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The existence of three solutions for elliptic Neumann problems with a perturbed nonlinear term
depending on two real parameters is investigated. Our approach is based on variational methods.

1. Introduction

Here and in the sequel,Ω ⊂ R
n is a bounded open set, with a boundary of classC1, q ∈ L∞(Ω)

with ess infΩ q > 0, p > n; f : Ω ×R → R and g : Ω ×R → R are L1-Carathéodory functions.
The aim of this paper is to study the following perturbed boundary value problem

with Neumann conditions:

−Δpu + q(x)|u|p−2u = λf(x, u) + μg(x, u), in Ω,

∂u

∂ν
= 0, on ∂Ω,

(Pλ,μ)

where Δp = div(|∇u|p−2∇u) is the p-Laplacian, ν is the outer unit normal to ∂Ω, λ and μ are
positive real parameters.

Nonlinear boundary value problems involving the p-Laplacian operator Δp (with
p /= 2) arise from a variety of physical problems. They are used in non-Newtonian fluids,
reaction-diffusion problems, flow through porous media, and petroleum extraction (see, e.g.,
[1, 2]).
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In the last years, several researchers have studied nonlinear problems of this type
through different approaches. In [1], the authors have obtained results on the existence of
a solution for the problem

−Δpu + g(x, u) = f(u), in Ω,

∂u

∂ν
= 0, on ∂Ω,

(1.1)

by using the perturbation result on sums of ranges of nonlinear accretive operators.
Subsequently, Wei and Agarwal, in [2], have studied the same problem by developing some
new techniques in the wake of [1]. Problem (Pλ,μ), when q = 0, λ = 1 and g does not depend
on u, has been studied in [3]. In this paper, the authors have obtained the existence of at least
three solutions for small μ, by using Implicit Function Theorem and Morse Theory. By using
variational methods and in particular critical point results given by Ricceri in [4], Faraci, in
her nice paper [5], has dealt with a Neumann Problem involving the p-Laplacian (for any p)
of type

−Δpu + q(x)|u|p−2u = f(x, u) + μg(x, u), in Ω,

∂u

∂ν
= 0, on ∂Ω.

(1.2)

In particular, [5, Theorems 8, 9] assure the existence of three solutions for the problem given
above.

In the present paper, we establish some results (Theorems 3.1, 3.2), which assure the
existence of at least three weak solutions for the problem (Pλ,μ). In particular the following
result is a consequence of Theorem 3.2.

Theorem 1.1. Let f : R → R be a nonnegative continuous function such that

lim
t→ 0+

f(t)
t

= 0,
∫6

0
f(t)dt < 6

∫1

0
f(t)dt. (1.3)

Then, for every λ ∈]3/4 ∫10 f(t)dt, 9/2
∫6
0 f(t)dt[ and for every positive continuous function g :

[0, 1] × R → R there exists δ� > 0 such that, for each μ ∈]0, δ∗[, the problem

−u′′ + u = λf(u) + μg(x, u) in ]0, 1[,

u′(0) = u′(1)
(1.4)

has at least three nonzero classical solutions.

With respect to [3, 5], we stress that our results hold under different assumptions
(see Remarks 3.4 and 3.5). In particular, in Theorem 1.1, no asymptotic condition at infinity
is required on the nonlinear term. We also point out that in Theorems 3.1 and 3.2, precise
estimates of parameters λ and μ are given.
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2. Preliminaries and Basic Notations

Our main tools are three critical point theorems that we recall here in a convenient form.
The first has been obtained in [6], and it is a more precise version of Theorem 3.2 of [7]. The
second has been established in [7].

Theorem 2.1 (see [6, Theorem 2.6]). LetX be a reflexive real Banach space,Φ : X → R a coercive,
continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose
Gâteaux derivative admits a continuous inverse on X∗, Ψ : X → R a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact such that

Φ(0) = Ψ(0) = 0. (2.1)

Assume that there exist r > 0 and x ∈ X, with r < Φ(x), such that:

(a1) supΦ(x)≤rΨ(x)/r < Ψ(x)/Φ(x);

(a2) for each λ ∈ Λr :=]Φ(x)/Ψ(x), r/supΦ(x)≤rΨ(x)[ the functional Φ − λΨ is coercive.

Then, for each λ ∈ Λr , the functional Φ − λΨ has at least three distinct critical points in X.

