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Solutions of quite a few higher-order delay functional differential equations oscillate or converge to
zero. In this paper, we obtain several such dichotomous criteria for a class of third-order nonlinear
differential equation with impulses.

1. Introduction

It has been observed that the solutions of quite a few higher-order delay functional
differential equations oscillate or converge to zero (see, e.g., the recent paper [1] in which
a third order nonlinear delay differential equation with damping is considered). Such a
dichotomy may yield useful information in real problems (see, e.g., [2] in which implications
of this dichotomy are applied to the deflection of an elastic beam). Thus it is of interest to see
whether similar dichotomies occur in different types of functional differential equations.

One such type consists of impulsive differential equations which are important in
simulation of processes with jump conditions (see, e.g., [3–22]). But papers devoted to the
study of asymptotic behaviors of third-order equations with impulses are quite rare. For this
reason, we study here the third-order nonlinear differential equation with impulses of the
form

(
r(t)x′′(t)

)′ + f(t, x) = 0, t ≥ t0, t /= tk,

x(i)(t+k
)
= g

[i]
k

(
x(i)(tk)

)
, i = 0, 1, 2; k = 1, 2, . . . ,

x(i)(t+0
)
= x

[i]
0 , i = 0, 1, 2,

(1.1)
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where x(0)(t) = x(t), 0 ≤ t0 < t1 < · · · < tk < · · · such that limk→∞tk = +∞,

x(i)(t+k
)
= lim

t→ t+
k

x(i)(t), x(i)(t−k
)
= lim

t→ t−
k

x(i)(t) (1.2)

for i = 0, 1, 2.Here g[i]
k , i = 0, 1, 2 and k = 1, 2, . . . , are real functions and x

[i]
0 , i = 0, 1, 2, are real

numbers.
By a solution of (1.1), we mean a real function x = x(t) defined on [t0,+∞) such that

(i) x(i)(t+0 ) = x
[i]
0 for i = 0, 1, 2;

(ii) x(i)(t), i = 0, 1, 2, and (r(t)x′′(t))′are continuous on [t0,+∞) \ {tk}; for i =
0, 1, 2, x(i)(t+k) and x(i)(t−k) exist, x

(i)(t−k) = x(i)(tk) and x(i)(t+k) = g
[i]
k (x(i)(tk)) for any

tk;

(iii) x(t) satisfies (r(t)x′′(t))′ + f(t, x) = 0 at each point t ∈ [t0,+∞) \ {tk}.

A solution of (1.1) is said to be nonoscillatory if it is eventually positive or eventually
negative. Otherwise, it is said to be oscillatory.

We will establish dichotomous criteria that guarantee solutions of (1.1) that are either
oscillatory or zero convergent based on combinations of the following conditions.

(A) r(t) is positive and continuous on [t0,∞), f(t, x) is continuous on [t0,∞) ×
R, xf(t, x) > 0 for x /= 0, and f(t, x)/ϕ(x) � p(t), where p(t) is positive and
continuous on [t0,∞), and ϕ is differentiable in R such that ϕ′(x) ≥ 0 for x ∈ R.

(B) For each k = 1, 2, . . . , g[i]
k
(x) is continuous in R and there exist positive numbers

a
[i]
k
, b

[i]
k

such that a[i]
k

≤ g
[i]
k
(x)/x ≤ b

[i]
k

for x /= 0 and i = 0, 1, 2.

(C) One has

∫∞

t0

∏

t0<tk<s

⎛

⎝
a
[1]
k

b
[0]
k

⎞

⎠ds = +∞,

∫∞

t0

1
r(s)

∏

t0<tk<s

⎛

⎝
a
[2]
k

b
[1]
k

⎞

⎠ds = +∞.

(1.3)

In the next section, we state four theorems to ensure that every solution of (1.1) either
oscillates or tends to zero. Examples will also be given. Then in Section 3, we prove several
preparatory lemmas. In the final section, proofs of our main theorems will be given.

2. Main Results

The main results of the paper are as follows.
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Theorem 2.1. Assume that the conditions (A)–(C) hold. Suppose further that there exists a positive
integer k0 such that for k ≥ k0, a

[0]
k ≥ 1,

+∞∑

k=1

(
b
[0]
k

− 1
)
< +∞, (2.1)

∫+∞

t0

∏

t0<tk<s

⎛

⎝ 1

b
[2]
k

⎞

⎠p(s)ds = +∞. (2.2)

Then every solution of (1.1) either oscillates or tends to zero.

Theorem 2.2. Assume that the conditions (A)–(C) hold. Suppose further that there exists a positive
integer k0 such that for k ≥ k0, b

[0]
k ≤ 1, a[1]

k ≥ 1,

∏

t0≤tk<+∞
a
[0]
k ≥ σ > 0, (2.3)

∫+∞

t0

1
r(s)

⎛

⎝
∫+∞

s

∏

s<tk<u

1

b
[2]
k

p(u)du

⎞

⎠ds = +∞. (2.4)

Then every solution of (1.1) either oscillates or tends to zero.

Theorem 2.3. Assume that the conditions (A)–(C) hold and that ϕ(ab) ≥ ϕ(a)ϕ(b) for any ab > 0.
Suppose further that there exists a positive integer k0 such that for

k ≥ k0, b
[0]
k ≤ 1, b

[2]
k ≤ 1, b

[2]
k ≤ ϕ

(
a
[0]
k

)
, (2.5)

∫+∞

t0

p(s)ds = +∞. (2.6)

Then every solution of (1.1) either oscillates or tends to zero.

Theorem 2.4. Assume that the conditions (A)–(C) hold and that ϕ(ab) ≥ ϕ(a)ϕ(b) for any ab > 0.
Suppose further that b[2]

k
≤ a

[0]
k
, {∏n

k=1b
[0]
k
} is bounded, that

+∞∑

k=1

max
{∣∣∣a[0]

k − 1
∣∣∣,
∣∣∣b[0]k − 1

∣∣∣
}
< +∞,

+∞∑

k=1

∣∣∣b[2]k
− 1
∣∣∣ < +∞,

(2.7)

∫+∞

t0

p(s)ds = +∞. (2.8)

Then every solution of (1.1) either oscillates or tends to zero.



