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Motivated by Iričanin and Stević’s paper (2006) in which for the first time were considered
some cyclic systems of difference equations, here we study the global attractivity of some
nonlinear k-dimensional cyclic systems of higher-order difference equations. To do this, we use the
transformation method from Berenhaut et al. (2007) and Berenhaut and Stević (2007). The main
results in this paper also extend our recent results in the work of (Liu and Yang 2010, in press).

1. Introduction

Motivated by papers [1, 2], in [3], we proved that the unique positive equilibrium points of
the following difference equations:
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, n ∈ N0, (1.1)

where k, l,m ∈ N, 1 ≤ k < l < m, and r ∈ (0, 1] are globally asymptotically stable, respectively.
Motivated by paper [4] by Iričanin and Stević, in which for the first time were

considered some cyclic systems of difference equations, here wemainly investigate the global
attractivity of the k-dimensional system of higher-order difference equations
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where r ∈ (0, 1], k, l,m ∈ N, k ≥ 2, θ(s) = s(mod k), and θ(k) = k, as well as the following
counterpart difference equation system:
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where r ∈ (0, 1], k, p, q ∈ N, k ≥ 2.
Furthermore, we also present some similar results regarding the k-dimensional cyclic

difference equation system:
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where i = 1, 2, . . . , k and r ∈ (0, 1], k, u, l,m ∈ N, k ≥ 3, as well as the following counterpart
difference equation system
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where i = 1, 2, . . . , k and r ∈ (0, 1], k, v, p, q ∈ N, k ≥ 3.
For some recent papers on systems of difference equations, see, for example, [4–10]

and the related references therein. Some related scalar equations have been studied mainly
by the semicycle structure analysis which was unnecessarily complicated and only useful for
lower-order equations, as it was shown by Berg and Stević in [11] (see also papers [12–22]).
Thus in this paper we will investigate systems (1.2)–(1.5) by the transformation method from
[1, 2] which makes the proofs more concise and elegant, and moreover, it is also effective for
higher-order ones.

2. Preliminary Lemmas

Before proving the main results in Section 3, in this section we will first present some useful
lemmas which are extensions of those ones in [1].

Lemma 2.1. Define a mapping F : R
+ × R

+ → R
+ by F(x, y) = (1 + xryr)/(xr + yr), where

r ∈ (0, 1]. Then,

(1) F(x, y) is nondecreasing in x if y ≥ 1 and strictly decreasing in x if 0 < y < 1;

(2) F(x, y) is nondecreasing in y if x ≥ 1 and strictly decreasing in y if 0 < x < 1.
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Proof. The results follow directly from the following fact:

F(x, y) = yr +
1 − y2r

xr + yr
= xr +

1 − x2r

xr + yr
. (2.1)

For simplicity, systems (1.2) and (1.3) can be respectively rewritten in the following
forms:

z
(i)
n = F

(
z
(i)
n−l, z

(θ(i+1))
n−m

)
, i = 1, 2, . . . , k, n ∈ N0, (2.2)
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) , i = 1, 2, . . . , k, n ∈ N0. (2.3)

Lemma 2.2. Denote a transformation

ŷ =

⎧
⎪⎪⎨
⎪⎪⎩

y if y ≥ 1,

1
y

if 0 < y < 1.
(2.4)

Then for the mapping F(x, y) defined in Lemma 2.1, we have F̂(x, y) = F(x̂, ŷ).

Proof. It is easy to see thatF defined in Lemma 2.1 is invariant, if both arguments are replaced
by the reciprocal ones, but it turns over into 1/F if only one argument is replaced by its
reciprocal value. Note that

F(x, y) − 1 =
(xr − 1)

(
yr − 1

)

xr + yr
, (2.5)

from which the result directly follows by considering the next four cases (x ≥ 1, y ≥ 1),
(x ≥ 1, y < 1), (x < 1, y ≥ 1) and (x < 1, y < 1). The proof is complete.

