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We investigate the existence and uniqueness of positive solution for system of nonlinear fractional
differential equations in two dimensions with delay. Our analysis relies on a nonlinear alternative
of Leray-Schauder type and Krasnoselskii’s fixed point theorem in a cone.

1. Introduction

Fractional differential equations have gained considerable importance due to their varied
applications [1–5] in viscoelasticity, electroanalytical chemistry, and many physical problems
[1]. So far there have been several fundamental works on the fractional derivative and
fractional differential equations, written by Oldham and Spanier [3], Miller and Ross [2],
Podlubny [1], and others. These works are an introduction to the theory of the fractional
derivative and fractional differential equations and provide a systematic understanding of
the fractional calculus such as the existence and the uniqueness, some analytic methods
for solving fractional differential equations, namely, Green‘s function method, the Mellin
transform method, and the power series.

Control systems subject to delays have been extensively studied [6] and the delay
differential equations are large and important class of dynamic systems. They often arise in
either natural or technological control problems. Equations with discontinuity often appear
in various control theory models [7, 8]. Time delay, always existing in real systems, usually
results in oscillations around the discontinuity surface. Shustin [9] has studied various
aspects of oscillations for the system of differential equations with the delay

ẋ(t) = Fi(x1(t), . . . , xn(t), t) − signxi(t − hi), i = 1, . . . , n, (1.1)
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in dynamics of oscillations in a multidimension, where F1, . . . , Fn ∈ C1(Rn+1) and h1, . . . , hn
are positive constants.

Roy et al. developed a control methodology for linear time-invariant plants that uses
multiple delayed observations in feedback [10]. Fractional differential systems have proved
to be useful in control processing for the last two decades [11, 12].

As explained in the above text regarding the ordinary differential equations in control
theory and others, we can modify the applications of ordinary differential equations to
ordinary fractional differential equations.

The existence and uniqueness of solution for the system of fractional differential
equation have been studied in the papers [13, 14]. As a pursuit in this paper, we discuss the
existence and uniqueness of positive solutions for system of nonlinear fractional differential
equations in two-dimensional with the delay

Dα[x(t) − x(0)] = f(t, xt, yt
)
, t ∈ (0, T],

Dβ[y(t) − y(0)] = g(t, xt, yt
)
, t ∈ (0, T],

(
x(t), y(t)

)
=
(
φ(t), ψ(t)

)
, t ∈ [−τ, 0],

(1.2)

where

(i) 0 < α, β < 1 and Dα, Dβ are the Riemann-Liouville fractional derivatives,

(ii) f, g:(0, T] × C2 → [0,+∞) are given continuous functions so that
limt→ 0+f(t, xt, yt) = limt→ 0+g(t, xt, yt) = +∞ (i.e., f and g are singular at t = 0) and
C = C([−τ, 0], R

≥0),

(iii) xt, yt ∈ C, where xt(s) = x(t + s), yt(s) = y(t + s), s ∈ [−τ, 0], t ∈ (0, T].

The paper is organized as follows. In Section 2, we give definitions of the fractional
derivative and fractional integral with some basic properties. Required topics of functional
analysis were also introduced. Section 3 deals with existence of positive solution theorem
and gives an illustrative example. The unique positive solution theorem with an example has
been discussed in Section 4.

2. Basic Definitions and Preliminaries

We recall some standard definitions and results [1–4, 15, 16]. In the following Π and Σ are
real Banach spaces andW is an operator (not necessarily linear)with domain inΠ and range
in Σ.

Definition 2.1. A subset K of Π is called a cone if the following conditions hold well:
(i) the set K is closed,
(ii) if f, g ∈ K,α > 0, β > 0 implies that αf + βg ∈ K,
(iii) if f ∈ K,−f ∈ K implies that f = θ which is the zero element of Π.

Note:

Every cone K induces a semiordering in Π, namely, f ≺ g if g − f ∈ K.
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Definition 2.2. For f, g ∈ E the order interval 〈f, g〉 is defined as [17]

〈
f, g

〉
=
{
h ∈ E : f ≤ h ≤ g}. (2.1)

Definition 2.3. A subset E ⊂ Π is called order bounded if E is contained in some order interval.

Definition 2.4. A coneK is called normal if there exists a positive constant μ such that f, g ∈ V
and θ ≺ f ≺ g implies that ‖f‖ ≤ μ‖g‖.

We state the two fixed point results which will be needed in this paper. Our first
result is a nonlinear alternative of Leray-Schauder type in a cone whereas our second is
Krasnoselskii‘s fixed point theorem.

Theorem 2.5 (Leray-Schauder Theorem). Let E be a Banach space with C ⊆ E closed and convex.
Assume that U is relatively open subset of C with 0 ∈ U andW : U → C is a continuous, compact
map. Then either

(i) W has fixed point inU or
(ii) there exist u ∈ ∂U and γ ∈ (0, 1) with u = γWu.