4 Abstract and Applied Analysis

Before giving proofs, we first illustrate our theorems by several examples.

Example 2.5. Consider the equation

(
tx′′(t)

)′ + etx(t) = 0, t ≥ 1
2
, t /= k,

x(i)(k+) =
(
1 +

1
k2

)
x(i)(k), i = 0, 1, 2; k = 1, 2, . . . ,

x

(
1
2

)
= x

[0]
0 , x′

(
1
2

)
= x

[1]
0 , x′′

(
1
2

)
= x

[2]
0 ,

(2.9)

where a
[i]
k

= b
[i]
k

= (1 + (1/k2)) ≥ 1 for i = 0, 1, 2; p(t) = et, r(t) = t, tk = k, ϕ(x) = x. It is not
difficult to see that conditions (A)–(C) are satisfied. Furthermore,

+∞∑

k=1

(
b
[0]
k − 1

)
=

+∞∑

k=1

1
k2

< +∞,

∫+∞

t0

∏

t0<tk<s

1

b
[2]
k

p(s)ds =
∫+∞

1/2

∏

1/2<tk<s

k2

k2 + 1
esds = +∞.

(2.10)

Thus by Theorem 2.1, every solution of (2.9) either oscillates or tends to zero.

Example 2.6. Consider the equation

(√
t(2 − sin t)g(t)x′′(t)

)′
+ t−3/2x3(t) = 0, t ≥ 1

2
, t /= k,

x(k+) =
k

k + 1
x(k), x(i)(k+) = x(i)(k), i = 1, 2; k = 1, 2, . . . ,

x

(
1
2

)
= x

[0]
0 , x′

(
1
2

)
= x

[1]
0 , x′′

(
1
2

)
= x

[2]
0 ,

(2.11)

where a[0]
k

= b
[0]
k

= k/(k + 1), a[i]
k

= b
[i]
k

= 1 for i = 1, 2; p(t) = t−3/2, tk = k, ϕ(x) = x3, and

r(t) =
√
t(2 − sin t)g(t), here g(t) =

∣∣∣∣t − k − 1
2

∣∣∣∣ + 1, t ∈ [k, k + 1), k = 1, 2, . . . . (2.12)
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Here, we do not assume that r(t) is bounded, monotonic, or differential. It is not difficult to
see that conditions (A)–(C) are satisfied. Furthermore,

∫+∞

t0

1
r(s)

⎛

⎝
∫+∞

s

∏

s<tk<u

1

b
(2)
k

p(u)du

⎞

⎠ds =
∫+∞

1/2

1√
s(2 − sin s)g(s)

(∫+∞

s

u−3/2du
)
ds

≥
∫+∞

1/2

1
3
√
sg(s)

(∫+∞

s

u−3/2du
)
ds

≥
∫+∞

1/2

2
9
√
s

(∫+∞

s

u−3/2du
)
ds

=
∫+∞

1/2

4
9s

ds = +∞.

(2.13)

Thus by Theorem 2.2, every solution of (2.11) either oscillates or tends to zero.

Example 2.7. Consider the equation

(
e−2tx′′(t)

)′
+ e−2tx(t) = 0, t ≥ 1

2
, t /= k,

x(k+) = x(k), x′(k+) = x′(k), x′′(k+) =
k

k + 1
x′′(k), k = 1, 2, . . . ,

x

(
1
2

)
= x

[0]
0 , x′

(
1
2

)
= x

[1]
0 , x′′

(
1
2

)
= x

[2]
0 ,

(2.14)

where a[i]
k = b

[i]
k = 1 for i = 0, 1, a[2]

k = b
[2]
k = k/(k + 1); p(t) = e−2t, r(t) = e−2t, tk = k; ϕ(x) = x.

It is not difficult to see that conditions (A)–(C) are satisfied. Furthermore,

∫+∞

t0

1
r(s)

⎛

⎝
∫+∞

s

∏

s<tk<u

1

b
(2)
k

p(u)du

⎞

⎠ds =
∫+∞

1/2
e2s
(∫+∞

s

∏

s<tk<u

k + 1
k

e−2udu

)

ds

≥
∫+∞

1/2
e2s
(∫+∞

s

e−2udu
)
ds

=
∫+∞

1/2

1
2
ds = +∞.

(2.15)

Thus, by Theorem 2.2, every solution of (2.14) either oscillates or tends to zero.

Note that the ordinary differential equation

(
e−2tx′′(t)

)′
+ e−2tx(t) = 0 (2.16)
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has a nonnegative solution x(t) = et → +∞ as t → +∞. This example shows that impulses
play an important role in oscillatory and asymptotic behaviors of equations under perturbing
impulses.

3. Preparatory Lemmas

To prove our theorems, we need the following lemmas.

Lemma 3.1 (Lakshmikantham et al. [3]). Assume the following.

(H0) m ∈ PC′(R+, R) and m(t) is left-continuous at tk, k = 1, 2, . . ..

(H1) For tk, k = 1, 2, . . . and t ≥ t0,

m′(t) ≤ p(t)m(t) + q(t), t /= tk,

m
(
t+k
) ≤ dkm(tk) + bk,

(3.1)

where p, q ∈ PC(R+, R), dk ≥ 0, and bk are real constants. Then for t ≥ t0,

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp

(∫ t

t0

p(s)ds

)

+
∑

t0<tk<t

⎛

⎝
∏

tk<tj<t

dj exp

(∫ t

tk

p(s)ds

)⎞

⎠bk

+
∫ t

t0

(
∏

s<tk<t

dk

)

exp

(∫ t

s

p(σ)dσ

)

q(s)ds.

(3.2)

Lemma 3.2. Suppose that conditions (A)–(C) hold and x(t) is a solution of (1.1). One has the
following statements.

(a) If there exists some T ≥ t0 such that x′′(t) > 0 and (r(t)x′′(t))′ ≥ 0 for t ≥ T , then there
exists some T1 ≥ T such that x′(t) > 0 for t ≥ T1.

(b) If there exists some T ≥ t0 such that x′(t) > 0 and x′′(t) ≥ 0 for t ≥ T , then there exists
some T1 ≥ T such that x(t) > 0 for t ≥ T1.