The following lemma is a corollary of Lemma 2.2.

Lemma 2.3. Let B : R
+ × R

+ → R
+ such that B(x, y) = 1/F(x, y); then we have

B̂(x, y) =
1

B(x̂, ŷ) = F(x̂, ŷ). (2.6)

Let (Zn)
∞
n=−α be a positive solution to system (2.2), where Zn = (z(1)n , z

(2)
n , . . . , z

(k)
n )T , α =

max{l,m}; then by the transformation (2.4), we can define a transformed sequence (Ẑn)
∞
n=−α,
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where Ẑn = (ẑ(1)n , ẑ
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Note that transformation (2.7) is a natural extension of the transformation in papers [1, 2].
Then by Lemma 2.2 and the transformation (2.4), we derive the following corollary.

Corollary 2.4. For system (2.2), we have
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ẑ
(i)
n−l

)r
+
(
ẑ
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From Corollary 2.4, we easily see that (Ẑn)
∞
n=−α is also a positive solution to the system

(2.2).

Lemma 2.5. For the function F(x, y) defined in Lemma 2.1, there hold

1 ≤ F̂(x, y) ≤ max
{
x̂, ŷ

}
, x, y > 0. (2.9)

Proof. By (2.4), it immediately follows that F̂(x, y) ≥ 1.
Let λ = max{x̂, ŷ} ≥ 1, which indicates that 1 ≤ x̂ ≤ λ and 1 ≤ ŷ ≤ λ. Employing

Lemma 2.1 two times and Lemma 2.2, we have

F̂(x, y) = F(x̂, ŷ) ≤ F(x̂, λ) ≤ F(λ, λ) = 1 + λrλr

λr + λr
≤ λ. (2.10)

The proof is complete.

The following corollary follows directly from Corollary 2.4 and Lemma 2.5.

Corollary 2.6. For the transformed sequence (Ẑn)
∞
n=−α, we get

1 ≤ ẑ
(i)
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}
, i = 1, 2, . . . , k, n ∈ N0. (2.11)

Let
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n−α≤j≤n−1
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ẑ
(i)
j

}}
, n ∈ N0, (2.12)

for a positive solution (Zn)
∞
n=−α to system (2.2).

Lemma 2.7. The sequence (Hn)
∞
n=0 is monotonically nonincreasing.

Proof. The proof is a straightforward consequence of Corollary 2.6 and (2.12), and hence is
omitted.
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3. Attractivity of (1.2) and (1.3)

In this section, we will formulate and prove the main results of this paper developing the
methods and ideas from [1].

Lemma 3.1. Both systems (2.2) and (2.3) have the unique positive equilibrium point Z =
(1, 1, . . . , 1︸ ︷︷ ︸

k

)T .

Proof. Let Z = (e1, e2, . . . , ek)
T be a positive equilibrium point of system (2.2); then we have

e1 = F(e1, e2), e2 = F(e2, e3), . . . , ek = F(ek, e1). (3.1)

Through certain calculations, we obtain

e1 − 1 =

(
er1 − 1

)(
er2 − 1

)

er1 + er2
, e2 − 1 =

(
er2 − 1

)(
er3 − 1

)

er2 + er3
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(
er
k
− 1

)(
er1 − 1

)

er
k
+ er1

. (3.2)

If there exists some s ∈ {1, 2, . . . , k} such that es = 1, then from the previous system easily
follows that ej = 1 for all j = 1, 2, . . . , k. Hence, suppose that ej /= 1 for all j = 1, 2, . . . , k; then
by comparing the signs in the last system it is easy to get that it must be ej > 1, j = 1, 2, . . . , k.
However, since r ∈ (0, 1], then

e1 − 1 ≥ er1 − 1 >

(
er1 − 1

)(
er2 − 1

)

er1 + er2
, (3.3)

which contradicts e1 = F(e1, e2). Therefore, ej = 1 for all j ∈ {1, 2, . . . , k}.
The uniqueness of equilibrium of system (2.3) can be analogously proved and thus is

omitted.