Theorem 2.6 (Krasnoselskii‘s fixed point theorem [16]). Let E = (E, ‖ · ‖) be a Banach space
and letK ⊂ E be a cone in E. Assume thatΩ1 andΩ2 are open subsets of E with 0 ∈ Ω1 andΩ1 ⊂ Ω2

and letW : K ∩ (Ω2 \Ω1) → K be continuous and completely continuous. In addition suppose that
either

(i)‖Wu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Wu‖ ≥ ‖u‖ for u ∈ K ∩Ω2 or
(ii)‖Wu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Wu‖ ≤ ‖u‖ for u ∈ K ∩Ω2.

Then,W has a fixed point in K ∩ (Ω2 \Ω1).

In this paper the Beta function B(α, β) is used also. B(α, β) is closely related to the
Gamma function [1]. If α, β > 0, then it has the integral representation

B
(
α, β

)
=
∫1

0
tα−1 (1 − t)β−1 dt. (2.2)

It may be written in terms of the Gamma function as B(α, β) = Γ(α) Γ(β)/Γ(α + β).
Definitions of Riemann-Liouville fractional derivative/integral and their properties

are given bellow [1–4].

Definition 2.7. Let x : [a, b] → R and x ∈ L1[a, b] then the expression

Iαa+x(t) =
1

Γ(α)

∫ t

a

(t − s)α−1x(t)dt, x > a (2.3)

is called a left-sided fractional integral of order α.
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Definition 2.8. Let n be a positive integer number and α ∈ (n − 1, n]. The left-sided fractional
derivative of a function x : [a, b] → R is defined as

Dα
a+x(t) = D

n(In−αx(t)
)
, t ∈ [a, b]. (2.4)

We denoteDα
a+x(t) asD

α
ax(t) and I

α
a+x(t) as I

α
ax(t). FurtherD

α
0+x(t) and I

α
0+x(t) are referred to

as Dαx(t) and Iαx(t), respectively.

If the fractional derivative Dβ
ax(t) is integrable then

Iαa

(
D
β
ax(t)

)
= Iα−βa x(t) −

{
I
n−β
a x(t)

}

t=a

(t − a)α−n
Γ(α − n + 1)

−
n−1∑

j=1

{
D
β−j
a x(t)

}

t=a

(t − a)α−j
Γ
(
α − j + 1

) ,

(2.5)

where n − 1 ≤ β ≤ α < n and n ∈ N [1]. Further, if x ∈ C[a, b], then {In−βa x(t)}t=a = 0 and then
(2.5) implies that

Iαa (D
α
ax(t)) = x(t), 0 < α < 1. (2.6)

3. Existence Theorem

In this section we discuss the system of nonlinear fractional differential equation (1.2) which
has at least one positive solution.

Lemma 3.1 (see [18]). Let h : (0, T] → R be a continuous function and limt→ 0+ h(t) = +∞.
If there exits σ ∈ (0, 1) such that 0 < σ < α and tσh(t) is a continuous function on [0, T], then
H(t) = Iαtσh(t) is continuous [0, T].

In the following theorem we want to prove that (1.2) is equivalent to a system of
integral equations.

Theorem 3.2. Suppose that f, g : (0, T] × C2 → [0,+∞) are given continuous functions with
limt→ 0 f(t, xt, yt) = +∞ = limt→ 0 g(t, xt, yt) = +∞. If there exist ρ, σ ∈ (0, 1) such that
0 < ρ, σ < α and tρf(t, xt, yt), tσg(t, xt, yt) are continuous functions on [0, T], then (1.2) is
equivalent to the system of integral equations

x(t) = x(0) + Iαf
(
t, xt, yt

)
, t ∈ (0, T],

y(t) = y(0) + Iβg
(
t, xt, yt

)
, t ∈ (0, T],

x(t) = φ(t) ≥ 0, y(t) = ψ(t) ≥ 0, t ∈ [−τ, 0].

(3.1)
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Proof. It is sufficient to prove that the first equation of system equation (1.2) is equivalent to
the first equation of system equation (3.1). So,

Iα{Dα[x(t) − x(0)]} = Iαf
(
t, xt, yt

)
, t ∈ (0, T]. (3.2)

Using (2.6) we get Iα{Dα[x(t) − x(0)} = x(t) − x(0). Hence (3.2) implies that x(t) = x(0) +
Iαf(t, xt, yt), t ∈ (0, T].

Conversely, first we note that Iαf(t, x(t), y(t)) = Iα{tρt−ρf(t, xt, yt)} exists by
Lemma 3.1. DαIαf(t, xt, yt)= f(t, xt, yt) as t−ρf(t, xt, yt) is continuous and Iαf(t, xt, yt) ∈
C[0, T]. Therefore, the system of fractional integral equation (3.1) is a solution of (1.2).