Theorem 2.2 (see [7, Corollary 3.1]). Let X be a reflexive real Banach space, Φ : X → R a
convex, coercive and continuously Gâteaux differentiable functional whose Gâteaux derivative admits
a continuous inverse on X∗, Ψ : X → R a continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact such that

inf
X

Φ = Φ(0) = Ψ(0) = 0. (2.2)

Assume that there exist two positive constants r1, r2, and x ∈ X, with 2r1 < Φ(x) < r2/2, such that

(b1) supx∈Φ−1(]−∞,r1[)Ψ(x)/r1 < (2/3)(Ψ(x)/Φ(x));

(b2) supx∈Φ−1(]−∞,r2[)Ψ(x)/r2 < (1/3)(Ψ(x)/Φ(x));

(b3) for each λ ∈ Λ′
r1,r2 :=](3/2)(Φ(x)/Ψ(x)), min{r1/supx∈Φ−1(]−∞,r1[)Ψ(x),

r2/2 supx∈Φ−1(]−∞,r2[)Ψ(x)}[ and for every x1, x2 ∈ X, which are local minima
for the functional Φ − λΨ, and such that Ψ(x1) ≥ 0 and Ψ(x2) ≥ 0 one has
inft∈[0,1]Ψ(tx1 + (1 − t)x2) ≥ 0.

Then, for each λ ∈ Λ′
r1,r2 the functionalΦ−λΨ admits three critical points which lie inΦ−1(]−∞, r2[).

Now we recall some basic definitions and notations.
A function h : Ω × R → R is called an L1-Carathéodory function if x → h(x, t) is

measurable for all t ∈ R, t → h(x, t) is continuous for almost every x ∈ Ω, for all M > 0 one
has sup|t|≤M|h(x, t)| ∈ L1(Ω). Clearly, if h is continuous in Ω × R, then it is L1-Carathéodory.

We also recall that a weak solution of the problem (Pλ,μ) is any u ∈ W1,p(Ω), such that

∫
Ω

(
|∇u(x)|p−2∇u(x)∇v(x)

)
dx +

∫
Ω

(
q(x)|u(x)|p−2u(x)v(x)

)
dx

−
∫
Ω

[
λf(x, u(x)) + μg(x, u(x))

]
v(x)dx = 0, ∀v ∈ W1,p(Ω).

(2.3)
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Put

k = sup
u∈W1,p(Ω)\{0}

supx∈Ω|u(x)|(∫
Ω |∇u(x)|pdx +

∫
Ω q(x)|u(x)|pdx)1/p . (2.4)

If Ω is convex, an explicit upper bound for the constant k is

k ≤ 2(p−1)/p max

⎧⎨
⎩
(

1∫
Ω q(x)dx

)1/p

,
diam(Ω)

n1/p

(
p − 1
p − n

m(Ω)
)(p−1)/p ∥∥q∥∥∞∫

Ω q(x)dx

⎫⎬
⎭ (2.5)

(see, e.g., [8, Remark 1]).
Put F(x, ξ) =

∫ ξ
0 f(x, t)dt for all (x, ξ) ∈ Ω × R and G(x, ξ) =

∫ ξ
0 g(x, t)dt for all (x, ξ) ∈

Ω × R.
Moreover, set Gc :=

∫
Ω max|ξ|≤cG(x, ξ)dx for all c > 0 and Gd := infΩ×[0,d]G for all d > 0.

Clearly, Gc ≥ 0 and Gd ≤ 0.

3. Main Results

In this section, we present our main results on the existence of at least three weak solutions
for the problem (Pλ,μ).

In order to introduce our first result, fixing c, d > 0 such that ‖q‖1dp/
∫
Ω F(x, d)dx <

cp/kp
∫
Ω max|ξ|≤cF(x, ξ)dx and picking λ ∈ Λ :=]‖q‖1dp/p

∫
Ω F(x, d)dx,

cp/pkp
∫
Ω max|ξ|≤cF(x, ξ)dx[, put

δ := min

{
cp − λpkp

∫
Ω max|ξ|≤cF(x, ξ)dx
pkpGc

,
dp
∥∥q∥∥1 − pλ

∫
Ω F(x, d)dx

|Ω|pGd

}
, (3.1)

δ := min

⎧⎨
⎩δ,

1

max
{
0, p|Ω|kplim sup|ξ|→+∞

[(
supx∈ΩG(x, ξ)

)
/ξp
]}
⎫⎬
⎭, (3.2)

where we read r/0 = +∞ so that, for instance, δ = +∞ when lim sup|ξ|→+∞
(supx∈ΩG(x, ξ)/ξp) ≤ 0 and Gd = Gc = 0.