Theorem 3.2. The unique equilibrium point of system (1.2) is a global attractor.

Proof. Let (Zn)
∞
n=−α be an arbitrary positive solution to system (1.2), where Zn =

(z(1)n , z
(2)
n , . . . , z

(k)
n )T ; then we need to prove that

lim
n→∞

Zn = Z. (3.4)

Define a transformed sequence (Ẑn)
∞
n=−α by (2.4) and (2.7), where Ẑn = (ẑ(1)n , ẑ

(2)
n , . . . , ẑ

(k)
n )T ;

then it suffices to confirm that

lim
n→∞

Ẑn = Z. (3.5)

Let the sequence (Hn)
∞
n=0 be defined by (2.12); then using Lemma 2.7 we know that there is a

finite limit of Hn as n → ∞, say H. Note that H ≥ 1. By Corollary 2.6, we have ẑ(i)j ∈ [1,Hj],
for all i = 1, 2, . . . , k and j = 0, 1, 2, . . . . It suffices to show that H = 1.
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Assume that H > 1; then by Lemma 2.7 and (2.12), for arbitrary ε > 0, there exists a
sufficiently large N ∈ N such that ẑ(β)N ∈ [H,H + ε], for some β ∈ {1, 2, . . . , k} and

ẑ
(i)
n ∈ [1,H + ε], n ≥ N − α, i = 1, 2, . . . , k. (3.6)

Employing Lemma 2.1 two times and (3.6), we get

H ≤ ẑ
(β)
N = F

(
ẑ
(β)
N−l, ẑ

(θ(β+1))
N−m

)
≤ F

(
ẑ
(β)
N−l,H + ε

)
≤ F(H + ε,H + ε) =

1 + (H + ε)r(H + ε)r

(H + ε)r + (H + ε)r
.

(3.7)

Since ε > 0 is arbitrary, we get

H ≤ lim
ε→ 0+

F(H + ε,H + ε) = F(H,H) =
1 +HrHr

Hr +Hr
, (3.8)

which implies H2r − 2Hr+1 + 1 ≥ 0 for all H > 1.
On the other hand, let J(x) = x2r − 2xr+1 + 1, x > 1; then the derivative of J(x) is

J ′(x) = 2rx2r−1 − 2(r + 1)xr = 2xr
(
rxr−1 − r − 1

)
< 0. (3.9)

Since J(1) = 0,we getH2r −2Hr+1 +1 < 0 which contradictsH2r −2Hr+1 +1 ≥ 0, for allH > 1.
Therefore H = 1. The proof is complete.

By Theorem 3.2, the following corollary easily follows.

Corollary 3.3. The unique positive equilibrium point X = (
√
A,

√
A, . . . ,

√
A︸ ︷︷ ︸

k

)T of the following

difference equation system:

x
(i)
n =

A + x
(i)
n−lx

(θ(i+1))
n−m

x
(i)
n−l + x

(θ(i+1))
n−m

, i = 1, 2, . . . , k, n ∈ N0, (3.10)

where the parameter A ∈ R+, r ∈ (0, 1], k, l,m ∈ N, k ≥ 2, l /=m, and α = max{l,m}, is a global
attractor.

Theorem 3.4. The unique positive equilibrium point of system (1.3) is a global attractor.
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Proof. Let (Zn)
∞
n=−μ be any positive solution to system (1.3), where Zn = (z(1)n , z

(2)
n , . . . , z

(k)
n )

T
,

μ = max{p, q}. By using Lemma 2.3 and (1.3), we obtain
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(i)
n−p, ẑ
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)
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(
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(i)
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+
(
ẑ
(θ(i+1))
n−q

)r , i = 1, 2, . . . , k, n ∈ N0, (3.11)

which indicates that (Ẑn)
∞
n=−μ is a positive solution to system (1.2), where Ẑn = (ẑ(1)n , ẑ

(2)
n ,

. . . , ẑ
(k)
n )T . Hence by Theorem 3.2, we have

lim
n→∞

Ẑn = Z (3.12)

and then by the transformation (2.4)we easily get

lim
n→∞

Zn = Z. (3.13)

The proof is complete.