Let ω : [−τ, T] → [0,+∞) × [0,+∞) be a function defined by

ω(t) =

⎧
⎨

⎩

(
φ(0), ψ(0)

)
, t ∈ [0, T],

(
φ(t), ψ(t)

)
, t ∈ [−τ, 0],

(3.3)

for each z(t) = (η(t), γ(t)) with z(0) = (0, 0) where η and γ belong to C([0, T],R). We
introduce the notation z defined by

z(t) =

⎧
⎨

⎩

(
η(t), γ(t)

)
, t ∈ [0, T],

(0, 0), t ∈ [−τ, 0].
(3.4)

We can decompose (x(·), y(·)) as (x(t), y(t)) = z(t) + ω(t), t ∈ [−τ, T] which implies that
(xt, yt) = zt+ωt, t ∈ [0, T]. Hence, by Theorem 3.2, (1.2) is equivalent to the system of integral
equations

η(t) = Iαf(t, zt +ωt),

γ(t) = Iβg(t, zt +ωt),
(3.5)

where t ∈ [0, T]. Set Ω = {z = (η(t), γ(t)) : η, γ ∈ C([0, T],R), η(0) = γ(0)) = 0}. For each
z ∈ Ω, let ‖z‖T be the seminorm in Ω defined by

‖z‖T = ‖z(0)‖ + ‖z‖ = ‖z‖ = sup
{∣∣η(t)

∣∣,
∣∣γ(t)

∣∣ : t ∈ [0, T]
}
. (3.6)

Ω is a Banach space with norm ‖ · ‖T . Let K be a cone of Ω,

K =
{
z =

(
η(t), γ(t)

) ∈ Ω : η(t) ≥ 0, γ(t) ≥ 0, t ∈ [0, T]
}
,

K∗ =
{((

x, y
)
: x, y ∈ C([−τ, T],R+)

)
,
(
x(t), y(t)

)
=
(
φ(t) ≥ 0, ψ(t) ≥ 0

)
, t ∈ [−τ, 0]}.

(3.7)

For each t ∈ [0, T], we define the operatorW :K → K by

Wz(t) =
(
Iαf(t, zt +ωt), Iβg(t, zt +ωt)

)
=
(
Fη(t), Gγ(t)

)
, (3.8)
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where

Fη(t) = Iαf(t, zt +ωt), Gη(t) = Iβg(t, zt +ωt). (3.9)

Lemma 3.3. Let f(t, xt, yt), g(t, xt, yt), and t ∈ (0, T] be nonnegative continuous functions, where
xt, yt ∈ C. Then, the operatorW with the following conditions is maps-bounded set into bounded sets
in K.

(H1) 0 < limt→ 0+f(t, xt, yt) = limt→ 0+g(t, xt, yt) = +∞
(H2) if there exist ρ, σ ∈ (0, 1) such that ρ, σ < α, tρf(t, xt, yt), and tσg(t, xt, yt) are
continuous on [0, T].

Proof. By assumptions of Lemma 3.3 and by using Lemma 3.1, it is clear that Wz(t) =
(Fη(t), γ(t)) ∈ K. There exist positive constants Λ1, Λ2 such that |tρf(t, xt, yt)| ≤ Λ1 and
|tσg(t, xt, yt)| ≤ Λ2, as tρf(t, xt, yt) and tσg(t, xt, yt) are continuous on [0, T] × C2. Hence,

Iαf
(
t, xt, yt

)
= Iα

(
t−ρtρf

(
t, xt, yt

))

≤ Λ1I
αt−ρ =

Λ1

Γ(α)

∫ t

0
(t − s)α−1s−ρ ds

=
Λ1t

α−ρ

Γ(α)
B
(
1 − ρ, α) ≤ Λ1T

α−ρ

Γ(α)
B
(
1 − ρ, α).

(3.10)

Similarly,

Iβg
(
t, xt, yt

) ≤ Λ2T
β−σ

Γ
(
β
) B

(
1 − σ, β). (3.11)

LetH ⊂ K be bounded, that is, for each z = (η, γ) ∈ H there exist positive constants L
such that ‖z‖T ≤ L. In view of (3.10), (3.11) we have

∣∣Fη(t)
∣∣ ≤ ∣∣Iαf(t, zt +ωt)

∣∣ ≤ Λ1T
α−ρ

Γ(α)
B
(
1 − ρ, α),

∣∣Gγ(t)
∣∣ ≤ ∣∣Iαf(t, zt +ωt)

∣∣ ≤ Λ2T
β−σ

Γ(α)
B
(
1 − σ, β).

(3.12)

Therefore, ‖Wz(t)‖ ≤ Λ where

Λ = max

{
Λ1T

α−ρ

Γ(α)
B
(
1 − ρ, α), Λ2T

β−σ

Γ
(
β
) B

(
1 − σ, β)

}

. (3.13)

Hence,W(K) is bounded.
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Lemma 3.4. Suppose that f(t, xt, yt), g(t, xt, yt), xt, yt ∈ C, t ∈ (0, T] are continuous functions
and further two conditions (H1) and (H2) are satisfied. Then, the operator W is continuous and
completely continuous.