Theorem 3.1. Let f : Ω × R → R be an L1-Carathéodory function, and put F(x, ξ) =
∫ ξ
0 f(x, t)dt

for all (x, ξ) ∈ Ω × R. Assume that there exist two positive constants c, d, with c < (k‖q‖1/p1 )d, such
that

(i)
∫
Ω max|ξ|≤cF(x, ξ)dx/cp <

1
kp‖q‖1

∫
Ω F(x, d)dx

dp
, where k is given by (2.4);

(ii) lim sup|ξ|→+∞[(supx∈ΩF(x, ξ))/ξ
p] ≤ 0.
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Then, for every λ ∈ Λ :=]‖q‖1dp/p
∫
Ω F(x, d)dx, cp/pkp

∫
Ω max|ξ|<cF(x, ξ)dx[ and for every

L1(Ω)-Carathédory function g : Ω × R → R such that

(iii) lim sup|ξ|→+∞[(supx∈ΩG(x, ξ))/ξp] < +∞, where G(x, ξ) =
∫ ξ
0 g(x, t)dt for all (x, ξ) ∈

Ω × R,

there exists δ > 0 given by (3.2) such that, for each μ ∈ [0, δ[, Problem (Pλ,μ) has at least three weak
solutions.

Proof. Fix λ, g, and μ as in the conclusion. Take X = W1,p(Ω) endowed with the norm

‖u‖ =
(∫

Ω
|∇u(x)|pdx +

∫
Ω
q(x)|u(x)|pdx

)1/p

. (3.3)

On the space C0(Ω), we consider the norm ‖u‖∞ := supx∈Ω|u(x)|. Since p > n, X is compactly
embedded in C0(Ω), we have

‖u‖∞ ≤ k‖u‖. (3.4)

Put, for each u ∈ X,

Φ(u) =
1
p
‖u‖p,

Ψ(u) =
∫
Ω

[
F(x, u(x)) +

μ

λ
G(x, u(x))

]
dx.

(3.5)

Since the critical points of the functionalΦ−λΨ onX are weak solutions of problem (Pλ,μ), our
aim is to apply Theorem 2.1 to Φ and Ψ. To this end, taking into account that the regularity
assumptions of Theorem 2.1 on Φ and Ψ are satisfied, we will verify (a1) and (a2).

Put r = 1/p(c/k)p taking into account (3.4), one has

sup
Φ(u)≤r

Ψ(u) = sup
Φ(u)≤r

∫
Ω

[
F(x, u(x)) +

μ

λ
G(x, u(x))

]
dx ≤

∫
Ω
max
|ξ|≤c

F(x, ξ)dx +
μ

λ
Gc. (3.6)

Now, fix u = d. Clearly u ∈ X and moreover Φ(u) > r. One has

Ψ(u) =
∫
Ω
F(x, d)dx +

μ

λ

∫
Ω
G(x, d)dx,

Φ(u) =
1
p
‖u‖p =

1
p
dp
∥∥q∥∥1.

(3.7)
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Hence,

Ψ(u)
Φ(u)

≥ p∥∥q∥∥1
∫
Ω F(x, d)dx

dp
+

p|Ω|∥∥q∥∥1
μ

λ

Gd

dp
,

supΦ(u)≤rΨ(u)

r
≤ pkp

∫
Ω max|ξ|≤cF(x, ξ)dx

cp
+ pkp μ

λ

Gc

cp
.

(3.8)

Since μ < δ, one has

μ <
cp − λpkp

∫
Ω max|ξ|<cF(x, ξ)dx
pkpGc

, this means pkp

∫
Ω max|ξ|≤cF(x, ξ)dx

cp
+ pkp μ

λ

Gc

cp
<

1
λ
.

(3.9)

Furthermore, μ < (dp‖q‖1 − pλ
∫
Ω F(x, d)dx)/p|Ω|Gd; this means that

(p/‖q‖1)(
∫
Ω F(x, d)dx/dp) + (p|Ω|/‖q‖1)(μ/λ)(Gd/d

p) > 1/λ.
Then,

pkp

∫
Ω max|ξ|≤cF(x, ξ)dx

cp
+ pkp μ

λ

Gc

cp
<

1
λ
<

p∥∥q∥∥1
∫
Ω F(x, d)dx

dp
+

|Ω|p∥∥q∥∥1
μ

λ

Gd

dp
. (3.10)

