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Copyright q 2010 Yasunori Kimura. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We propose a new concept of set convergence in a Hadamard space and obtain its equivalent
condition by using the notion of metric projections. Applying this result, we also prove a
convergence theorem for an iterative scheme by the shrinking projection method in a real Hilbert
ball.

1. Introduction

A Hadamard space is defined as a complete geodesic metric space satisfying the CAT(0)
inequality for each pair of points in every triangle. Since this concept includes various
important spaces, it has been widely studied by a large number of researchers. In 2004,
Kirk [1] proved a fixed point theorem for a nonexpansive mapping defined on a subset of
a Hadamard space, and, since then, the study of approximation theory for fixed points of
nonlinear mappings has been rapidly developed. See [2–4] and references therein. Kirk and
Panyanak [5] proposed a concept of convergence calledΔ-convergence, which was originally
introduced by Lim [6]. This notion corresponds to usual weak convergence in Banach spaces,
and they share many useful properties.

On the other hand, the notion of set convergence for a reflexive Banach space has
also been investigated by many researchers. In this paper, we will focus on the Mosco
convergence. The relationship between convergence of a sequence of closed convex sets and
the corresponding sequence of projections plays an important role in this field [7–10]. In
recent research, this concept is applied to convergence of an approximating scheme, which is
called the shrinking projection method in Hilbert and Banach spaces; see [11, 12].

Motivated by these results, we propose a new concept of set convergence for a
sequence of subsets in a Hadamard space, which follows the notion of Mosco convergence in
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a Banach space. We adopt Δ-convergence for weak convergence in a Hadamard space. In the
main result, we obtain an equivalent condition for this convergence by using the notion of
metric projections. In the final section, applying our main result, we prove a convergence
theorem for an iterative scheme by the shrinking projection method in a real Hilbert
ball.

2. Preliminaries

Let X be a metric space with a metric d. For a subset A of X, the closure of A is denoted by
clA. For x, y ∈ X, a mapping c : [0, l] → X, where l ≥ 0, is called a geodesic with endpoints
x, y if c(0) = x, c(l) = y, and d(c(t), c(s)) = |t − s| for t, s ∈ [0, l]. If, for every x, y ∈ X, a
geodesic with endpoints x, y exists, then we call X a geodesic metric space. Furthermore, if a
geodesic is unique for each x, y ∈ X, thenX is said to be uniquely geodesic. To introduce some
notations, we do not need to assume the uniqueness of geodesics. However, since CAT(0)
spaces, which we mainly use in this paper, are always uniquely geodesic, we will assume
that X is uniquely geodesic in what follows.

Let X be a uniquely geodesic metric space. For x, y ∈ X, the image of a geodesic c
with endpoints x, y is called a geodesic segment joining x and y and is denoted by [x, y]. A
geodesic triangle with vertices x, y, z ∈ X is a union of geodesic segments [x, y], [y, z], and
[z, x], and we denote it by Δ(x, y, z). A comparison triangle Δ(x, y, z) in E

2 for Δ(x, y, z)
is a triangle in the 2-dimensional Euclidean space E

2 with vertices x, y, z ∈ E
2 such that

d(x, y) = |x − y|
E2 , d(y, z) = |y − z|

E2 , and d(z, x) = |z − x|
E2 , where | · |

E2 is the Euclidean
norm on E

2. A point p ∈ [x, y] is called a comparison point for p ∈ [x, y] if d(x, p) = |x − p|
E2 .

If, for any p, q ∈ Δ(x, y, z) and their comparison points p, q ∈ Δ(x, y, z), the inequality

d
(
p, q

) ≤ ∣∣p − q
∣∣
E2 (2.1)

holds for all triangles inX, thenwe callX a CAT(0) space. This inequality is called the CAT(0)
inequality. Hadamard spaces are defined as complete CAT(0) spaces.

The CAT(0) space has been investigated in various fields in mathematics, and a great
deal of results have been obtained. For more details, see [13].