Proof. In the following we want to prove thatW is continuous. It is sufficient to prove that F
and G are continuous. Let z0 = (u0, v0) ∈ K with ‖u0‖ = c0 and ‖v0‖ = d0. If z = (u, v) ∈ K
with ‖u − u0‖ < l1 and ‖v − v0‖ < l2, then ‖u‖ < l1 + c0 and ‖v‖ < l2 + d0. By the continuity of
tρf(t, zt+ωt) and tσg(t, zt+ωt) on [0, T], we conclude that tρf(t, zt+ωt) and tσg(t, zt+ωt) are
uniformly continuous on [0, T]×[0, c0]×[0, do]. Therefore, |Fu(t)−Fu0(t)|, |Gv(t)−Gv0(t)|, t ∈
[0, T] are continuous and hence,

‖Wz(t) −Wz0(t)‖ = max{|Fu(t) − Fu0(t)|, |Gv(t) −Gv0(t)|}. (3.14)

is continuous.
Finally, we want to prove that the operator W is equicontinuous. Let H ⊂ K be

bounded. Suppose that, z = (u, v) ∈ K and t, r ∈ [0, T] such that t < r. For given ε > 0,
there exists δ1 > 0, so that if |t − r| < δ1, then |tρf(t, zt +ωt) − tρf(t, zr +ωr)| < ε:

|Fu(t) − Fu(r)| = ∣∣Iα
{
f(t, zt +ωt) − f(r, zr +ωr)

}∣∣

≤ 1
Γ(α)

∣∣∣∣∣

∫ t

0
(t − s)α−1s−ρsρf(s, zs +ωs)ds −

∫ r

0
(r − s)α−1s−ρsρf(s, zs +ωs)ds

∣∣∣∣∣

≤ 1
Γ(α)

∣∣∣∣

∫ r

0
(t − s)α−1s−ρsρf(s, zs +ωs) −

∫ r

0
(r − s)α−1s−ρsρf(s, zs +ωs)ds

∣∣∣∣

+
1

Γ(α)

∣∣∣∣

∫ r

t

(t − s)α−1s−ρsρf(s, zs +ωs)ds
∣∣∣∣

≤ 1
Γ(α)

∫ r

0

∣∣∣(t − s)α−1s−ρ − (r − s)α−1s−ρ
∣∣∣ ×

∣∣sρf(s, zs +ωs) − sρf(s, zs +ωs)
∣∣ds

+
1

Γ(α)

∫ r

t

∣∣∣(t − s)α−1s−ρ
∣∣∣
∣∣ sρf(s, zs +ωs)

∣
∣ds

<
ε

Γ(α)

∫ r

0

{
(r − s)α−1s−ρ + (r − s)α−1s−ρ

}
ds +

Λ1

Γ(α)

∫ r

t

(s − t)α−1s−ρds

=
2ε
Γ(α)

B
(
1 − ρ, α) + Λ1

Γ(α)

∫ r

t

(s − t)α−1s−ρ ds.

(3.15)

Similarly, for given ε > 0, there exists δ2 > 0, so that if |t − r| < δ2, then

|Gu(t) −Gu(r)| ≤ 2ε
Γ
(
β
)B

(
1 − σ, β) + Λ2

Γ
(
β
)
∫ r

t

(s − t)β−1s−σds
(3.16)
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Case 1. If t = 0 and 0 < r < δi, i = 1, 2, then

∫ r

t

(s − t)α−1s−ρds ≤ max
0≤r≤T

∫ r

0
sα−ρ−1ds ≤ Tα−ρ

α − ρ . (3.17)

Set

λ1 = max

{
1

2Γ(α)
B
(
1 − ρ, α), 2Λ1

ε
(
α − ρ)T

α−ρ
}

,

λ2 = max

{
1

2Γ
(
β
)B

(
1 − σ, β), 2Λ2

ε
(
β − σ)T

β−σ
}

.

(3.18)

Hence, |Fu(t) − Fu(r)| < λ1ε and |Gv(t) −Gv(r)| < λ2ε.

Case 2. If 0 < t < r < δi ≤ T, i = 1, 2, then

m1 =
Λ1

Γ(α)

∫ r

t

(s − t)α−1s−ρds, m2 =
Λ2

Γ
(
β
)
∫ r

t

(s − t)β−1s−σds (3.19)

are finite. Set

μ1 = max
{

1
2Γ(α)

B
(
1 − ρ, α)

}
, μ2 = max

{
1

2Γ
(
β
)B

(
1 − σ, β)

}

. (3.20)

Hence, |Fu(t) − Fu(r)| < μ1ε and |Gv(t) − Gv(r)| < μ2ε. Thus, for any given ε > 0, for all
z = (u, v) ∈ K and for all t, r ∈ [0, T] with |r − t| < δ where δ = min{δ1, δ2}, for the Euclidian
distance d on R

2 we have

d(Wz(t),Wz(r)) =
{
[Fu(r) − Fu(t)]2

}1/2
+
{
[Gv(r) −Gv(t)]2

}1/2
< η

√
2ε, (3.21)

where η = max{μ1, μ2, λ1, λ2}. Therefore, W(H) is equicontinuous and the Ascoli-Arzela
theorem implies thatW(H) is compact and henceW : K → K is completely continuous.

