτ > 0, ∀c ∈ T \ {a}. (2.4)

Remark 2.2. If T = R, then the condition (2.4) is just the same as Atkinson’s definiteness
condition. In the case of T = N, the condition is the one used in [34, 35].

By a solution of (2.1), we mean an n × 1 vector-valued function y satisfying (2.1) on T.
Now we consider the existence of solutions to (2.1).

Theorem 2.3 (Existence and Uniqueness Theorem). For arbitrary initial data t0 ∈ T, y0 ∈ C
2n,

the initial value problem of (2.1) with y(t0) = y0 has a unique solution on T.

Proof. By [43, Proposition 1.1], we can rewrite (2.1) as

yΔ(t) = H(t, λ)y(t), t ∈ T, (2.5)

where

H(·, λ) =
⎛

⎝

˜AA ˜A(B + λW2)

(C − λW1) ˜A μ(C − λW1) ˜A(B + λW2) −A∗

⎞

⎠ (2.6)
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and H(·, λ) is symplectic with respect to T, that is,

H∗
(

·, λ
)

J + JH(·, λ) + μH∗
(

·, λ
)

JH(·, λ) = 0 on T, (2.7)

and hence I2n+μH(·, λ) is symplectic. So I2n+μH(·, λ) is invertible and thus (2.1) has a unique
solution by [39, Theorem 5.24]. This completes the proof.

Now we consider the structure of solutions for the system (2.1).

Proposition 2.4. If y1, y2 are solutions of (2.1), then any linear combination of y1 and y2 is also a
solution of (2.1).

Proposition 2.5. There exist 2n linearly independent solutions y1, . . . , y2n of the system (2.1), and
every solution y of the system (2.1) can be expressed in the form y = c1y1 + · · · + c2ny2n, where
c1, . . . , c2n ∈ C are constants.

Every such set of 2n linearly independent solutions y1, y2, . . . , y2n is called a
fundamental solution set. The matrix-valued function Y = (y1, y2, . . . , y2n) is called a
fundamental matrix for the system (2.1).

Corollary 2.6. LetZ be a fundamental matrix for (2.1). Then every solution of (2.1) can be expressed
by z = Zc for some c ∈ C

2n.

Lemma 2.7. Let Y (·, λ) be a fundamental matrix for the system (2.1). Then

Y ∗
(

t, λ
)

JY (t, λ) = Y ∗
(

a, λ
)

JY (a, λ), ∀t ∈ T. (2.8)

Proof. From (2.5) and (2.7), we have

(

Y ∗
(

·, λ
)

JY (·, λ)
)Δ

= (Y ∗)Δ
(

·, λ
)

JYσ(·, λ) + Y ∗
(

·, λ
)

JYΔ(·, λ)

= (Y ∗)Δ
(

·, λ
)

J
(

Y (·, λ) + μYΔ(·, λ)
)

+ Y ∗
(

·, λ
)

JYΔ(·, λ)

= Y ∗
(

·, λ
)[

H∗
(

·, λ
)

J + JH(·, λ) + μH∗
(

·, λ
)

JH(·, λ)
]

Y (·, λ)

= 0

(2.9)

on T, and so by [39, Corollary 1.68] there exists a constant matrix ˜C with Y ∗(·, λ)JY (·, λ) = ˜C
on T. This completes the proof.

In the rest of the paper, we use the following notation for the imaginary part of a
complex number or matrix:

Iλ =
λ − λ

2i
, IM =

M −M∗

2i
. (2.10)
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3. Eigenvalue Problems

Let y ∈ C
2n be defined on [a, b] ⊂ T with b ∈ T and let M,N ∈ C

2n×2n. We consider the
boundary condition

My(a) +Ny(b) = 0. (3.1)

Definition 3.1. The boundary condition (3.1) is called formally self adjoint if

y∗
1Jy2|ba = 0, ∀y1, y2 ∈ C

2n satisfying (3.1). (3.2)

Lemma 3.2. Let M and N be 2n × 2n matrices such that rank(M,N) = 2n. Then the boundary
condition (3.1) is formally self adjoint if and only if MJM∗ = NJN∗.