For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that d(x, z) =
(1− t)d(x, y) and d(z, y) = td(x, y). We denote it by tx⊕ (1− t)y. From the CAT(0) inequality,
it is easy to see that

d
(
z, tx ⊕ (1 − t)y

)2 ≤ td(z, x)2 + (1 − t)d
(
z, y

)2 − t(1 − t)d
(
x, y

)2 (2.2)

for every x, y, z ∈ X and t ∈ [0, 1].
A subset C of X is said to be convex if, for every x, y ∈ C, a geodesic segment [x, y]

is included in C. For a subset A of X, a convex hull of A is defined as an intersection of all
convex sets including A, and we denote it by coA.

Let Y be a subset ofX. A mapping S : Y → X is said to be nonexpansive if d(Sx, Sy) ≤
d(x, y) holds for every x, y ∈ Y . The set of all fixed points of S is denoted by F(S); that is,
F(S) = {z ∈ Y : Sz = z}. We know that F(S) is closed and convex if S is nonexpansive.
The following fixed point theorem for nonexpansive mappings on Hadamard spaces plays
an important role in our results.
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Theorem 2.1 (Kirk [1]). LetU be a bounded open subset of a Hadamard space X and S : clU → X
a nonexpansive mapping. Suppose that there exists p ∈ U such that every x in the boundary ofU does
not belong to [p, Sx] \ {Sx}. Then, S has a fixed point in clU.

Let C be a nonempty closed convex subset of a Hadamard space X. Then, for each x ∈
X, there exists a unique point yx ∈ C such that d(x, yx) = infy∈Cd(x, y). The mapping x �→ yx

is called a metric projection onto C and is denoted by PC. We know that PC is nonexpansive;
see [13, pages 176-177].

Let {xn} be a bounded sequence in a metric space X. For x ∈ X, let

r(x, {xn}) = lim sup
n→∞

d(x, xn),

r({xn}) = inf
x∈X

r(x, {xn}).
(2.3)

The asymptotic center of {xn} is a set of points x ∈ X satisfying that r(x, {xn}) = r({xn}). It is
known that the asymptotic center of {xn} consists of one point for every bounded sequence
{xn} in a Hadamard space; see [3]. The following property of asymptotic centers is important
for our results.

Theorem 2.2 (Dhompongsa et al. [3]). Let C be a closed convex subset of a Hadamard spaceX and
{xn} a bounded sequence in C. Then, the asymptotic center of {xn} is included in C.

The notion of Δ-convergence was firstly introduced by Lim [6] in a general metric
space setting. Following [5], we apply it to Hadamard spaces. Let {xn} be a sequence in
X. We say that {xn} is Δ-convergent to x ∈ X if x is the unique asymptotic center of any
subsequence of {xn}. We know that every bounded sequence {xn} in a Hadamard space X
has a Δ-convergent subsequence; see [5, 14].

3. Convergence of a Sequence of Sets

Let {Cn} be a sequence of closed convex subsets of a Hadamard space X. As an analogy of
Mosco convergence in Banach spaces [15], we introduce a new concept of set convergence.
First let us define subsets d-LinCn and Δ-LsnCn of X as follows: x ∈ d-LinCn if and only if
there exists {xn} ⊂ X such that {d(xn, x)} converges to 0 and that xn ∈ Cn for all n ∈ N. On
the other hand, y ∈ Δ-LsnCn if and only if there exist a sequence {yi} ⊂ X and a subsequence
{ni} of N such that {yi} has an asymptotic center {y} and that yi ∈ Cni for all i ∈ N. If a subset
C0 of X satisfies that C0 = d-LinCn = Δ-LsnCn, it is said that {Cn} converges to C0 in the sense
of Δ-Mosco, and we write C0 = ΔM-limn→∞Cn. Since the inclusion d-LinCn ⊂ Δ-LsnCn is
always true, to obtain C0 is a limit of {Cn} in the sense of Δ-Mosco, it suffices to show that
Δ-LsnCn ⊂ C0 ⊂ d-LinCn.

It is easy to show that, if every Cn is convex, then so is d-LinCn. Moreover, we know
that d-LinCn is always closed. Therefore,ΔM-limn→∞Cn is closed and convex whenever {Cn}
is a sequence of closed convex subsets of X.