Proof. First of all, we will prove that (a) is true. Without loss of generality, we may assume
that x′′(t) > 0 and (r(t)x′′(t))′ ≥ 0 for t ≥ t0. We assert that there exists some j such that
x′(tj) > 0 for tj ≥ t0. If this is not true, then for any tk ≥ t0, we have x′(tk) ≤ 0. Since x′(t) is
increasing on intervals of the form (tk, tk+1], we see that x′(t) ≤ 0 for t ≥ t0. Since r(t)x′′(t) is
increasing on intervals of the form (tk, tk+1], we see that for (t1, t2],

r(t)x′′(t) ≥ r(t1)x′′(t+1
)
, (3.3)

that is,

x′′(t) ≥ r(t1)
r(t)

x′′(t+1
)
. (3.4)
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In particular,

x′′(t2) ≥ r(t1)
r(t2)

x′′(t+1
)
. (3.5)

Similarly, for (t2, t3], we have

x′′(t) ≥ r(t2)
r(t)

x′′(t+2
) ≥ r(t2)

r(t)
a
[2]
2 x′′(t2) ≥ r(t1)

r(t)
a
[2]
2 x′′(t+1

)
. (3.6)

By induction, we know that for t > t1,

x′′(t) ≥ r(t1)
r(t)

∏

t1<tk<t

a
[2]
k x′′(t+1

)
, t /= tk. (3.7)

From condition (B), we have

x′(t+k
) ≥ b

[1]
k
x′(tk), k = 2, 3, . . . . (3.8)

Set m(t) = −x′(t). Then from (3.7) and (3.8), we see that for t > t1,

m′(t) ≤ −r(t1)
r(t)

∏

t1<tk<t

a
[2]
k
x′′(t+1

)
, t /= tk

m
(
t+k
) ≤ b

[1]
k
m(tk), k = 2, 3, . . . .

(3.9)

It follows from Lemma 3.1 that

m(t) ≤ m
(
t+1
) ∏

t1<tk<t

b
[1]
k

− x′′(t+1
)
r(t1)

∫ t

t1

1
r(s)

∏

s<tk<t

b
[1]
k

∏

t1<tk<s

a
[2]
k
ds

=
∏

t1<tk<t

b
[1]
k

⎧
⎨

⎩
m
(
t+1
) − x′′(t+1

)
r(t1)

∫ t

t1

1
r(s)

∏

t1<tk<s

a
[2]
k

b
[1]
k

ds

⎫
⎬

⎭
.

(3.10)

That is,

x′(t) ≥
∏

t1<tk<t

b
[1]
k

⎧
⎨

⎩
x′(t+1

)
+ x′′(t+1

)
r(t1)

∫ t

t1

1
r(s)

∏

t1<tk<s

a
[2]
k

b
[1]
k

ds

⎫
⎬

⎭
. (3.11)

Note that a[i]
k > 0, b[i]k > 0, and the second equality of condition (C) holds. Thus we get

x′(t) > 0 for all sufficiently large t. The relation x′(t) ≤ 0 leads to a contradiction. Thus, there
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exists some j such that tj ≥ t0 and x′(tj) > 0. Since x′(t) is increasing on intervals of the form
(tj+λ, tj+λ+1] for λ = 0, 1, 2, . . . , thus for t ∈ (tj , tj+1], we have

x′(t) ≥ x′
(
t+j

)
≥ a

[1]
j x′(tj

)
> 0. (3.12)

Similarly, for t ∈ (tj+1, tj+2],

x′(t) ≥ x′
(
t+j+1

)
≥ a

[1]
j+1x

′(tj+1
) ≥ a

[1]
j a

[1]
j+1x

′(tj
)
> 0. (3.13)

We can easily prove that, for any positive integer λ ≥ 2 and t ∈ (tj+λ, tj+λ+1],

x′(t) ≥ a
[1]
j a

[1]
j+1 · · ·a

[1]
j+λx

′(tj
)
> 0. (3.14)

Therefore, x′(t) > 0 for t ≥ tj . Thus, (a) is true.
Next, we will prove that (b) is true. Without loss of generality, we may assume that

x′(t) > 0 and x′′(t) ≥ 0 for t ≥ t0. We assert that there exists some j such that x(tj) > 0 for
tj ≥ t0. If this is not true, then for any tk ≥ t0, we have x(tk) ≤ 0. Since x(t) is increasing on
intervals of the form (tk, tk+1], we see that x(t) ≤ 0 for t ≥ t0. By x′(t) > 0, x′′(t) ≥ 0, t ∈ (tk, tk+1],
we have that x′(t) is nondecreasing on (tk, tk+1]. For t ∈ (t1, t2], we have

x′(t) ≥ x′(t+1
)
. (3.15)

In particular,

x′(t2) ≥ x′(t+1
)
. (3.16)

Similarly, for t ∈ (t2, t3], we have

x′(t) ≥ x′(t+2
) ≥ a

[1]
2 x′(t2) ≥ a

[1]
2 x′(t+1

)
. (3.17)

By induction, we know that for t > t1,

x′(t) ≥
∏

t1<tk<t

a
[1]
k x′(t+1

)
, t /= tk. (3.18)

From condition (B), we have

x
(
t+k
) ≥ b

[0]
k x(tk), k = 2, 3, . . . . (3.19)
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Set u(t) = −x(t). Then from (3.18) and (3.19), we see that for t > t1,

u′(t) ≤ −
∏

t1<tk<t

a
[1]
k x′(t+1

)
, t /= tk,

u
(
t+k
) ≤ b

[0]
k
u(tk), k = 2, 3, . . . .

(3.20)

It follows from Lemma 3.1 that

u(t) ≤ u
(
t+1
) ∏

t1<tk<t

b
[0]
k − x′(t+1

)
∫ t

t1

∏

s<tk<t

b
[0]
k

∏

t1<tk<s

a
[1]
k ds

=
∏

t1<tk<t

b
[0]
k

⎧
⎨

⎩
u
(
t+1
) − x′(t+1

)
∫ t

t1

∏

t1<tk<s

a
[1]
k

b
[0]
k

ds

⎫
⎬

⎭
.