Proof. Let P =
(

P1

P2

)

be anymatrix with ImP = Ker(M,N). ThenMP1+NP2 = 0, rankP = 2n,

and so My(a) + Ny(b) = 0 if and only if y(a) = P1c and y(b) = P2c for some c ∈ C
2n. This

yields that the boundary condition (3.1) is formally self adjoint if and only if

y∗
1Jy2|ba = c∗1

(

P ∗
2JP2 − P ∗

1JP1
)

c2 = 0, ∀c1, c2 ∈ C
2n, (3.3)

that is,

P ∗
2JP2 = P ∗

1JP1. (3.4)

First, assume thatMJM∗ = NJN∗. From rank(M,N) = 2n, we can conclude that

Im

( JM∗

−JN∗

)

= Ker(M,N). (3.5)

Hence, the matrix P above can be taken to be
( JM∗

−JN∗

)

and then MJM∗ = NJN∗ yields

P ∗
2JP2 = P ∗

1JP1, which means that the boundary condition (3.1) is formally self adjoint.
Next, assume that the boundary condition is self adjoint, that is, P ∗

2JP2 = P ∗
1JP1. Then

P ∗
1JP1 − P ∗

2JP2 = 0, P ∗
1M∗ + P ∗

2N∗ = 0 and rankP = rank(M,N) = 2n imply that

Ker
(

P ∗
1 , P

∗
2
)

= Im

(M∗

N∗

)

= Im

( JP1

−JP2

)

. (3.6)

Hence M∗ = JP1S and N∗ = −JP2S for some invertible matrix S, and it follows that

MJM∗ = S∗P ∗
1J∗JJP1S = S∗P ∗

2J∗JJP2S = NJN∗, (3.7)

which completes the proof.
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Now we consider the system (2.1) with the formally self-adjoint boundary conditions

αy(a) = 0, βy(b) = 0, (3.8)

where α and β are n × 2n matrices satisfying the self-adjoint conditions

rankα = n, αα∗ = In, αJα∗ = 0,

rank β = n, ββ∗ = In, βJβ∗ = 0.
(3.9)

Since (3.9) can be written as My(a) = 0, Ny(b) = 0, where

M =

(

α

0

)

, N =

(

0

β

)

, (3.10)

we have MJM∗ =
(

α

0

)

J(α∗ 0) = 0 and NJN∗ =
( 0

β

)

J(0 β∗) = 0. Hence, by Lemma 3.2,
the boundary condition (3.8) is self adjoint.

Let θ(·, λ) and φ(·, λ) be the 2n × n matrix-valued solutions of (2.1) satisfying

θ(a, λ) = α∗, φ(a, λ) = Jα∗. (3.11)

It is clear that αθ(a, λ) = In and αφ(a, λ) = 0. Set Y = (θ φ). Then Y (·, λ) is the fundamental
matrix for (2.1) satisfying Y (a, λ) = (α∗ Jα∗).

Lemma 3.3. Let Y (·, λ) be the fundamental matrix for (2.1) satisfying Y (a, λ) = (α∗ Jα∗). Then

Y ∗
(

·, λ
)

JY (·, λ) = Y (·, λ)JY ∗
(

·, λ
)

= J on T. (3.12)

Proof. From Lemma 2.7,

Y ∗
(

t, λ
)

JY (t, λ) = Y ∗
(

a, λ
)

JY (a, λ) =

(

α

αJ∗

)

J(α∗ Jα∗) = J, ∀t ∈ T. (3.13)

Furthermore, −JY ∗(·, λ)JY (·, λ) = I2n on T implies JY (·, λ)(−JY ∗(·, λ)) = I2n on T. It follows
that Y (·, λ)JY ∗(·, λ) = J on T. This completes the proof.

Theorem 3.4. Assume (3.9). Then λ is an eigenvalue of the problem (2.1), (3.8) if and only if
det(βφ(b, λ)) = 0, and y(·, λ) is a corresponding eigenfunction if and only if there exists a vector
ξ ∈ C

n such that y(·, λ) = φ(·, λ)ξ on T, where ξ is a nonzero solution of the equation βφ(b, λ)ξ = 0.

Proof. Assume (3.9). Let λ be an eigenvalue of the eigenvalue problem (2.1), (3.8) with
corresponding eigenfunction y(·, λ). Then there exists a unique constant vector η ∈ C

2n \ {0}
such that

y(t, λ) = Y (t, λ)η, ∀t ∈ T. (3.14)
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Then, using (3.8) and (3.9),

0 = αy(a, λ) = αY (a, λ)η = α(α∗ Jα∗)η = (In 0)η = ζ, where η =

(

ζ

ξ

)

(3.15)

with ζ, ξ ∈ C
n. Thus y(t, λ) = φ(t, λ)ξ, and (3.8) implies that βφ(b, λ)ξ = 0. Clearly, ξ /= 0, since

y(·, λ)/= 0. Hence ξ is a nonzero solution of βφ(b, λ)ξ = 0. Thus det(βφ(b, λ)) = 0.
Conversely, if λ satisfies det(βφ(b, λ)) = 0, then βφ(b, λ)ξ = 0 has a nonzero solution ξ.