The following lemma is essentially obtained in [5] as the Kadec-Klee property in
CAT(0) spaces. Wemodify it to a suitable form for our purpose. For the sake of completeness,
we give the proof.
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Lemma 3.1. Let X be a Hadamard space and {xn} a sequence in X. Suppose that {xn} is Δ-
convergent to x ∈ X and {d(xn, p)} converges to d(x, p) for some p ∈ X. Then, {xn} converges
to x.

Proof. Let {Δ(x, p, xn)} be comparison triangles in E
2 for n ∈ N with an identical geodesic

segment [p, x]. Then, we have that |x − p|
E2 = d(x, p), |xn − p|

E2 = d(xn, p), and |xn − x|
E2 =

d(xn, x) for all n ∈ N. We know that {xn} is bounded in E
2. Let {xni} be an arbitrary

subsequence of {xn} converging to y ∈ E
2. Then, by assumption, we have that

∣
∣y − p

∣
∣
E2 = lim

i→∞

∣
∣xni − p

∣
∣
E2 = lim

i→∞
d
(
xni , p

)
= d

(
x, p

)
=
∣
∣x − p

∣
∣
E2 . (3.1)

Let P = P[p,x] be ametric projection of E
2 onto a closed convex set [p, x]. Since P is continuous,

we have that {Pxni} converges to Py ∈ E
2. Let z ∈ [p, x] ⊂ X be a point corresponding to

z = Py ∈ [p, x] ⊂ E
2. Using the CAT(0) inequality, we have that

r({xni}) = lim sup
i→∞

d(x, xni) = lim sup
i→∞

|x − xni |E2

≥ lim sup
i→∞

|Pxni − xni |E2 = lim sup
i→∞

|z − xni |E2

≥ lim sup
i→∞

d(z, xni),

(3.2)

and hence r(z, {xni}) ≤ r({xni}). By the uniqueness of the asymptotic center of {xni}, we
obtain that z = x, and thus z = x. Since

∣∣x − y
∣∣
E2 =

∣∣z − y
∣∣
E2 =

∣∣Py − y
∣∣
E2 ≤

∣∣(1 − t)x + tp − y
∣∣
E2 (3.3)

for every t ∈]0, 1[⊂ R, it follows that

∣∣x − y
∣∣2
E2 ≤

∣∣(1 − t)x + tp − y
∣∣2
E2

= (1 − t)
∣∣x − y

∣∣2
E2 + t

∣∣p − y
∣∣2
E2 − t(1 − t)

∣∣x − p
∣∣2
E2

= (1 − t)
∣∣x − y

∣∣2
E2 + t2

∣∣p − x
∣∣2
E2 ,

(3.4)

and thus |x − y|2
E2 ≤ t|p − x|2

E2 . Tending t ↓ 0, we obtain that x = y. Since any convergent
subsequence {xni} of a bounded sequence {xn} in E

2 has a limit x, we have that {xn}
converges to x. Thus we have that d(xn, x) = |xn − x|

E2 → 0 as n → ∞, and hence {xn}
converges to x ∈ X.

Now we state the main theorem of this section. Using a sequence of metric projections
corresponding to a sequence of closed convex subsets, we give a characterization ofΔ-Mosco
convergence in a Hadamard space.
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Theorem 3.2. Let X be a Hadamard space and C0 a nonempty closed convex subset of X. Then, for a
sequence {Cn} of nonempty closed convex subsets in X, the following are equivalent:

(i) {Cn} converges to C0 in the sense of Δ-Mosco;

(ii) {PCnx} converges to PC0x ∈ X for every x ∈ X.