(3.21)

That is,

x(t) ≥
∏

t1<tk<t

b
[0]
k

⎧
⎨

⎩
x
(
t+1
)
+ x′(t+1

)
∫ t

t1

∏

t1<tk<s

a
[1]
k

b
[0]
k

ds

⎫
⎬

⎭
. (3.22)

Note that a[i]
k > 0, b[i]k > 0, and the first equality of condition (C) holds. Thus we get x(t) > 0

for all sufficiently large t. The relation x(t) ≤ 0 leads to a contradiction. So there exists some j
such that tj ≥ t0 and x(tj) > 0. Then

x
(
t+j

)
≥ a

[0]
j x
(
tj
)
> 0. (3.23)

Since x′(t) > 0, we see that x(t) is strictly monotonically increasing on (tj+m, tj+m+1] for m =
0, 1, 2, . . . . For t ∈ (tj , tj+1], we have

x(t) ≥ x
(
t+j

)
> 0. (3.24)

In particular,

x
(
tj+1
) ≥ x

(
t+j

)
> 0. (3.25)

Similarly, for t ∈ (tj+1, tj+2], we have

x(t) ≥ x
(
t+j+1

)
≥ a

[0]
j+1x
(
tj+1
)
> 0. (3.26)

By induction, we have x(t) > 0 for t ∈ (tj+m, tj+m+1]. Thus, we know that x(t) > 0, for t ≥ tj .
The proof of Lemma 3.2 is complete.
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Remark 3.3. We may prove in similar manners the following statements.

(a′) If we replace the condition (a) in Lemma 3.2 “x′′(t) > 0 and (r(t)x′′(t))′ ≥ 0 for
t ≥ T” with “x′′(t) < 0 and (r(t)x′′(t))′ ≤ 0 for t ≥ T”, then there exists some T1 ≥ T
such that x′(t) < 0 for t ≥ T1.

(b′) If we replace the condition (b) in Lemma 3.2 “x′(t) > 0 and x′′(t) ≥ 0 for t ≥ T” with
“x′(t) < 0 and x′′(t) ≤ 0 for t ≥ T”, then there exists some T1 ≥ T such that x(t) < 0
for t ≥ T1.

Lemma 3.4. Suppose that conditions (A)–(C) hold and x(t) is a solution of (1.1) such that x(t) > 0
for t ≥ T, where T ≥ t0. Then there exists T ′ ≥ T such that either (a) x′′(t) > 0, x′(t) < 0 for t ≥ T ′ or
(b) x′′(t) > 0, x′(t) > 0 for t ≥ T ′.

Proof. Without loss of generality, we may assume that x(t) > 0 for t ≥ t0. By (1.1) and
condition (A), we have for t ≥ t0.

(
r(t)x′′(t)

)′ = −f(t, x) ≤ −p(t)ϕ(x) < 0. (3.27)

We assert that for any tk ≥ t0, x
′′(tk) > 0. If this is not true, then there exists some j such

that x′′(tj) ≤ 0, so x′′(t+j ) ≤ a
[2]
j x′′(tj) ≤ 0. Since r(t)x′′(t) is decreasing on (tj+k−1, tj+k] for

k = 1, 2, . . ., we see that for t ∈ (tj , tj+1],

x′′(t) <
r
(
tj
)

r(t)
x′′
(
t+j

)
≤ 0. (3.28)

In particular,

x′′(tj+1
)
<

r
(
tj
)

r
(
tj+1
)x′′
(
t+j

)
≤ 0. (3.29)

Similarly, for t ∈ (tj+1, tj+2], we have

x′′(t) <
r
(
tj+1
)

r(t)
x′′
(
t+j+1

)
≤ r
(
tj+1
)

r(t)
a
[2]
j+1x

′′(tj+1
) ≤ r

(
tj
)

r(t)
a
[2]
j+1x

′′
(
t+j

)
≤ 0. (3.30)

In particular,

x′′(tj+2
)
<

r
(
tj
)

r
(
tj+2
)a[2]

j+1x
′′
(
t+j

)
≤ 0. (3.31)

By induction, for any t ∈ (tj+n−1, tj+n] for n = 2, 3, . . . ,we have

x′′(t) <
r
(
tj
)

r(t)

n−1∏

k=1

a
[2]
j+kx

′′
(
t+j

)
≤ 0. (3.32)



Abstract and Applied Analysis 11

Hence, x′′(t) < 0 for t ≥ tj . By Remark 3.3(a′), there exists T1 ≥ tj such that x′(t) < 0 for t ≥ T1;
by Remark 3.3(b′), we get x(t) < 0 for t ≥ T1, which is contrary to x(t) > 0 for t ≥ t0. Hence,
for any tk ≥ t0, x

′′(tk) > 0, since r(t)x′′(t) is decreasing on (tj+k−1, tj+k] for k = 1, 2, . . ., therefore
x′′(t) > 0 for t ≥ t0. It follows that x′(t) is strictly increasing on (tk, tk+1] for k = 1, 2, . . ..
Furthermore, note that a[1]

k > 0, k = 1, 2, . . . . we see that if for any tk, x
′(tk) < 0, then x′(t) < 0

for t ≥ t0. If there exists some tj such that x′(tj) ≥ 0, then x′(t) > 0 for t > tj . The proof of
Lemma 3.4 is complete.

Lemma 3.5 (see [12]). Suppose that x(t) is continuous at t > 0 and t /= tk, it is left-continuous at
t = tk and limt→ t+

k
x(t) exists for k = 1, 2, . . . . Further assume that

(H2) there exists t ∈ R+, such that x(t) > 0(< 0) for t ≥ t;

(H3) x(t) is nonincreasing (resp., nondecreasing) on (tk, tk+1] for k = 1, 2, . . . ;

(H4)
∑+∞

k=1[x(t
+
k
) − x(tk)] is convergent.

Then limt→+∞x(t) = r exists and r ≥ 0 (resp., ≤ 0).