Let y(·, λ) = φ(·, λ)ξ. Then βy(b, λ) = 0. Moreover, αy(a, λ) = αφ(a, λ)ξ = αJα∗ = 0 by (3.9).
Taking into account rankφ(a, λ) = rank(Jα∗) = n, we get that y(·, λ) is a nontrivial solution
of (2.1). This completes the proof.

Lemma 3.5. Let y(·, λ) and y(·, ν) be any solutions of (2.1) corresponding to the parameters λ,
ν ∈ C. Then

y∗(t, ν)Jy(t, λ)|ba = (λ − ν)
∫b

a

ỹ∗(t, ν)W(t)ỹ(t, λ)Δt. (3.16)

In particular,

y∗(t, λ)Jy(t, λ)|ba = 2iIλ
∫b

a

ỹ∗(t, λ)W(t)ỹ(t, λ)Δt. (3.17)

Proof. Set

(

ly
)

(t, λ) = JyΔ(t, λ) − P(t)ỹ(t, λ). (3.18)

Then from [44, Lemma 2] we have

y∗(t, ν)Jy(t, λ)|ba =
∫b

a

[

ỹ∗(t, ν)
(

ly
)

(t, λ) − (ly)∗(t, ν)ỹ(t, λ)]Δt

=
∫b

a

[

ỹ∗(t, ν)λW(t)ỹ(t, λ) − (νW(t)ỹ(t, ν)
)∗
ỹ(t, λ)

]

Δt

= (λ − ν)
∫b

a

ỹ∗(t, ν)W(t)ỹ(t, λ)Δt.

(3.19)

This completes the proof.

Theorem 3.6. Assume (3.9). Then all eigenvalues of (2.1), (3.8) are real, and eigenvectors
corresponding to different eigenvalues are orthogonal.

Proof. Assume (3.9) and let λ be an eigenvalue of (2.1), (3.8) with corresponding
eigenfunction y(·, λ). Hence y(·, λ) satisfies (2.1) and

y(a, λ) ∈ Kerα = ImJα∗, y(b, λ) ∈ Ker β = ImJβ∗, (3.20)
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which follows from (3.9) and [10, Corollary 3.1.3]. Thus there exist c1, c2 ∈ C
n such that

y(a, λ) = Jα∗c1, y(b, λ) = Jβ∗c2. (3.21)

Using Lemma 3.5 and (3.9), we have

2iIλ
∫b

a

ỹ∗(t, λ)W(t)ỹ(t, λ)Δt = y∗(t, λ)Jy(t, λ)|ba = c∗2βJ∗JJβ∗c2 − c∗1αJ∗JJα∗c1 = 0 (3.22)

so that Iλ = 0 and λ ∈ R. Now let y(·, λ) and y(·, ν) be eigenfunctions corresponding to the
eigenvalues λ/= ν. Then, using Lemma 3.5 and proceeding as above, we have

(λ − ν)
∫b

a

ỹ∗(t, ν)W(t)ỹ(t, λ)Δt = y∗(t, ν)Jy(t, λ)|ba = 0 (3.23)

so that y(·, λ) and y(·, ν) are orthogonal.

4. Weyl-Titchmarsh Circles and Disks

In this section, we consider the construction of Weyl-Titchmarsh disks and circles for
Hamiltonian dynamic systems (2.1). Assume (3.9) and let α, β and Y (·, λ) be defined as in
Section 3. Suppose λ ∈ C \ R and set

χb(·, λ) = Y (·, λ)
(

In

M(b, λ)

)

, where M(b, λ) = Mβ(b, λ) = −(βφ(b, λ))−1βθ(b, λ) (4.1)

(observe Theorems 3.4 and 3.6). For any n × n matrix M, define

E(M,b, λ) := −i sgn(Iλ)(In M∗)Y ∗(b, λ)JY (b, λ)

(

In

M

)

,

χ(·, λ) = Y (·, λ)
(

In

M

)

.