Proof. We first show that (i) implies (ii). Fix x ∈ X, and let pn = PCnx for n ∈ N. Since
PC0x ∈ C0 = d-LinCn, there exists {yn} ⊂ X such that yn ∈ Cn for all n ∈ N and that {yn}
converges to PC0x. By the definition of metric projection, we have that d(x, pn) ≤ d(x, yn) for
n ∈ N. Thus, tending n → ∞, we have that

lim sup
n→∞

d
(
x, pn

) ≤ lim
n→∞

d
(
x, yn

)
= d(x, PC0x). (3.5)

It also follows that {pn} is bounded. Let {pni} be an arbitrary subsequence of {pn} and p0 an
asymptotic center of {pni}. Then, for fixed ε > 0, it holds that

d
(
x, pni

) ≤ d(x, PC0x) + ε (3.6)

for sufficiently large i ∈ N. Since the closed ball with the center x and the radius d(x, PC0x)+ε
is convex, by Theorem 2.2, we have that d(x, p0) ≤ d(x, PC0x) + ε, and hence

d
(
x, p0

) ≤ d(x, PC0x). (3.7)

On the other hand, since p0 ∈ Δ-LsnCn = C0, we have that d(x, PC0x) ≤ d(x, p0), and therefore
we have that d(x, PC0x) = d(x, p0), which implies that p0 = PC0x. Since all subsequences of
{pn} have the same asymptotic center PC0x, {pn} is Δ-convergent to PC0x.

Let us show that lim infn→∞d(x, pn) ≥ d(x, PC0x). If it were not true, then there exists a
subsequence {pni} of {pn} satisfying that lim infn→∞d(x, pn) = limi→∞d(x, pni) < d(x, PC0x).
Let p ∈ X be an asymptotic center of {pni}. For ε > 0, we have that d(x, pni) ≤ δ + ε for
sufficiently large i ∈ N, where δ = limi→∞d(x, pni). Since the closed ball with the center x and
the radius δ + ε is convex, we have d(x, p) ≤ δ + ε, and hence d(x, p) ≤ δ = limi→∞d(x, pni).
Since p ∈ Δ-LsnCn = C0, we get that

d(x, PC0x) > lim
i→∞

d
(
x, pni

) ≥ d
(
x, p

) ≥ d(x, PC0x), (3.8)

a contradiction. Therefore, we obtain that

d(x, PC0x) ≤ lim inf
n→∞

d
(
x, pn

) ≤ lim sup
n→∞

d
(
x, pn

) ≤ d(x, PC0x), (3.9)

and thus {d(x, pn)} converges to d(x, PC0x). Using Lemma 3.1, we have that {pn} converges
to PC0x. Hence (ii) holds.

Next we suppose (ii) and show that (i) holds. By assumption, for y ∈ C0, a sequence
{PCny} converges to PC0y = y. Since PCny ∈ Cn for all n ∈ N, we have that y ∈ d-LinCn, and
hence C0 ⊂ d-LinCn. Let z ∈ Δ-LsnCn. Then, there exist {zi} ⊂ X and {ni} ⊂ N such that
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zi ∈ Cni for all i ∈ N and z is an asymptotic center of {zi}. Since each Cni is convex, from the
definition of metric projection, it follows that

d
(
z, PCni

z
)
≤ d

(
z, (1 − t)PCni

z ⊕ tzi
)

(3.10)

for t ∈]0, 1[ and i ∈ N. Then, we have that

d
(
z, PCni

z
)2 ≤ d

(
z, (1 − t)PCni

z ⊕ tzi
)2

≤ (1 − t)d
(
z, PCni

z
)2

+ td(z, zi)2 − t(1 − t)d
(
PCni

z, zi
)2
,

(3.11)

and thus

d
(
z, PCni

z
)2

+ (1 − t)d
(
PCni

z, zi
)2 ≤ d(z, zi)2. (3.12)

Tending t ↓ 0, we get that

d
(
z, PCni

z
)2

+ d
(
PCni

z, zi
)2 ≤ d(z, zi)2 (3.13)

for every i ∈ N, and since {PCni
z} converges to PC0z as i → ∞, we have that

d(z, PC0z)
2 + lim sup

i→∞
d(PC0z, zi)

2 ≤ lim sup
i→∞

d(z, zi)2. (3.14)

Since z is an asymptotic center of {zi}, we have that

lim sup
i→∞

d(z, zi) = r(z, {zi}) = r({zi})

≤ r(PC0z, {zi})
= lim sup

i→∞
d(PC0z, zi).