Hence, from (3.8) and (3.10), condition (a1) of Theorem 2.1 is verified.
Finally, since μ < δ, we can fix l > 0 such that lim sup|ξ|→+∞[(supx∈ΩG(x, ξ))/ξp] < l

and μl < 1/|Ω|pkp. Therefore, there exists a function h ∈ L1(Ω) such that

G(x, ξ) ≤ lξp + h(x) (3.11)

for each (x, ξ) ∈ Ω × R.
Now, fix 0 < ε < (1/p|Ω|kpλ)− (μl/λ); from (ii) there is a function hε ∈ L1(Ω) such that

F(x, ξ) ≤ εξp + hε(x) (3.12)

for each (x, ξ) ∈ Ω × R. It follows that, for each u ∈ X,

Φ(u) − λΨ(u) ≥
(
1
p
− λ|Ω|kpε − μ|Ω|kpl

)
‖u‖p − λ‖hε‖1 − μ‖h‖1. (3.13)

This leads to the coercivity of Φ − λΨ, and condition (a2) of Theorem 2.1 is verified. Since,
from (3.8) and (3.10),

λ ∈
]
Φ(u)
Ψ(u)

,
r

supΦ(u)≤rΨ(u)

[
, (3.14)

Theorem 2.1 assures the existence of three critical points for the functional Φ − λΨ, and the
proof is complete.
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Now, we state a variant of Theorem 3.1. Here no asymptotic condition on g is
requested; on the other hand, the functions f , g are supposed to be nonnegative.

Fix c1, d, c2 > 0 such that 3‖q‖1dp/2
∫
Ω F(x,d)dx <

1/kp min{cp1/
∫
Ω F(x,c1)dx, c

p

2/2
∫
Ω F(x,c2)dx} and picking

λ ∈ Λ :=

]
3
∥∥q∥∥1dp

2p
∫
Ω F(x, d)dx

,
1

pkp
min

{
c
p

1∫
Ω F(x, c1)dx

,
c
p

2

2
∫
Ω F(x, c2)dx

}[
, (3.15)

put

δ∗ := min

{
c
p

1 − λpkp
∫
Ω F(x, c1)dx

pkpGc1
,
c
p

2 − 2λpkp
∫
Ω F(x, c2)dx

2pkpGc2

}
. (3.16)

Theorem 3.2. Assume that there exist three positive constants c1, c2, d, with 21/pc1 < k‖q‖1/p1 d <
2−1/pc2, such that

(j) f(x, ξ) ≥ 0 for each (x, ξ) ∈ Ω × [0, c2];

(jj)
∫
Ω F(x, c1)dx/c

p

1 < (2/3kp‖q‖1)(
∫
Ω F(x, d)dx/dp);

(jjj)
∫
Ω F(x, c2)dx/c

p

2 < (1/3kp‖q‖1)(
∫
Ω F(x, d)dx/dp).

Then, for every

λ ∈ Λ :=

]
3
∥∥q∥∥1dp

2p
∫
Ω F(x, d)dx

,
1

pkp
min

{
c
p

1∫
Ω F(x, c1)dx

,
c
p

2

2
∫
Ω F(x, c2)dx

}[
(3.17)

and for every nonnegative L1-Carathédory function g : Ω × R → R, there exists δ∗ > 0 given by
(3.16) such that, for each μ ∈]0, δ∗[, the problem (Pλ,μ) has at least three weak solutions ui, i = 1, 2, 3,
such that

0 ≤ ui(x) < c2, ∀x ∈ Ω, i = 1, 2, 3. (3.18)

Proof. Without loss of generality, we can assume f(x, t) ≥ 0 for all (x, t) ∈ Ω × R. Fix λ, g, and
μ as in the conclusion and take X, Φ and Ψ as in the proof of Theorem 3.1.

We observe that the regularity assumptions of Theorem 2.2 on Φ and Ψ are satisfied.
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Then, our aim is to verify (b1) and (b2). To this end, put u as in Theorem 3.1, r1 =
(1/p)(c1/k)

p, and r2 = (1/p)(c2/k)
p. Therefore, one has 2r1 < Φ(u) < r2/2 and, since μ < δ∗

and Gd = 0, one has

supΦ(u)<r1Ψ(u)

r1
≤ pkp

∫
Ω F(x, c1)dx

c
p

1

+ pkp μ

λ

Gc1

c
p

1

<
1
λ
<

2p
3
∥∥q∥∥1

∫
Ω F(x, d)dx

dp
+
μ

λ

2|Ω|p
3
∥∥q∥∥1

Gd

dp
≤ 2

3
Ψ(u)
Φ(u)

,

2supΦ(u)<r2Ψ(u)

r2
≤ 2pkp

∫
Ω F(x, c2)dx

c
p

2

+ 2pkp μ

λ

Gc2

c
p

2

<
1
λ
<

2p
3
∥∥q∥∥1

∫
Ω F(x, d)dx

dp
+
μ

λ

2|Ω|p
3
∥∥q∥∥1

Gd

dp
≤ 2

3
Ψ(u)
Φ(u)

.