4. Proofs of Main Theorems

We now turn to the proof of Theorem 2.1. Without loss of generality, we may assume that
k0 = 1. If (1.1) has a nonoscillatory solution x = x(t), we first assume that x(t) > 0 for t ≥ t0.
By (1.1) and the condition (A), for t ≥ T ≥ t0, we get

(
r(t)x′′(t)

)′ = −f(t, x(t)) ≤ −p(t)ϕ(x(t)), t /= tk. (4.1)

From the condition (B), we know that

r
(
t+k
)
x′′(t+k

) ≤ b
[2]
k r(tk)x′′(tk). (4.2)

By Lemma 3.4, there exists a T ≥ t0 such that either (a) x′′(t) > 0, x′(t) < 0 for t ≥ T or (b)
x′′(t) > 0, x′(t) > 0 for t ≥ T.

Suppose that (a) holds. Then we see that the conditions (H2) and (H3) of Lemma 3.5
are satisfied. Furthermore, note that

∑+∞
k=1(b

[0]
k − 1) < +∞ and b

[0]
k ≥ a

[0]
k ≥ 1. Then we have

+∞∏

k=1

b
[0]
k

< +∞. (4.3)

Since x′(t) < 0, t ≥ T,we obtain for any tk > T,

x(tk) ≤
∏

T<tj<tk

b
[0]
j x(T+). (4.4)

By (4.3) and (4.4), we know that the sequence {x(tk)} is bounded. Thus there exists M > 0
such that |x(tk)| ≤ M. It follows from the condition (B) that

∣∣x
(
t+k
) − x(tk)

∣∣ ≤
∣∣∣b[0]k − 1

∣∣∣|x(tk)| ≤ M
(
b
[0]
k − 1

)
. (4.5)
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From (4.5) and the fact that
∑+∞

k=1(b
[0]
k − 1) is convergent, we know that

∑+∞
k=1[x(t

+
k) − x(tk)] is

convergent. Therefore, the condition (H4) of Lemma 3.5 is also satisfied. By Lemma 3.5, we
know that limt→+∞x(t) = r ≥ 0. We assert that r = 0. If r > 0, then there exists T1 ≥ T such
that for any t ≥ T1, x(t) > r/2 > 0. Note further that ϕ′(x) ≥ 0; so we obtain ϕ(x(t)) ≥ ϕ(r/2)
for t ≥ T1. Let m(t) = r(t)x′′(t) for t ≥ T1. By (4.1) and (4.2), we have

m′(t) ≤ q(t), t ≥ T1, t /= tk, (4.6)

m
(
t+k
) ≤ b

[2]
k
m(tk), tk ≥ T1, (4.7)

where q(t) = −ϕ(r/2)p(t). From (4.6), (4.7), and Lemma 3.1, we get for t ≥ T1,

m(t) ≤ m
(
T+
1

) ∏

T1<tk<t

b
[2]
k

+
∫ t

T1

(
∏

s<tk<t

b
[2]
k

)

q(s)ds

=
∏

T1<tk<t

b
[2]
k

⎧
⎨

⎩
m
(
T+
1

) − ϕ
( r
2

)∫ t

T1

⎛

⎝
∏

T1<tk<s

1

b
[2]
k

⎞

⎠p(s)ds

⎫
⎬

⎭
.

(4.8)

It is easy to see from (2.2) and (4.8) that m(t) < 0 for sufficiently large t. This is contrary to
m(t) > 0 for t ≥ T1. Thus r = 0, that is, limt→+∞x(t) = 0.

Suppose that (b) holds. LetΨ(t) = (r(t)x′′(t)/ϕ(x(t))) for t ≥ T. ThenΨ(t) > 0 for t ≥ T .
By (1.1) and the condition (A), we get, for t ≥ T,

Ψ′(t) =
−f(t, x(t))
ϕ(x(t))

− r(t)x′′(t)ϕ′(x(t))x′(t)
ϕ2(x(t))

≤ −f(t, x(t))
ϕ(x(t))

≤ −p(t), t /= tk. (4.9)

From the conditions (A), (B) and a
[0]
k ≥ 1, we know that

Ψ
(
t+k
)
=

r(tk)x′′(t+
k

)

ϕ
(
x
(
t+k
)) ≤ r(tk)b

[2]
k
x′′(tk)

ϕ
(
a
[0]
k
x(tk)

) ≤ b
[2]
k

r(tk)x′′(tk)
ϕ(x(tk))

≤ b
[2]
k Ψ(tk), tk ≥ T. (4.10)

From (4.9), (4.10), and Lemma 3.1, we get, for t ≥ T,

Ψ(t) ≤ Ψ(T+)
∏

T<tk<t

b
[2]
k

−
∫ t

T

(
∏

s<tk<t

b
[2]
k

)

p(s)ds

=
∏

T<tk<t

b
[2]
k

⎧
⎨

⎩
Ψ(T+) −

∫ t

T

⎛

⎝
∏

T<tk<s

1

b
[2]
k

⎞

⎠p(s)ds

⎫
⎬

⎭
.

(4.11)

It is easy to see from (2.2) and (4.11) that Ψ(t) < 0 for sufficiently large t. This is contrary
to Ψ(t) > 0 for t ≥ T, and hence we obtain a contradiction. Thus in case (b) x(t) must be
oscillatory. The proof of Theorem 2.1 is complete.
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Next, we give the proof of Theorem 2.2.Without loss of generality, wemay assume that
k0 = 1. If (1.1) has an eventually positive solution x = x(t) for t ≥ t0. By (1.1) and conditions
(A) and (B), we have that (4.1) and (4.2) hold. By Lemma 3.4, there exists a T ≥ t0 such that
either (a) x′′(t) > 0, x′(t) < 0 for t ≥ T or (b) x′′(t) > 0, x′(t) > 0 for t ≥ T.