(3.15)

It follows that

d(z, PC0z)
2 ≤ lim sup

i→∞
d(z, zi)2 − lim sup

i→∞
d(PC0z, zi)

2 ≤ 0, (3.16)

and therefore z = PC0z ∈ C0, which implies that Δ-LsnCn ⊂ C0. Consequently we have that
{Cn} converges to C0 in the sense of Δ-Mosco, and hence (ii) holds.

Using the result in [8], we obtain the following characterization in a Hilbert space.
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Theorem 3.3. LetH be a Hilbert space and C0 a nonempty closed convex subset ofH. Let {Cn} be a
sequence of nonempty closed convex subsets in H. Then, {Cn} converges to C0 in the sense of Mosco
if and only if {Cn} converges to C0 in the sense of Δ-Mosco.

Proof. By [8, Theorems 4.1 and 4.2], {Cn} converges to C0 in the sense of Mosco if and only if
{PCnx} converges strongly to PC0x for all x ∈ H. Therefore, using Theorem 3.2, we obtain the
desired result.

This result shows that Mosco convergence in Hilbert spaces is an example of Δ-Mosco
convergence. Let us see other simple examples.

Example 3.4. Let {Cn} be a sequence of nonempty closed convex subsets of a Hadamard space
X. Then, as a direct consequence of the definition, we obtain that

cl
∞⋃

m=1

∞⋂

n=m
Cn ⊂ d-LinCn ⊂ Δ-LsnCn ⊂

∞⋂

m=1

cl co
∞⋃

n=m
Cn. (3.17)

In particular, if {Cn} is a decreasing sequence with respect to inclusion, then {Cn} isΔ-Mosco
convergent to

⋂∞
n=1 Cn. Likewise, if {Cn} is increasing, then the limit is cl

⋃∞
n=1 Cn.

Example 3.5. Let {Cn} be a sequence of nonempty bounded closed convex subsets of a
Hadamard space X. If {Cn} converges to a bounded closed convex subset C0 ⊂ X with
respect to the Hausdorff metric, then {Cn} also converges to C0 in the sense of Δ-Mosco.
The Hausdorff metric h between nonempty bounded closed subsets A,B of X is defined by

h(A,B) = max{e(A,B), e(B,A)}, (3.18)

where e(A,B) = supx∈Ad(x, B) and d(x, B) = infy∈B d(x, y) for x ∈ X.
Let us prove this fact. For x ∈ C0, we have that d(x,Cn) ≤ e(C0, Cn) ≤ h(C0, Cn) and

since h(Cn,C0) → 0 as n → ∞, there exists a sequence {xn} ⊂ X converging to x such that
xn ∈ Cn for all n ∈ N. It follows that x ∈ d-LinCn, and hence C0 ⊂ d-LinCn.

To show Δ-LsnCn ⊂ C0, let x ∈ Δ-LsnCn. Then, there exists a subsequence {ni} of N

and a sequence {xi} ⊂ X whose asymptotic center is x and xi ∈ Cni for all i ∈ N. Let ε > 0 be
arbitrary. Then, since d(xi, C0) ≤ e(Cni , C0) ≤ h(Cni , C0) → 0 as i → ∞, there exists i0 ∈ N

such that d(xi, C0) < ε for every i ≥ i0.
Let Dε = {y ∈ X : d(y,C0) ≤ ε}. Then, Dε is closed and convex in X. Indeed, for

y1, y2 ∈ Dε and t ∈ ]0, 1[, there exist z1, z2 ∈ C0 such that d(y1, z1) < ε and d(y2, z2) < ε.
Considering the comparison triangle of (y1, z1, z2) and using the CAT(0) inequality, we have
that

d
(
ty1 ⊕ (1 − t)z2, tz1 ⊕ (1 − t)z2

) ≤ td
(
y1, z1

)
. (3.19)

In the same way, considering the comparison triangle of (y1, y2, z2), we have that

d
(
ty1 ⊕ (1 − t)y2, ty1 ⊕ (1 − t)z2

) ≤ (1 − t)d
(
y2, z2

)
. (3.20)
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Thus, we have that d(ty1 ⊕ (1 − t)y2, tz1 ⊕ (1 − t)z2) ≤ (1 − t)d(y2, z2) + td(y1, z1) ≤ ε. Since C0

is convex, we have that tz1 ⊕ (1− t)z2 ∈ C0, and hence ty1 ⊕ (1− t)y2 ∈ Dε. This shows thatDε

is convex. It is obvious that Dε is closed since the function d(·, C0) is continuous.
Since xi ∈ Dε for i ≥ i0, using Theorem 2.2, we have that x ∈ Dε; that is, d(x,C0) ≤

ε. Since ε is arbitrary and C0 is closed, we obtain that x ∈ C0, and hence Δ-LsnCn ⊂ C0.
Consequently we have that {Cn} converges to C0 in the sense of Δ-Mosco.