(3.19)

Therefore, (b1) and (b2) of Theorem 2.2 are verified.
Finally, we verify that Φ − λΨ satisfies assumption (b3) of Theorem 2.2.
Let u1 and u2 be two local minima for Φ − λΨ. Then u1 and u2 are critical points for

Φ − λΨ, and so, they are weak solutions for the problem (Pλ,μ). For every positive parameter
λ, μ, and for every (x, t) ∈ Ω × [0,+∞[ one has (λf + μg)(x, t) ≥ 0, hence, owing to the Weak
MaximumPrinciple (see for instance [9])we obtain u1(x) ≥ 0, u2(x) ≥ 0, for all x ∈ Ω. Then,
it follows that su1 + (1 − s)u2 ≥ 0, for all s ∈ [0, 1], and that (λf + μg)(x, su1 + (1 − s)u2) ≥ 0,
and, hence, Ψ(su1 + (1 − s)u2) ≥ 0, for all s ∈ [0, 1].

From Theorem 2.2, the functionalΦ−λΨ has at least three distinct critical points which
are weak solutions of (Pλ,μ) and the conclusion is achieved.

Example 3.3. Consider the following problem

−Δ3u + |u|u = 320|x|2 u3

1 + u8
+ μ
(
|x|2 + 1

)
|u|3, in Ω,

∂u

∂ν
= 0, on ∂Ω,

(3.20)

where Ω = {x ∈ R
2 : |x| < 1}. Then, owing to Theorem 3.2, for each μ ∈]0, 10−3[, the

problem given above has at least three weak solutions. It is enough to choose, for instance,
c1 = 10−6, c2 = 102 and d = 1.

Remark 3.4. We observe that [5, Theorem 8] cannot be applied to the problem of Example 3.3
since the assumption

(N ′
6) there exist s > 1, α > 0, β ∈ L1(Ω) with s < p such that |G(x, u)| ≤ α|u|s + β(x) does

not hold. Moreover, also [5, Theorem 9] cannot be applied since condition

(N ′′
7) lim sup

u→ 0+
(infx∈Ω

∫u
0 g(x, t)dt/|u|p) = +∞ is not verified.

Finally, we observe that [5, Theorem 7] and [5, Theorem 9] ensure only two solutions
and two nonzero solutions, respectively.
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Furthermore, contrary to theorems in [5], owing to our results, we have precise values
of μ for which the problem admits solutions.

On the other hand, we observe that in [5], the case p ≤ n is investigated too.

Remark 3.5. It is easy to verify that our results and theorems in [3] are mutually independent.
In particular, we remark that none of theorems in [3] can be applied to the problem in
Example 3.3. We also observe that in [3] no estimate of small μ is given.

Proof of Theorem 1.1. Our aim is to apply Theorem 3.2 by choosing n = 1, p = 2, and q = 1. Put
d = 1 and c2 = 6. Therefore, taking into account that k =

√
2, one has

3
∥∥q∥∥1dp

2pF(d)
=

3

4
∫1
0 f(t)dt

,
1

pkp

c
p

2

2F(c2)
=

9

2
∫6
0 f(t)dt

. (3.21)

Moreover, since limt→ 0+(F(t)/t2) = 0, there is a positive constant c1 < 1, such that (F(c1)/c21) <
(1/3)

∫1
0 f(t)dt and c21/F(c1) > 18/

∫6
0 f(t)dt. Hence, a simple computation shows that all

assumptions of Theorem 3.2 are satisfied, and the conclusion follows.

Remark 3.6. We explicitly observe that in Theorem 3.2, as well as in Theorem 1.1, no
asymptotic condition at infinity on the nonlinear term is requested.

Example 3.7. The function f : R → R

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ≤ 1
2
,

2t − 1,
1
2
< t ≤ 1,

33t − 32t, 1 < t ≤ 263
256

,

1
8
,

263
256

< t ≤ 6,

et − e6 +
1
8
, t > 6,

(3.22)

satisfies all assumptions of Theorem 1.1.

Remark 3.8. We explicitly observe that the very nice Theorem 1 of [10] cannot be applied to
the function of Example 3.7 since limt→+∞(f(t)/t) = +∞.
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