Suppose that (a) holds. Note that b[0]
k

≤ 1 and for tj ≥ T and each l = 0, 1, 2, . . ., x(t) is
decreasing on (tj+l, tj+l+1]; we have for t ∈ (tj , tj+1]

x(t) < x
(
t+j

)
≤ b

[0]
j x
(
tj
) ≤ x

(
tj
)
. (4.12)

Similarly, for t ∈ (tj+1, tj+2], we have

x(t) < x
(
t+j+1

)
≤ b

[0]
j+1x
(
tj+1
) ≤ x

(
tj+1
) ≤ x

(
tj
)
. (4.13)

By induction, for each l = 0, 1, 2, . . ., we have

x(t) < x
(
tj+l
) ≤ · · · ≤ x

(
tj+1
) ≤ x

(
tj
)
, t ∈ (tj+l, tj+l+1

]
(4.14)

so that x(t) is decreasing on (tj ,+∞). We know that x(t) is convergent as t → +∞. Let
limt→+∞x(t) = r. Then r ≥ 0. We assert that r = 0. If r > 0, then there exists T1 ≥ t0, such
that for t ≥ T1, x(t) > r/2 > 0. Since ϕ′(x) ≥ 0, then ϕ(x(t)) ≥ ϕ(r/2). Let m(t) = r(t)x′′(t)
for t ≥ T1. Then By (4.1) and (4.2), we have that (4.6) and (4.7) hold. From (4.6), (4.7), and
Lemma 3.1, we get for t ≥ T1,

m(+∞) ≤ m(t)
∏

t<tk<+∞
b
[2]
k

− ϕ
( r
2

)∫+∞

t

∏

s<tk<∞
b
[2]
k
p(s)ds. (4.15)

That is,

0 ≤ lim
t→+∞

r(t)x′′(t) ≤ r(t)x′′(t)
∏

t<tk<+∞
b
[2]
k

− ϕ
( r
2

)∫+∞

t

∏

s<tk<∞
b
[2]
k
p(s)ds. (4.16)

It is easy to see from (4.16) that the following inequality holds:

x′′(t) ≥ ϕ(r/2)
r(t)

∫+∞

t

∏

t<tk<s

1

b
[2]
k

p(s)ds, t ≥ T1. (4.17)
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Note that a[1]
k ≥ 1; it follows from integrating (4.17) from t0 to t and by using the condition

(B) that

x′(t) − x′(t+0
) ≥ x′(t) − x′(t+0

)
+
∑

t0<tk<t

(
a
[1]
k − 1

)
x′(tk)

≥ x′(t) − x′(t+0
)
+
∑

t0<tk<t

[
x′(t+k

) − x′(tk)
]

≥ ϕ
( r
2

)∫ t

t0

1
r(s)

⎛

⎝
∫+∞

s

∏

s<tk<u

1

b
[2]
k

p(u)du

⎞

⎠ds.

(4.18)

It is easy to see from (2.4) and (4.18) that x′(t) > 0 for sufficiently large t. This is contrary to
x′(t) < 0 for t ≥ T1. Thus r = 0, that is, limt→+∞x(t) = 0.

Suppose (b) holds. Without loss of generality, we may assume that T = t0. Then we see
that x′(t) > 0, t ≥ t0. Since x(t) is nondecreasing on (tk, tk+1], for t ∈ (t0, t1], we have

x(t) ≥ x
(
t+0
)
. (4.19)

In particular,

x(t1) ≥ x
(
t+0
)
. (4.20)

Similarly, for t ∈ (t1, t2], we have

x(t) ≥ x
(
t+1
) ≥ a

[0]
1 x(t1) ≥ a

[0]
1 x
(
t+0
)
. (4.21)

By induction, we know that

x(t) ≥
∏

t0<tk<t

a
[0]
k
x
(
t+0
)
, t > t0. (4.22)

That is, x(t) ≥ ∏t0<tk<t
a
[0]
k
x(t+0 ) for t > t0. Note that b[0]

k
≤ 1 and

∏
t0≤tk<+∞a

[0]
k

≥ σ > 0. From
the condition (B), we have x(t) ≥ σx(t+0 ). Since ϕ′(x) ≥ 0, we have ϕ(x(t)) ≥ ϕ(σx(t+0 )). Let
m(t) = r(t)x′′(t); by (4.1) and (4.2), we have, for t ≥ t0, that

m′(t) ≤ −ϕ(σx(t+0
))
p(t), t /= tk,

m
(
t+k
) ≤ b

[2]
k
m(tk), tk > t0.

(4.23)

Similar to the proof of (4.17), we obtain

x′′(t) ≥ ϕ
(
σx
(
t+0
))

r(t)

∫+∞

t

∏

t<tk<s

1

b
[2]
k

p(s)ds, t ≥ t0. (4.24)
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Let s(t) = −x′(t) for t ≥ t0. Then s(t) ≤ 0. By (4.24) and the condition (B), and noting that
a
[1]
k ≥ 1, we have for t ≥ t0,

s′(t) ≤ −ϕ
(
σx
(
t+0
))

r(t)

∫+∞

t

∏

t<tk<s

1

b
[2]
k

p(s)ds, t /= tk,

s
(
t+k
) ≤ a

[1]
k
s(tk) ≤ s(tk), tk ≥ t0.

(4.25)

By Lemma 3.1, we get

0 ≤ s(+∞) ≤ s(t) − ϕ
(
σx
(
t+0
))
∫+∞

t

1
r(s)

⎛

⎝
∫+∞

s

∏

s<tk<u

1

b
[2]
k

p(u)du

⎞

⎠ds. (4.26)

It follows that

0 � x′(t) + ϕ
(
σx
(
t+0
))
∫+∞

t

1
r(s)

⎛

⎝
∫+∞

s

∏

s<tk<u

1

b
[2]
k

p(u)du

⎞

⎠ds. (4.27)

In view of (4.27), we have, for t ≥ t0,

x′(t) ≤ −ϕ(σx(t+0
))
∫+∞

t

1
r(s)

⎛

⎝
∫+∞

s

∏

s<tk<u

1

b
[2]
k

p(u)du

⎞

⎠ds. (4.28)

It is easy to see from (2.4) and (4.28) that x′(t) < 0. This is contrary to x′(t) > 0 for t ≥ t0. Thus
in case (b) x(t)must be oscillatory. The proof of Theorem 2.2 is complete.

We now give the proof of Theorem 2.3. Without loss of generality, we may assume that
k0 = 1. If (1.1) has an eventually positive solution, x = x(t) for t ≥ t0. By Lemma 3.4, there
exists a T ≥ t0 such that either (a) x′′(t) > 0, x′(t) < 0, t ≥ T or (b) x′′(t) > 0, x′(t) > 0, t ≥ T
holds.