Theorem 3.5. If f(t, xt, yt) and g(t, xt, yt) on (0, T]×C2 are nonnegative continuous functions, then
the system of nonlinear fractional differential equation (1.2) with the conditions (H1) and (H2) has at
least one positive solution x∗ ∈ K∗, satisfying ‖x∗‖ ≤ max{‖φ‖, ‖ψ‖, h}, where h is observed in the
proof of the theorem.

Proof. By Lemma 3.3, the operator W : K → K is continuous and completely continuous.
We prove that there exits an open set U ⊆ K, with z/= γW(z) for γ ∈ (0, 1) and z ∈ ∂U. Let
z = (u, v) ∈ K be any solution of z = γW(z), γ ∈ (0, 1). In view of Theorem 3.5, we have

z(t) = γWz(t) = γ(Fu(t), Gv(t)), t ∈ [0, T]. (3.22)
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Hence,

z(t) = γWz(t) =
(
γIαt−ρtρf(t, zt +ωt), γIβt−σtσg(t, zt +ωt)

)
. (3.23)

There exist positive constantsN1, N2 such that |tρf(t, zt +ωt)| ≤N1 and |tρg(t, zt +ωt)| ≤N2,
as tρf(t, zt +ωt) and tσg(t, zt +ωt) are continuous on [0, T] × (C[−τ, T])2. Hence,

|u(t)| ≤ N1

Γ(α)
max
0≤t≤T

tα−ρB
(
1 − ρ, α) ≤ N1T

α−ρ

Γ(α)
B
(
1 − ρ, α),

|v(t)| ≤ N2

Γ
(
β
) max

0≤t≤T
tβ−σB

(
1 − σ, β) ≤ N2T

β−σ

Γ
(
β
) B

(
1 − σ, β).

(3.24)

If we consider

h = 1 +max

{
N1T

α−ρ

Γ(α)
B(1 − α, α), N2T

β−σ

Γ
(
β
) B

(
1 − β, β)

}

, (3.25)

then any solution z = γW(z) satisfies ‖z‖/=h. Set U = {z ∈ K : ‖z‖ < h}. Theorem 2.5
guarantees thatW has fixed point z ∈ U. Theorem 3.2 gives that (1.2) has a positive solution
x∗ ∈ K∗ satisfying ‖x∗‖ ≤ max{‖φ‖, ‖ψ‖, h}.

Example 3.6. Consider the system of nonlinear fractional differential equation

D4/5[x(t) − x(0)] = e−t√
t

(
xt + yt

)
, t ∈ (0, 1],

D3/4[y(t) − y(0)] = e−t
4
√
t

(
xt + yt

)
, t ∈ (0, 1],

(
x(t), y(t)

)
=
(
− sinπt,− sin

(
πt

2

))
, t ∈ [−1, 0],

(3.26)

where

xt =
∫−t

−1

ds

1 + x2(t + s)
=
∫0

t−1

ds

1 + x2(s)
, t ∈ [−1, 0],

yt =
∫−t

−1

y2(t + s)
1 + y2(t + s)

ds =
∫0

t−1

y2(s)
1 + y2(s)

ds, t ∈ [−1, 0].

(3.27)

Here, α = 4/5, β = 3/4, f(t, xt, yt) = e−tt−1/2(xt + yt), and g(t, xt, yt) = e−tt−1/4(xt + yt) with
limt→ 0+f(t, ·, ·) = +∞ = limt→ 0+g(t, ·, ·) = +∞. If we select ρ = 3/4 and σ = 1/2, then tρf(t, ·, ·)
and tσg(t, ·, ·) are continuous on [0, 1].
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By Theorem 3.2, the system of nonlinear fractional differential equation (3.26) is
equivalent to the system of integral equation

x(t) = x(0) + I4/5
(
e−tt−1/2

(
xt + yt

))
, t ∈ (0, 1],

y(t) = y(0) + I3/4
(
e−tt−1/4

(
xt + yt

))
, t ∈ (0, 1],

(
x(t), y(t)

)
=
(
− sinπt,− sin

π

2
t
)
, t ∈ [−1, 0].