4. Shrinking Projection Method in a Real Hilbert Ball

As an example of Hadamard spaces, let us deal with a real Hilbert ball in this section. Let BH

be the open unit ball of a complex Hilbert space H with an inner product 〈·, ·〉 and induced
norm ‖ · ‖. For an orthonormal basis {ei : i ∈ I} of H, let HR = {z ∈ H : Im〈z, ei〉 = 0 ∀i ∈ I}.
Then, a real Hilbert ball (B, ρ) is a metric space defined by B = BH ∩HR and ρ : B×B → R by

ρ
(
x, y

)
= arctanh

√√√√
√1 −

(
1 − ‖x‖2

)(
1 − ∥∥y

∥∥2
)

1 − ∣∣〈x, y
〉∣∣2

(4.1)

for x, y ∈ B. It is known that a real Hilbert ball is an example of Hadamard spaces. One of
the most important properties for our results in this section is that a half space C = {z ∈ B :
ρ(z, y) ≤ ρ(z, x)} is convex for any x, y ∈ B; see [16, 17].

Theorem 4.1. Let B be a real Hilbert ball with the metric ρ. Let {Ti : i ∈ I} be a family of
nonexpansive mappings of B into itself with a nonempty set F of their common fixed points. Let
{αn(i) : i ∈ I, n ∈ N} be nonnegative real numbers in [0, 1] such that lim infn→∞αn(i) < 1 for each
i ∈ I. For x ∈ B, generate an iterative sequence {xn} by x1 = x, C0 = B, and

yn(i) = αn(i)xn ⊕ (1 − αn(i))Tixn, for each i ∈ I,

Cn =

{

z ∈ B : sup
i∈I

ρ
(
z, yn(i)

) ≤ ρ(z, xn)

}

∩ Cn−1,

xn+1 = PCnx

(4.2)

for all n ∈ N. Then, {xn} is well defined and converges to PFx ∈ B.

Proof. Since each F(Ti) is closed and convex, so is F =
⋂

i∈I F(Ti). For z ∈ F, it follows that

ρ
(
z, yn(i)

)2

≤ αn(i)ρ(z, xn)2 + (1 − αn(i))ρ(z, Tixn)2 − αn(i)(1 − αn(i))ρ(xn, Tixn)2

≤ αn(i)ρ(z, xn)2 + (1 − αn(i))ρ(Tiz, Tixn)2

≤ ρ(z, xn)2

(4.3)
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for all i ∈ I, and thus supi∈I ρ(z, yn(i)) ≤ ρ(z, xn) for every n ∈ N. Therefore, we have
F ⊂ Cn and Cn is nonempty for n ∈ N. Further, Cn is closed and convex by the property
of a real Hilbert ball B. Hence, the metric projection PCn exists, and xn is well defined for all
n ∈ N. Since {Cn} is decreasing with respect to inclusion, as in Example 3.4, we have that
{Cn} converges to C =

⋂∞
n=1 Cn in the sense of Δ-Mosco. By Theorem 3.2, we have that {xn}

converges to x0 = PCx. Since x0 ∈ Cn for all n ∈ N, we have that ρ(x0, yn(i)) ≤ ρ(x0, xn) for all
n ∈ N and i ∈ I. Fix i ∈ I arbitrarily, and let {αnk(i)} be a subsequence of {αn(i)} converging
to α0(i) ∈ [0, 1[. Then, since ρ(xn, yn(i)) = (1 − αn(i))ρ(xn, Tixn), we have that