(4.2)

It is clear that

E(M(b, λ), b, λ) = −i sgn(Iλ)χ∗
b(b, λ)Jχb(b, λ). (4.3)

Definition 4.1. Let λ ∈ C \ R. The sets

D(b, λ) =
{

M ∈ C
n×n | E(M,b, λ) ≤ 0

}

and K(b, λ) =
{

M ∈ C
n×n | E(M,b, λ) = 0

}

(4.4)

are called a Weyl disk and aWeyl circle, respectively.
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Theorem 4.2. Let λ ∈ C \ R. Then

K(b, λ) =
{

Mβ(b, λ) | β satisfies (3.9)
}

. (4.5)

Proof. Let λ ∈ C \ R. Assume that β satisfies (3.9). Let η ∈ C
2n. Then βχb(b, λ)η = 0 so that

(use again (3.9) and [10, Corollary 3.1.3])

χb(b, λ)η ∈ Ker β = ImJ∗β, (4.6)

and thus there exists c ∈ C
n such that χb(b, λ)η = J∗βc. Hence

η∗χ∗
b(b, λ)Jχb(b, λ)η = c∗β∗JJJ∗βc = c∗β∗Jβc = 0 (4.7)

by (3.9). So χ∗
b
(b, λ)Jχb(b, λ) = 0, that is, E(M(b, λ), b, λ) = 0.

Conversely, if E(M,b, λ) = 0, then

0 =
(

In M∗)Y ∗(b, λ)JY (b, λ)

(

In

M

)

= γJγ∗, where γ = (In M∗)Y ∗(b, λ)J. (4.8)

Then rank γ = n and γχ(b, λ) = 0. Since

γγ∗ = (In M∗)Y ∗(b, λ)Y (b, λ)

(

In

M

)

> 0, (4.9)

we can define β = (γγ∗)−1/2γ . Then β satisfies (3.9) and βY (b, λ)
(

In

M

)

= 0. It follows that

M = −(βφ(b, λ))−1βθ(b, λ) = M(b, λ).

Let

F(b, λ) := −i sgn(Iλ)Y ∗(b, λ)JY (b, λ). (4.10)

Then F(b, λ) is a 2n × 2n Hermitian matrix and

E(M,b, λ) = (In M∗)F(b, λ)
(

In

M

)

. (4.11)

Lemma 4.3. For λ ∈ C \ R and b ≥ a, we have

F(b, λ) = sgn(Iλ)

(

−iJ + 2Iλ
∫b

a

˜Y ∗(t, λ)W(t) ˜Y (t, λ)Δt

)

, (4.12)

∫b

a

χ̃∗(t, λ)W(t)χ̃(t, λ)Δt =
1

2|Iλ|E(M,b, λ) +
IM

Iλ
. (4.13)
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Proof. From Lemma 3.5, we obtain

Y ∗(b, λ)JY (b, λ) = Y ∗(a, λ)JY (a, λ) + 2iIλ
∫b

a

˜Y ∗(t, λ)W(t) ˜Y (t, λ)Δt

= J + 2iIλ
∫b

a

˜Y ∗(t, λ)W(t) ˜Y (t, λ)Δt,

(4.14)

and so (4.12) follows from (4.10). From (4.12), we obtain

∫b

a

χ̃∗(t, λ)W(t)χ̃(t, λ)Δt = (In M∗)
∫b

a

˜Y ∗(t, λ)W(t) ˜Y (t, λ)Δt

(

In

M

)

=
1

2|Iλ|(In M∗)
[F(b, λ) + i sgn(Iλ)J]

(

In

M

)

=
1

2|Iλ|(In M∗)F(b, λ)
(

In

M

)

+
IM

Iλ

=
1

2|Iλ|E(M,b, λ) +
IM

Iλ
.

(4.15)

This completes the proof.

Theorem 4.4. Let λ ∈ C \ R. Then

D(b2, λ) ⊂ D(b1, λ) for any b1, b2 ∈ T with b1 < b2. (4.16)

Proof. Let λ ∈ C \ R and b1 < b2. Assume M ∈ D(b2, λ). Then E(M,b2, λ) ≤ 0. By Lemma 3.5
and Assumption 2,

F(b2, λ) − F(b1, λ) = 2|Iλ|
∫b2

b1

˜Y ∗(t, λ)W(t) ˜Y (t, λ)Δt > 0, (4.17)

which implies that E(M,b2, λ) ≥ E(M,b1, λ). From this, we have E(M,b1, λ) ≤ 0. Thus M ∈
D(b1, λ).