(3.28)

Therefore, by Theorem 3.5, (3.26) has at least one positive solution x∗ ∈ K∗ satisfying ‖x∗‖ ≤
max{‖φ‖, ψ, h} where

∥∥φ
∥∥ = max

{
max
−1≤t≤0

|− sinπt|, max
−1≤t≤0

∣∣∣− sin
π

2
t
∣∣∣
}

= 1,

h = 1 +max
{

N1

Γ(4/5)
B

(
1
4
,
4
5

)
,
N2

Γ(3/4)
B

(
1
2
,
3
4

)}
,

N1 = max
0≤t≤1

{
tρ
(
e−tt−1/2

(
xt + yt

))}
= max

0≤t≤1

{
e−tt1/4

(
xt + yt

)} ≤ 4
4
√
4e
,

N2 = max
0≤t≤1

{
tσ
(
e−tt−1/4

(
xt + yt

))}
= max

0≤t≤1

{
e−tt1/2

(
xt + yt

)} ≤ 6√
2e
.

(3.29)

Note that, for each t ∈ [0, 1], we have 0 ≤ xt, yt ≤ 2 and

max
0≤t≤1

{
t1/4e−t

}
=

1
4
√
4e
, max

0≤t≤1

{
t1/2e−t

}
=

1√
2e
. (3.30)

Theorem 3.7. Suppose that f, g : (0, T] × C2 → [0,∞) are nonnegative continuous with
limt→+∞f(t, xt, yt) = limt→+∞g(t, xt, yt) = +∞. If there exist ρ, σ ∈ (0, 1) such that 0 < ρ <
α, 0 < σ < β and tρf(t, xt, yt) and tσg(t, xt, yt) are continuous on [0, T]×C2, then (1.2) has at least
one positive solution with the following conditions:

(H3) tρf(t, xt, yt) ≤ ρ1T
ρ−α(Γ(1 − ρ + α)/Γ(1 − ρ)), tσg(t, xt, yt) ≤ ρ2T

σ−β(Γ(1 − σ +
β)/Γ(1 − σ)) ,

(H4) tρf(t, xt, yt) ≥ μ1T
ρ−α(Γ(1−ρ+α)/Γ(1−ρ)), tσg(t, xt, yt) ≥ μ2T

σ−β(Γ(1−σ+β)/Γ(1−
σ)),
where (t, xt, yt) ∈ [0, T] × [0, ρ]2,(t, xt, yt) ∈ [0, T] × [0, μ]2, ρ = max{ρ1, ρ2}, μ = min{μ1, μ2},
and 0 < μ < ρ.
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Proof. For proving this theorem we provide the conditions required in Theorem 2.6. Set

Ω1 =
{
z = (u, v) ∈ K : ‖z‖ < μ},

Ω2 =
{
z = (u, v) ∈ K : ‖z‖ < ρ}.

(3.31)

For each z = (u, v) ∈ K ∩ ∂Ω2 and t ∈ [0, T] we have 0 ≤ u(t) ≤ ρ and 0 ≤ v(t) ≤ ρ. Condition
(H3) implies that

Fu(t) =
1

Γ(α)

∫ t

0
(t − s)α−1s−ρsρf(s, zs +ωs)ds

≤ ρi Tρ1−α
Γ
(
1 − ρ + α)

Γ
(
1 − ρ)

1
Γ(α)

∫ t

0
(t − s)α−1s−ρ ds

= ρ1Tρ−αtα−ρ
Γ
(
1 − ρ + α)

Γ
(
1 − ρ)

Γ
(
1 − ρ)

Γ
(
1 − ρ + α) = ρ1Tρ−αtα−ρ.

(3.32)

Hence ‖Fu‖ = max0≤t≤T |Fu(t)| ≤ ρ. Similarly ‖Gv‖ = max0≤t≤T |Gv(t)| ≤ ρ. Thus, ‖Wz‖ ≤ ρ =
‖z‖ for z = (u, v) ∈ K ∩ ∂Ω2. By using condition (H4) and the above-mentioned proof, we
have ‖Wz‖ ≥ μ = ‖z‖ for z ∈ K ∩ ∂Ω1. Therefore, by Theorem 2.6, (ii), and Theorem 3.2, the
proof is completed.

Example 3.8. Consider the system of nonlinear fractional differential equation

D1/4[x(t) − x(0)] = 1
5
√
t
zt, t ∈ (0, 1],

D1/2[y(t) − y(0)] = 1
4
√
t
xt, t ∈ (0, 1],

D3/4[z(t) − z(0)] = 1√
t
yt, t ∈ (0, 1],

x(t) =
(
− sinπt,− sin

(
πt

4

)
,− sin

(
πt

2

))
, t ∈ [−1, 0],

(3.33)
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where xt, yt, zt are continuous functions from [−1, 0] to [0,+∞) so that

xt =
Γ(5/4)
Γ(3/4)

{

1 +
∫−t

−1

2x2(t + s) + 1
1 + x2(t + s)

ds

}

,

yt =
Γ(5/4)
Γ(1/4)

{

2 +
∫−t

−1

3y2(t + s) + 2
1 + y2(t + s)

ds

}

,

zt =
Γ(21/20)
Γ(4/5)

{

3 +
∫−t

−1

4z2(t + s) + 3
1 + z2(t + s)

ds

}

.