Suppose that (a) holds. Note that b[0]
k

≤ 1, since for tj ≥ T and each l = 0, 1, 2, . . . , x(t)
is decreasing on (tj+l, tj+l+1]; then for t ∈ (tj , tj+1], we have

x(t) < x
(
t+j

)
≤ b

[0]
j x
(
tj
) ≤ x

(
tj
)
. (4.29)

Similarly, for t ∈ (tj , tj+1], we have

x(t) < x
(
t+j+1

)
≤ b

[0]
j+1x
(
tj+1
) ≤ x

(
tj+1
) ≤ x

(
tj
)
. (4.30)

By induction, for any t ∈ (tj+l, tj+l+1] for l = 0, 1, 2, . . . , we have

x(t) < x
(
tj+l
) ≤ · · · ≤ x

(
tj+1
) ≤ x

(
tj
)
. (4.31)
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So x(t) is decreasing and bounded on (tj ,+∞); we know that x(t) is convergent as t → +∞.
Let limt→+∞x(t) = r, then r ≥ 0. We assert that r = 0. If r > 0, then there exists T1 ≥ T, such
that for t ≥ T1, x(t) > r/2 > 0. Since ϕ′(x) ≥ 0, then ϕ(x(t)) ≥ ϕ(r/2). By (1.1) and condition
(A), we have for t ≥ T1

(
r(t)x′′(t)

)′ = −f(t, x) ≤ −p(t)ϕ(x(t)) ≤ −ϕ
( r
2

)
p(t) < 0, t /= tk, (4.32)

From condition (B), and noting that b[2]
k

≤ 1, we have

r
(
t+k
)
x′′(t+k

) ≤ b
[2]
k r(tk)x′′(tk) ≤ r(tk)x′′(tk), tk ≥ T1. (4.33)

Let Φ(t) = r(t)x′′(t). Then Φ(t) > 0 for t ≥ T1. By (4.32) and (4.33), we have for t ≥ T1, that

Φ′(t) ≤ −ϕ
( r
2

)
p(t), t /= tk, (4.34)

Φ
(
t+k
) ≤ Φ(tk), tk ≥ T1. (4.35)

From (4.34), (4.35), and Lemma 3.1, we get, for t ≥ T1, that

Φ(t) ≤ Φ
(
T+
1

) − ϕ
( r
2

)∫ t

T1

p(s)ds, (4.36)

It is easy to see from (2.6) and (4.36) that Φ(t) ≤ 0 for sufficiently large t. This is contrary to
Φ(t) > 0 for t ≥ T1. Thus r = 0, that is, limt→+∞x(t) = 0.

If (b) holds, let Ψ(t) = (r(t)x′′(t)/ϕ(x(t))) for t ≥ T. We see that Ψ(t) > 0 for t ≥ T . By
(1.1) and the condition (A), we get for t ≥ T

Ψ′(t) =
−f(t, x(t))
ϕ(x(t))

− r(t)x′′(t)ϕ′(x(t))x′(t)
ϕ2(x(t))

≤ −f(t, x(t))
ϕ(x(t))

≤ −p(t), t /= tk. (4.37)

From the conditions (A) and (B), we know that

Ψ
(
t+k
)
=

r(tk)x′′(t+
k

)

ϕ
(
x
(
t+
k

)) ≤ r(tk)b
[2]
k
x′′(tk)

ϕ
(
a
[0]
k
x(tk)

) ≤ b
[2]
k

ϕ
(
a
[0]
k

)
r(tk)x′′(tk)
ϕ(x(tk))

≤ Ψ(tk), tk ≥ T. (4.38)

From (4.37), (4.38), and Lemma 3.1, we get for t ≥ T

Ψ(t) ≤ Ψ(T+) −
∫ t

T

p(s)ds. (4.39)

It is easy to see from (2.6) and (4.39) that Ψ(t) < 0 for sufficiently large t. This is contrary
to Ψ(t) > 0 for t ≥ T. Thus in case (b) x(t) must be oscillatory. The proof of Theorem 2.3 is
complete.
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Finally, we give the proof of Theorem 2.4. Without loss of generality, we may assume
that k0 = 1. If (1.1) has an eventually positive solution, x = x(t) for t ≥ t0. By Lemma 3.4, there
exists a T ≥ t0 such that either (a) x′′(t) > 0, x′(t) < 0, t ≥ T or (b) x′′(t) > 0, x′(t) > 0, t ≥ T
holds.

Suppose that (a) holds. We may easily see that the conditions (H2), (H3) of Lemma 3.5
are satisfied. Furthermore, since x′(t) < 0, t ≥ T, then there exists some ti ≥ T , such that for
t ∈ (ti, ti+1]

x(t) ≤ x
(
t+i
)
. (4.40)

In particular,

x(ti+1) ≤ x
(
t+i
)
. (4.41)

Similarly, we have for t ∈ (ti+1, ti+2]

x(t) ≤ x
(
t+i+1
) ≤ b

[0]
i+1x(ti+1) ≤ b

[0]
i+1x
(
t+i
)
. (4.42)

In particular,

x(ti+2) ≤ b
[0]
i+1x
(
t+i
)
. (4.43)

By induction, we obtain for any tk > ti

x(tk) ≤
∏

ti<tj<tk

b
[0]
j x
(
t+i
)
. (4.44)

Since {∏n
k=1b

[0]
k
} is bounded and (4.44) holds, we know that {x(tk)} is bounded. Thus there

exists M1 > 0, such that |x(tk)| ≤ M1. It follows from the condition (B) that

∣∣x
(
t+k
) − x(tk)

∣∣ ≤ max
{∣∣∣a[0]

k − 1
∣∣∣,
∣∣∣b[0]k − 1

∣∣∣
}
|x(tk)| ≤ M1 max

{∣∣∣a[0]
k − 1

∣∣∣,
∣∣∣b[0]k − 1

∣∣∣
}
. (4.45)

By (4.45), we know that
∑+∞

k=1[x(t
+
k) − x(tk)] is convergent. Therefore, the condition (H4) of

Lemma 3.5 is also satisfied. By Lemma 3.5, we know that limt→+∞x(t) = r ≥ 0. We assert that
r = 0. If r > 0, then there exists T1 ≥ T, such that for t ≥ T1, x(t) > r/2 > 0. Since ϕ′(x) ≥ 0,
we have ϕ(x(t)) ≥ ϕ(r/2). Since (r(t)x′′(t))′ < 0, t ≥ T1, there exists some ti ≥ T1 such that for
t ∈ (ti, ti+1]

r(t)x′′(t) ≤ r(ti)x′′(t+i
)
. (4.46)