4. Attractivity of (1.4) and (1.5)

Similar to the proofs of Lemmas 2.1–2.7, we can get the following lemmas. We omit their
proofs.

Lemma 4.1. Define a mappingM : (R+)3 → R byM(x0, x1, x2) = (1+xr
0x

r
1 +xr

0x
r
2 +xr

1x
r
2)/(x

r
0 +

xr
1 + xr

2 + xr
0x

r
1x

r
2), where r ∈ (0, 1]. Then for j = 0, 1, 2 we have

(1) M(x0, x1, x2) is nonincreasing in xj if 0 < xω(j+1), xω(j+2) ≤ 1 or xω(j+1), xω(j+2) ≥ 1;

(2) M(x0, x1, x2) is nondecreasing in xj if xω(j+1) ≥ 1, 0 < xω(j+2) ≤ 1 or xω(j+2) ≥ 1,
0 < xω(j+1) ≤ 1, where ω(s) = s(mod 3).

Lemma 4.2. For the mapping M(x0, x1, x2) defined in Lemma 4.1, we have

M̂(x0, x1, x2) =
1

M(x̂0, x̂1, x̂2)
. (4.1)

Lemma 4.3. LetN : (R+)3 → R
+ such that N(x0, x1, x2) = 1/M(x0, x1, x2), then we have

N̂(x0, x1, x2) = N(x̂0, x̂1, x̂2). (4.2)

Let (Zn)
∞
n=−δ be a positive solution to the system (1.5), where Zn = (z(1)n , z

(2)
n ,

. . . , z
(k)
n )T , δ = max{v, p, q}; then by Lemma 4.2 and the transformation (2.7), we get the

following corollary.
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Corollary 4.4. For system (1.5), we have

ẑ
(i)
n =

1

M
(
ẑ
(i)
n−v, ẑ

(θ(i+1))
n−p , ẑ

(θ(i+2))
n−q

) , i = 1, 2, . . . , k, n ∈ N0. (4.3)

Lemma 4.5. For the function M(x0, x1, x2) defined in Lemma 4.1, there hold

1 ≤ M̂(x0, x1, x2) ≤ max{x̂0, x̂1, x̂2}, x0, x1, x2 > 0. (4.4)

The following corollary follows directly from Corollary 4.4 and Lemma 4.5.

Corollary 4.6. For the transformed sequence (Ẑn)
∞
n=−δ, we get

1 ≤ ẑ
(i)
n ≤ max

{
ẑ
(i)
n−v, ẑ

(θ(i+1))
n−p , ẑ

(θ(i+2))
n−q

}
, i = 1, 2, . . . , k, n ∈ N0. (4.5)

Let

Qn = max
n−δ≤j≤n−1

{
max
1≤i≤k

{
ẑ
(i)
j

}}
, n ∈ N0, (4.6)

for a positive solution (Zn)
∞
n=−δ to the system (1.5), where δ = max{v, p, q}.

Lemma 4.7. The sequence (Qn)
∞
n=0 is monotonically nonincreasing.

Note that, by the proof of Lemma 3.1 we can similarly confirm that both system (1.4)
and (1.5) have the same unique positive equilibrium Z = (1, 1, . . . , 1︸ ︷︷ ︸

k

)T .

Theorem 4.8. The unique equilibrium point of system (1.5) is a global attractor.