(3.34)

Here α= 1/4, β= 1/2, γ = 3/4, f(t, xt, yt, zt) = t−1/5zt, g(t, xt, yt, zt) = t−1/4xt, h(t, xt, yt, zt) =
t−1/2yt such that limt→ 0+f(t, ·, ·) = limt→ 0+g(t, ·, ·) = limt→ 0+ h(t, ·, ·) = +∞. Also tρf(t, ·, ·),
tσg(t, ·, ·), and tυh(t, ·, ·) are continuous, where ρ= 1/5, σ = 1/4, and υ = 1/2. In the following
calculations, we review conditions (H3) and (H4) by using (3.34):

t1/5f
(
t, xt, yt, zt

)
=

Γ(21/20)
Γ(4/5)

{

3 +
∫−t

−1

2z2(t + s) + 1
1 + z2(t + s)

ds

}

=
Γ(21/20)
Γ(4/5)

{∫0

t−1

2z2(s) + 1

1 + z(s)2
ds

}

≤ Γ(21/20)
Γ(4/5)

{

3 + 4
∫0

t−1
ds

}

≤ 7
Γ(21/20)
Γ(4/5)

= 7
Γ
(
1 − ρ + α)

Γ
(
1 − ρ) ,

t1/4g
(
t, xt, yt, zt

)
=

Γ(5/4)
Γ(3/4)

∫−t

−1

{

1 +
2x2(t + s) + 1
1 + x2(t + s)

ds

}

=
Γ(5/4)
Γ(3/4)

∫0

t−1

{

1 +
2x2

1(s) + 1

1 + [x1(s)]
2
ds

}

≤ Γ(5/4)
Γ(3/4)

{

1 + 2
∫0

t−1
ds

}

≤ 3
Γ(5/4)
Γ(3/4)

= 3
Γ
(
1 − σ + β

)

Γ(1 − σ) ,

t1/2h
(
t, xt, yt, zt

)
=

Γ(5/4)
Γ(1/4)

{

2 +
∫−t

−1

3y2(t + s) + 1
1 + y2(t + s)

ds

}

=
Γ(5/4)
Γ(1/4)

{

2 +
∫0

t−1

3x2
2(s) + 1

1 + [x2(s)]2
ds

}

≤ Γ(5/4)
Γ(1/4)

{

2 + 3
∫0

t−1
ds

}

≤ 5
Γ(5/4)
Γ(1/4)

= 5
Γ
(
1 − υ + γ

)

Γ(1 − υ) .

(3.35)
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Hence, ρ=max{3, 5, 7}= 7 and the above calculations satisfy condition (H3). On the other
hand,

t1/5f
(
t, xt, yt, zt

)
=

Γ(21/20)
Γ(4/5)

{

3 +
∫−t

−1

4z2(t + s) + 1
1 + z2(t + s)

ds

}

=
Γ(21/20)
Γ(4/5)

{

3 +
∫0

t−1

4z2(s) + 1
1 + z2(s)

ds

}

≥ Γ(21/20)
Γ(4/5)

{

3 + 3
∫0

t−1
ds

}

≥ 3
Γ(21/20)
Γ(4/5)

= 3
Γ
(
1 − ρ + α)

Γ
(
1 − ρ) ,

t1/4g
(
t, xt, yt, zt

)
=

Γ(5/4)
Γ(3/4)

{

1 +
∫−t

−1

2x2(t + s) + 1
1 + x2(t + s)

ds

}

=
Γ(5/4)
Γ(3/4)

{

1 +
∫0

t−1

2x2(s) + 1
1 + x2(s)

ds

}

≥ Γ(5/4)
Γ(3/4)

{

1 +
∫0

t−1
ds

}

≥ Γ(5/4)
Γ(3/4)

=
Γ
(
1 − σ + β

)

Γ(1 − σ) ,

t1/2h
(
t, xt, yt, zt

)
=

Γ(5/4)
Γ(1/4)

{

2 +
∫−t

−1

3y2(t + s) + 1
1 + y2(t + s)

ds

}

=
Γ(5/4)
Γ(1/4)

{

2 +
∫0

t−1

3y2(s) + 1
1 + y2(s)

ds

}

≥ Γ(5/4)
Γ(1/4)

{

2 + 2
∫0

t−1
ds

}

≥ 2
Γ(5/4)
Γ(1/4)

= 2
Γ
(
1 − υ + γ

)

Γ(1 − υ) .

(3.36)

Hence μ = min{1, 2, 3} = 1 and the above calculations satisfy condition (H4). Then, (3.33) has
at least one positive solution.

4. Unique Existence of Solution

In this section we give conditions on f and g which render unique positive solution to (1.2).