In particular,

r(ti+1)x′′(ti+1) ≤ r(ti)x′′(t+i
)
. (4.47)
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Similarly, we have for t ∈ (ti+1, ti+2]

r(t)x′′(t) ≤ r(ti+1)x′′(t+i+1
) ≤ b

[2]
i+1r(ti+1)x

′′(ti+1) ≤ b
[2]
i+1r(ti)x

′′(t+i
)
. (4.48)

In particular,

r(ti+2)x′′(ti+2) ≤ b
[2]
i+1r(ti)x

′′(t+i
)
. (4.49)

By induction, we obtain for any tk > ti

r(tk)x′′(tk) ≤
∏

ti<tj<tk

b
[2]
j r(ti)x′′(t+i

)
. (4.50)

By b
[2]
k ≤ a

[0]
k and the condition (B), we know that {∏n

k=1b
[2]
k } is bounded, and from (4.50),

we see that {r(tk)x′′(tk)} is bounded. There then exists M2 > 0 such that |r(tk)x′′(tk)| ≤ M2.
Therefore, we have

∣∣∣
(
b
[2]
k − 1

)
r(tk)x′′(tk)

∣∣∣ ≤ M2

∣∣∣b[2]k − 1
∣∣∣. (4.51)

By (1.1) and the condition (A), we have that (4.1) holds. Integrating (4.1) from T1 to t, it
follows from (4.51) and ϕ(x(t)) ≥ ϕ(r/2) for t ≥ T1 that

r(t)x′′(t) − r(T1)x′′(T+
1

) ≤
∑

T1<tk<t

r(tk)
[
x′′(t+k

) − x′′(tk)
] −
∫ t

T1

p(s)ϕ(x(s))ds

≤
∑

T1<tk<t

r(tk)
[
x′′(t+k

) − x′′(tk)
] − ϕ

( r
2

)∫ t

T1

p(s)ds

≤
∑

T1<tk<t

(
b
[2]
k − 1

)
r(tk)x′′(tk) − ϕ

( r
2

)∫ t

T1

p(s)ds

≤
∑

T1<tk<t

∣∣∣
(
b
[2]
k

− 1
)
r(tk)x′′(tk)

∣∣∣ − ϕ
( r
2

)∫ t

T1

p(s)ds

≤
∑

T1<tk<t

M2

∣∣∣b[2]k
− 1
∣∣∣ − ϕ

( r
2

)∫ t

T1

p(s)ds.

(4.52)

Note that
∑+∞

k=1 |b[2]k
−1| is convergent. Thus it is easy to see from (2.8) and (4.52) that x′′(t) < 0

for sufficiently large t. This is contrary to x′′(t) > 0 for t ≥ T. Thus r = 0, that is, limt→+∞x(t) =
0.

Suppose that (b) holds. Let Ψ(t) = (r(t)x′′(t)/ϕ(x(t))) for t ≥ T. We see that Ψ(t) > 0
for t ≥ T . Similar to the proof of (4.39), we also obtain

Ψ(t) ≤ Ψ(T+) −
∫ t

T

p(s)ds. (4.53)
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It is easy to see from (2.8) and (4.53) that Ψ(t) < 0 for sufficiently large t. This is contrary
to Ψ(t) > 0 for t ≥ T . Thus in case (b) x(t) must be oscillatory. The proof of Theorem 2.4 is
complete.

Acknowledgments

This research is supported by the Natural Science Foundation of Guang Dong of China
under Grant 9151008002000012. The authors would also like to thank the reviewers for their
comments and corrections of their mistakes in the original version of this paper.

References

[1] A. Tiryaki and M. F. Aktas, “Oscillation criteria of a certain class of third order nonlinear delay
differential equations with damping,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1,
pp. 54–68, 2007.

[2] C. M. Hou and S. S. Cheng, “Asymptotic dichotomy in a class of fourth-order nonlinear delay
differential equations with damping,” Abstract and Applied Analysis, vol. 2009, Article ID 484158, 7
pages, 2009.

[3] V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6
of Series in Modern Applied Mathematics, World Scientific, Teaneck, NJ, USA, 1989.

[4] D. D. Bainov and M. B. Dimitrova, “Sufficient conditions for oscillations of all solutions of a class
of impulsive differential equations with deviating argument,” Journal of Applied Mathematics and
Stochastic Analysis, vol. 9, no. 1, pp. 33–42, 1996.

[5] D.D. Bainov,M. B. Dimitrova, and P. S. Simeonov, “Sufficient conditions for oscillation of the solutions
of a class of impulsive differential equations with advanced argument,” Note di Matematica, vol. 14,
no. 1, pp. 139–145, 1994.

[6] D.D. Bainov,M. B. Dimitrova, andA. B. Dishliev, “Oscillation of the solutions of impulsive differential
equations and inequalities with a retarded argument,” The Rocky Mountain Journal of Mathematics, vol.
28, no. 1, pp. 25–40, 1998.

[7] D. D. Bainov and M. B. Dimitrova, “Oscillatory properties of the solutions of impulsive differential
equations with a deviating argument and nonconstant coefficients,” The Rocky Mountain Journal of
Mathematics, vol. 27, no. 4, pp. 1027–1040, 1997.

[8] D. D. Bainov, M. B. Dimitrova, and V. A. Peter, “Oscillation properities of solutions of impulsive
differential equations and inequalities with several retarded arguments,” The Georgian Mathematical
Journal , vol. 5, no. 3, pp. 201–212, 1998.

[9] D. Bainov, I. Domshlak Yu., and P. S. Simeonov, “On the oscillation properties of first-order impulsive
differential equations with a deviating argument,” Israel Journal of Mathematics, vol. 98, pp. 167–187,
1997.

[10] D. D. Bainov and M. B. Dimitrova, “Oscillation of nonlinear impulsive differential equations with
deviating argument,” Boletim da Sociedade Paranaense de Matemática, vol. 16, no. 1-2, pp. 9–21, 1996.
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