Now we study convergence of the disks. For this purpose, we denote

F(b, λ) =
(

F11(b, λ) F12(b, λ)

F∗
12(b, λ) F22(b, λ)

)

, (4.18)

where F11(b, λ), F12(b, λ), and F22(b, λ) are n × n matrices.

Lemma 4.5. For λ ∈ C \ R, F11(b, λ) and F22(b, λ) are positive definite and nondecreasing in b.
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Proof. From (4.10), (4.12), and (4.13), we have

F11(b, λ) = −i sgn(Iλ)θ∗(b, λ)Jθ(b, λ) = 2|Iλ|
∫b

a

˜θ∗(t, λ)W(t)˜θ(t, λ)Δt,

F22(b, λ) = −i sgn(Iλ)φ∗(b, λ)Jφ(b, λ) = 2|Iλ|
∫b

a

˜φ∗(t, λ)W(t) ˜φ(t, λ)Δt.

(4.19)

Employing Assumption 2 completes the proof.

Using the notation of (4.13), we find that (4.11) can be rewritten as

E(M,b, λ) = M∗F22(b, λ)M + F12(b, λ)M +M∗F∗
12(b, λ) + F11(b, λ)

=
[

M + F−1
22 (b, λ)F

∗
12(b, λ)

]∗
F22(b, λ)

[

M + F−1
22 (b, λ)F

∗
12(b, λ)

]

+ F11(b, λ) − F12(b, λ)F−1
22 (b, λ)F

∗
12(b, λ).

(4.20)

Lemma 4.6. For λ ∈ C \ R, F12(b, λ)F−1
22 (b, λ)F

∗
12(b, λ) − F11(b, λ) = F−1

22 (b, λ).

Proof. By applying Lemma 3.3 twice, we find

F∗(b, λ)JF
(

b, λ
)

=
(−i∗ sgn(Iλ))

(

−i sgn
(

Iλ
))

Y ∗(b, λ)J∗Y (b, λ)JY ∗
(

b, λ
)

JY
(

b, λ
)

= −Y ∗(b, λ)J∗JJY
(

b, λ
)

= −Y ∗(b, λ)JY
(

b, λ
)

= −J.

(4.21)

Hence

F12(b, λ)F12

(

b, λ
)

− F11(b, λ)F22

(

b, λ
)

= In, F22(b, λ)F12

(

b, λ
)

− F∗
12(b, λ)F22

(

b, λ
)

= 0.

(4.22)

From the second relation in (4.22), we have (observe Lemma 4.3)

F12

(

b, λ
)

F−1
22

(

b, λ
)

= F−1
22 (b, λ)F

∗
12(b, λ), (4.23)

and hence, using also the first relation in (4.22), we obtain

F12(b, λ)F−1
22 (b, λ)F

∗
12(b, λ) − F11(b, λ) = F12(b, λ)F12

(

b, λ
)

F−1
22

(

b, λ
)

− F11(b, λ)

=
(

In + F11(b, λ)F22

(

b, λ
))

F−1
22

(

b, λ
)

− F11(b, λ)

= F−1
22

(

b, λ
)

,

(4.24)

which completes the proof.



Abstract and Applied Analysis 13

From Lemma 4.6, (4.11), and hence (4.20), can be rewritten in the form

E(M,b, λ) = (M − C(b, λ))∗R−2(b, λ)(M − C(b, λ)) − R2
(

b, λ
)

, (4.25)

where

C(b, λ) = −F−1
22 (b, λ)F

∗
12(b, λ), R(b, λ) = F−1/2

22 (b, λ). (4.26)

Definition 4.7. C(b, λ) is called the center of the Weyl disk D(b, λ) or the Weyl circle K(b, λ),
while R(b, λ) and R(b, λ) are called the matrix radii of D(b, λ) or K(b, λ).

Theorem 4.8. Define the unit matrix circle and the unit matrix disk by

∂D =
{

U ∈ C
n×n | U∗U = In

}

and D =
{

V ∈ C
n×n | V ∗V ≤ In

}

, (4.27)

respectively. Then

K(b, λ) =
{

C(b, λ) + R(b, λ)UR
(

b, λ
)

| U ∈ ∂D
}

,

D(b, λ) =
{

C(b, λ) +R(b, λ)VR
(

b, λ
)

| V ∈ D
}

.