Theorem 4.1. Let f, g : (0, T] × C2 → [0,∞) be continuous and limt→ 0+f(t, xt, yt) =
limt→ 0+g(t, xt, yt) = +∞. If there exist ρ, σ ∈ (0, 1) such that 0 < ρ < α < 1, 0 < σ < β < 1 and
tρf(t, xt, yt), tσg(t, xt, yt) are continuous functions on [0, T] × C2, then (1.2) has unique positive
solution with the following conditions:

(H5) |tρf(t, u) − tρf(t, v)| < L1‖u − v‖, |tσg(t, u) − tρg(t, v)| < L2 ‖u − v‖;
(H6) L = max{(L1/Γ(α))tα−ρB(1 − ρ, α), (L2/Γ(β))tβ−σB(1 − σ, β)} < 1,

where u, v ∈ C2, and L1, L2 are positive constants.



14 Abstract and Applied Analysis

Proof. As pointed out in the proceeding section, (1.2) is equivalent to the integral equation
(3.1) and the solution of (3.1) is equivalent to the fixed point of operator W . Thus for u =
(u1, v1), v = (u2, v2) ∈ K

|Fu1(t) − Fu2(t)| ≤ Iα
{
t−ρ

∣
∣tρfi(t, ut +ωt) − tρf(t, vt +ωt)

∣
∣}

≤ L1‖u − v‖Iα{t−ρ} = ‖u − v‖ L1

Γ(α)

∫ t

0
(t − s)α−1s−ρ

=
L1

Γ(α)
‖u − v‖B(1 − ρ, α)tα−ρ.

(4.1)

Similarly,

|Gv1(t) − Fv2(t)| ≤ L2

Γ
(
β
)‖u − v‖B(1 − σ, β)tβ−σ. (4.2)

Hence, for each u, v ∈ K, we have

‖Wu(t) −Wv(t)‖ = max
{
max
0≤t≤T

|Fu1(t) − Fv1(t)|, |Fu1(t) − Fv1(t)|
}

= L‖u − v‖. (4.3)

Hence, by application of the Banach fixed point theorem, W has unique fixed point in K,
which is the unique positive solution of (1.2).

Example 4.2. Consider the system of nonlinear fractional differential equation

D4/5[x(t) − x(0)] = 1

(1 + 8t2)
√
t

(
xt + yt

)
, t ∈ (0, 1],

D3/4[y(t) − y(0)] = 1

(1 + 4t2) 4
√
t

(
xt + yt

)
, t ∈ (0, 1],

(
x(t), y(t)

)
=
(
− sinπt,− sin

(
πt

2

))
, t ∈ [−1, 0],

(4.4)

where

xt =
∫−t

−1

ds

1 + x2(t + s)
, yt =

∫−t

−1

2y(t + s)
1 + y2(t + s)

ds. (4.5)
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Here, α= 4/5, β= 3/4, f(t, xt, yt) = e−t t−1/2(xt + yt), and g(t, xt, yt) = e−tt−1/4(xt + yt) such
that limt→ 0+f(t, ·, ·) = limt→ 0+g(t, ·, ·) = +∞. We select ρ= 3/4 and σ = 1/2. Hence tρf(t, ·, ·) and
tσg(t, ·, ·) are continuous on [0, 1]:

∣
∣tρf

(
t, xt, yt

) − tσg(t, xt, yt
)∣∣ ≤ max

{
1

8Γ(1/2)
B

(
1
4
,
4
5

)
,

1
5Γ(3/4)

B

(
1
2
,
3
4

)}
‖u − v‖

< 0.4 ‖u − v‖,
(4.6)

where u = (xt, yt), v = (x′
t, y

′
t). Equation (4.4) satisfies the conditions required in Theorem 4.1

and this theorem implies that the nonlinear equation (4.4) has unique solution in K. Using
Theorem 3.2, (4.4) is equivalent to the system of integral equations

x(t) = x(0) + I4/5
{

1

(1 + 8t2)
√
t

(
xt + yt

)
}

, t ∈ (0, 1],

y(t) = y(0) + I3/4
{

1

(1 + 4t2) 4
√
t

(
xt + yt

)
}

, t ∈ (0, 1],

(
x(t), y(t)

)
=
(
− sinπt,− sin

π

2
t
)
, t ∈ [−1, 0],

(4.7)

and the solution of (4.4) is (x(t), y(t)) = limn→+∞(xn(t), yn(t))where

(
xn+1(t), yn+1(t)

)

︸ ︷︷ ︸
n=0,1,2,...

=
(
Fxn(t), Gyn(t)

)
, x0(t) = x(0), y0(0) = y(0).

(4.8)

5. Conclusions

In this paper the existence of positive solutions for system of nonlinear fractional differential
equations in two dimensions with the delay comprising of standard Riemann-Liouville
fractional derivatives has been discussed in Banach space. The unique solution under
Lipschitz condition is also derived. For getting our results in this paper Leray-Schauder‘s
theorem, Krasnoselskii‘s fixed point theorem, and Banach contraction principle had played
important roles. Our research work in this paper can be generalized to system of nonlinear
fractional differential equations in multiple dimensions with the finite delay or infinite delay.
The present work provides insights in the equations encountered in fractional order dynamic
systems and the control systems which further may be explored.
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