Proof. Let (Zn)
∞
n=−δ be an arbitrary positive solution to system (1.5), where Zn =

(z(1)n , z
(2)
n , . . . , z

(k)
n )T , then we need to prove that

lim
n→∞

Zn = Z. (4.7)

Define a transformed sequence (Ẑn)
∞
n=−δ by (2.4) and (2.7), where Ẑn = (ẑ(1)n , ẑ

(2)
n , . . . , ẑ

(k)
n )T ,

then it suffices to confirm that

lim
n→∞

Ẑn = Z. (4.8)

Let the sequence (Qn)
∞
n=0 be defined by (4.6); then by using Lemma 4.7 we know that the

limit of (Qn)
∞
n=0 exists, say Q. Note that Q ≥ 1. By Corollary 4.6 we get ẑ(i)j ∈ [1, Qj], for all

i = 1, 2, . . . , k and j = 0, 1, 2, . . . . Obviously, it suffices to show that Q = 1.
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Assume that Q > 1; then by Lemma 4.7 and (4.6), for arbitrary ε > 0, there exists a
sufficiently large N ∈ N such that ẑ(β)N ∈ [Q,Q + ε], for some β ∈ {1, 2, . . . , k} and

ẑ
(i)
n ∈ [1, Q + ε], n ≥ N − δ, i = 1, 2, . . . , k. (4.9)

Employing Lemma 4.1 three times and (4.9), we get

Q ≤ ẑ
(β)
N =

1

M
(
ẑ
(β)
N−v, ẑ

(θ(β+1))
N−p , ẑ

(θ(β+2))
N−q

) ≤ 1

M
(
Q + ε, ẑ

(θ(β+1))
N−p , ẑ

(θ(β+2))
N−q

)

≤ 1

M
(
Q + ε,Q + ε, ẑ

(θ(β+2))
N−q

)

≤ 1
M(Q + ε,Q + ε,Q + ε)

=
3(Q + ε)r + (Q + ε)3r

1 + 3(Q + ε)2r
.

(4.10)

Since ε > 0 is arbitrary, we get

Q ≤ lim
ε→ 0+

1
M(Q + ε,Q + ε,Q + ε)

=
1

M(Q,Q,Q)
=

3Qr +Q3r

1 + 3Q2r
. (4.11)

Since Q > 1; then by Lemma 2.2 in [3], we have that

3Qr +Q3r

1 + 3Q2r
< Q (4.12)

which contradicts (4.11). Therefore Q = 1. The proof is complete.

Theorem 4.9. The unique positive equilibrium point of system (1.4) is a global attractor.

Proof. The proof is similar to that of Theorem 4.8 and hence is omitted.

5. Conclusions

Following the proofs in this paper line by line, we can also similarly confirm the following
two results.

Remark 5.1. Every positive solution to the difference equation system

z
(i)
n =

1 +
(
z
(θ(i−1))
n−l

)r(
z
(i)
n−m

)r

(
z
(θ(i−1))
n−l

)r
+
(
z
(i)
n−m

)r , i = 1, 2, . . . , k, n ∈ N0, (5.1)

where r ∈ (0, 1], k, l,m ∈ N, k ≥ 2 and θ(0) = k, converges to the unique positive equilibrium
point Z = (1, 1, . . . , 1︸ ︷︷ ︸

k

)T .
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Remark 5.2. Every positive solution to the difference equation system

z
(i)
n =

(
z
(θ(i−1))
n−p

)r
+
(
z
(i)
n−q

)r

1 +
(
z
(θ(i−1))
n−p

)r(
z
(i)
n−q

)r , i = 1, 2, . . . , k, n ∈ N0, (5.2)

where r ∈ (0, 1], k, p, q ∈ N and k ≥ 2, converges to the unique positive equilibrium point
Z = (1, 1, . . . , 1︸ ︷︷ ︸

k

)T .
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[1] K. S. Berenhaut, J. D. Foley, and S. Stević, “The global attractivity of the rational difference equation
yn = (yn−k + yn−m)/(1 + yn−kyn−m),” Applied Mathematics Letters, vol. 20, no. 1, pp. 54–58, 2007.
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