(4.28)

Proof. We only prove the first statement as the second one can be shown similarly. From
(4.25),

E(M,b, λ) = 0 if and only if
[

R−1(b, λ)(M − C(b, λ))R−1
(

b, λ
)]∗[R−1(b, λ)(M − C(b, λ))R−1

(

b, λ
)]

= In.
(4.29)

First, let M ∈ K(b, λ) and put U = R−1(b, λ)(M − C(b, λ))R−1(b, λ). Then M = C(b, λ) +
R(b, λ)UR(b, λ) and (4.29) yields U∗U = In. Conversely, let U be unitary and define M =
C(b, λ) + R(b, λ)UR(b, λ). ThenU = R−1(b, λ)(M − C(b, λ))R−1(b, λ), so that

[

R−1(b, λ)(M − C(b, λ))R−1
(

b, λ
)]∗[

R−1(b, λ)(M − C(b, λ))R−1
(

b, λ
)]

= In, (4.30)

and hence (4.29) yields M ∈ K(b, λ).

Theorem 4.9. For all λ ∈ C \ R, limb→∞R(b, λ) exists and limb→∞R(b, λ) ≥ 0.

Proof. From Lemma 4.5, F22(b, λ) > 0 is Hermitian and nondecreasing in b. Thus R(b, λ) =
F−1/2
22 (b, λ) > 0 is Hermitian and nonincreasing in b. Hence limb→∞R(b, λ) exists and is

nonnegative definite.

Theorem 4.10. For all λ ∈ C \ R, limb→∞C(b, λ) exists.
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Proof. Let b1, b2 ∈ T with b1 < b2. Let V ∈ D and define

M = C(b2, λ) + R(b2, λ)VR
(

b2, λ
)

. (4.31)

By Theorem 4.8, M ∈ D(b2, λ). Hence, by Theorem 4.4, M ∈ D(b1, λ). Again by Theorem 4.8,
there exists Φ(V ) ∈ D with

M = C(b1, λ) + R(b1, λ)Φ(V )R
(

b1, λ
)

. (4.32)

Thus Φ : D → D satisfies

Φ(V ) = R−1(b1, λ)
[

C(b2, λ) − C(b1, λ) + R(b2, λ)VR
(

b2, λ
)]

R−1
(

b1, λ
)

(4.33)

for all V ∈ D. This implies

Φ(VI) −Φ(VII) = R−1(b1, λ)R(b1, λ)[VI − VII]R
(

b2, λ
)

R−1
(

b2, λ
)

(4.34)

for all VI, VII ∈ D. Thus Φ : D → D is continuous and hence has a fixed point ˜V ∈ D by
Brouwer’s fixed point theorem. Letting Φ( ˜V ) = ˜V in (4.33), we have

‖C(b2, λ) − C(b1, λ)‖ =
∥

∥

∥R(b1, λ) ˜VR
(

b1, λ
)

− R(b2, λ) ˜VR
(

b2, λ
)∥

∥

∥

≤
∥

∥

∥R(b1, λ) ˜VR
(

b1, λ
)

− R(b1, λ) ˜VR
(

b2, λ
)∥

∥

∥

+
∥

∥

∥R(b1, λ) ˜VR
(

b2, λ
)

− R(b2, λ) ˜VR
(

b2, λ
)∥

∥

∥

≤ ‖R(b1, λ)‖
∥

∥

∥R
(

b2, λ
)

− R
(

b1, λ
)∥

∥

∥

+ ‖R(b2, λ) − R(b1, λ)‖
∥

∥

∥R
(

b2, λ
)∥

∥

∥,

(4.35)

where ‖ · ‖ is a matrix norm. Using Theorem 4.9 completes the proof.

Definition 4.11. Let λ ∈ C \ R and define

C0(λ) := lim
b→∞

C(b, λ), R0(λ) := lim
b→∞

R(b, λ). (4.36)

Then C0(λ) is called the center, and R0(λ) and R0(λ) are called the matrix radii of the limiting
set

D0(λ) :=
{

C0(λ) + R0(λ)VR0

(

λ
)

| V ∈ D
}

. (4.37)

The following result gives another expression for D0(λ).
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Theorem 4.12. The set D0(λ) is given by D0(λ) =
⋂

b≥a D(b, λ).

Proof. If M ∈ D0(λ), then there exists V ∈ D such that M = C0(λ) + R0(λ)VR0(λ). Hence
M = limb→∞M(b), whereM(b) = C(b, λ)+R(b, λ)VR(b, λ). Let ˜b ≥ a. ThenM(b) ∈ D(b, λ) ⊂
D(˜b, λ) for all b ≥ ˜b by Theorem 4.4 and thus M = limb→∞M(b) ∈ D(˜b, λ). Therefore M ∈
⋂

b≥a D(b, λ).
Conversely, if M ∈ ⋂b≥a D(b, λ), then for all b ≥ a, there exists Vb ∈ D such that

M = C(b, λ) + R(b, λ)VbR(b, λ). Since D is compact, there exist a sequence {bk} and V ∈ D

such that Vbk → V as k → ∞. ThusM = C0(λ) + R0(λ)VR0(λ) ∈ D0(λ).

Theorem 4.13. For all λ ∈ C \ R and for M ∈ D0(λ), we have Iλ · IM > 0.

Proof. Assume that λ ∈ C \ R and let M ∈ D0(λ). Fix an arbitrary b > a. From Theorem 4.12,
D0(λ) ⊂ D(b, λ). Hence M ∈ D(b, λ), and thus E(M,b, λ) ≤ 0. Therefore, (4.13) and
Assumption 2 yield

IM

Iλ
≥
∫b

a

χ̃∗(t, λ)W(t)χ̃(t, λ)Δt > 0. (4.38)

The proof is complete.

Definition 4.14. Let M be an n × n matrix and λ ∈ C \ R. We say that

(1) M lies in the limit circle ifM ∈ D0(λ);

(2) M lies on the boundary of the limit circle if M ∈ D0(λ) and there exists a sequence
bk → ∞ as k → ∞ such that limk→∞E(M,bk, λ) = 0.

Theorem 4.15. Let M ∈ C
n×n and λ ∈ C \ R. Then

(1) M lies in the limit circle if and only if

∫∞

a

χ̃∗(t, λ)W(t)χ̃(t, λ)Δt ≤ IM

Iλ
; (4.39)

(2) M lies on the boundary of the limit circle if and only if

∫∞

a

χ̃∗(t, λ)W(t)χ̃(t, λ)Δt =
IM

Iλ
. (4.40)

Proof. AssumeM ∈ D0(λ). Let b > a. ThenM ∈ D(b, λ) by Theorem 4.12. Hence E(M,b, λ) ≤
0. From (4.13), we have that

∫b

a

χ̃∗(t, λ)W(t)χ̃(t, λ)Δt =
1

2|Iλ|E(M,b, λ) +
IM

Iλ
≤ IM

Iλ
. (4.41)
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Letting b → ∞, we arrive at (4.39). Conversely, assume that (4.39) holds. Let b ≥ a. By
Assumption 2,

∫b

a

χ̃∗(t, λ)W(t)χ̃(t, λ)Δt ≤
∫∞

a

χ̃∗(t, λ)W(t)χ̃(t, λ)Δt ≤ IM

Iλ
. (4.42)

So E(M,b, λ) ≤ 0 by (4.13). This shows that M ∈ D(b, λ). Using Theorem 4.12 yields M ∈
D0(λ). This proves (1), and (2) can be concluded immediately by result (1) and (4.13).

Theorem 4.16. Let λ ∈ C \ R. Then M lies on the boundary of the limit circle if and only if
limt→∞χ∗(t, λ)Jχ(t, λ) = 0.

Proof. From Lemma 3.5, for any t > a, we have that

χ∗(·, λ)Jχ(·, λ)|ta = 2iIλ
∫ t

a

χ̃∗(s, λ)W(s)χ̃(s, λ)Δs. (4.43)

Since

χ∗(a, λ)Jχ(a, λ) = M∗ −M = −2iIM, (4.44)

we get

χ∗(t, λ)Jχ(t, λ) = 2iIλ
∫ t

a

χ̃∗(s, λ)W(s)χ̃(s, λ)Δs − 2iIM. (4.45)

From Theorem 4.15, M is on the boundary of the limit circle if and only if

Iλ ·
∫∞

a

χ̃∗(t, λ)W(t)χ̃(t, λ)Δt − IM = 0. (4.46)

So by (4.45), we have that M is on the boundary of the limit circle if and only if

lim
t→∞

χ∗(t, λ)Jχ(t, λ) = 0. (4.47)

This completes the proof.
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