ρ(x0, Tix0) ≤ ρ(x0, xnk) + ρ(xnk , Tixnk) + ρ(Tixnk , Tix0)

≤ 2ρ(x0, xnk) +
1

1 − αnk(i)
ρ
(
xnk , ynk(i)

)

≤ 2ρ(x0, xnk) +
1

1 − αnk(i)
(
ρ(xnk , x0) + ρ

(
x0, ynk(i)

))

≤ 2
(
1 +

1
1 − αnk(i)

)
ρ(x0, xnk)

(4.4)

for k ∈ N, and, as k → ∞, we obtain that x0 = Tix0; that is, x0 ∈ F(Ti). Since i ∈ I is arbitrary,
we have that PCx = x0 ∈ F ⊂ C, and therefore x0 = PFx, which is the desired result.

Next, we consider the case of a single mapping. Motivated by [18], we obtain the
following theorem. It shows that, without assuming the existence of fixed points, we may
prove that the iterative sequence is well defined. Moreover, the boundedness of the sequence
guarantees that the set of fixed points is nonempty.

Theorem 4.2. Let B be a real Hilbert ball and T : B → B a nonexpansive mapping. Let {αn} be
a nonnegative real sequence in [0, 1] such that lim infn→∞αn < 1. For x ∈ B, generate an iterative
sequence {xn} by x1 = x, C0 = B, and

yn = αnxn ⊕ (1 − αn)Txn, for each i ∈ I,

Cn =
{
z ∈ B : ρ

(
z, yn

) ≤ ρ(z, xn)
} ∩ Cn−1,

xn+1 = PCnx

(4.5)

for all n ∈ N. Then, {xn} is well defined and the following are equivalent:

(i) F(T) is nonempty;

(ii) {xn} is convergent;
(iii) {xn} is bounded;
(iv)

⋂∞
n=1 Cn is nonempty.

Moreover, in this case the limit of {xn} is PF(T)x = P⋂∞
n=1 Cn

x.

Proof. First we show that {xn} is well defined. Since x1 is given and y1 ∈ C1, C1 is nonempty.
Suppose that C1, C2, . . . , Cn−1 are nonempty. Then, x1, x2, . . . , xn and y1, y2, . . . , yn are defined.
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Let r = max1≤k≤nρ(x, Txk) and D = {w ∈ B : ρ(x,w) ≤ r}. Then, since D is nonempty,
bounded, closed, and convex, there exists a metric projection PD : B → D. Since PD

is nonexpansive, it follows that PDT |D is also a nonexpansive mapping of D into itself.
Moreover, D has a nonempty interior, and [x, v] \ {v} does not intersect the boundary of D
for every v ∈ D. Thus, by Theorem 2.1, there exists u ∈ D such that u = PDTu. Since Txk ∈ D
for k = 1, 2, . . . , n and D is convex, it follows from the definition of the metric projection that

ρ(Tu, u) = ρ(Tu, PDTu) ≤ ρ(Tu, (1 − t)u ⊕ tTxk) (4.6)

for t ∈ ]0, 1[. Thus, we have that

ρ(Tu, u)2 ≤ ρ(Tu, (1 − t)u ⊕ tTxk)2

≤ (1 − t)ρ(Tu, u)2 + tρ(Tu, Txk)2 − t(1 − t)ρ(u, Txk)2,
(4.7)

and thus

ρ(Tu, u)2 ≤ ρ(Tu, Txk)2 − (1 − t)ρ(u, Txk)2

≤ ρ(u, xk)2 − (1 − t)ρ(u, Txk)2.
(4.8)

Tending t ↓ 0, we have that 0 ≤ ρ(Tu, u)2 ≤ ρ(u, xk)
2 − ρ(u, Txk)

2, and hence ρ(u, Txk) ≤
ρ(u, xk) for k = 1, 2, . . . , n. It gives us that

ρ
(
u, yk

)2 = ρ(u, αkxk ⊕ (1 − αk)Txk)2

≤ αkρ(u, xk)2 + (1 − αk)ρ(u, Txk)2

≤ ρ(u, xk)2

(4.9)

for all k = 1, 2, . . . , n, and hence u ∈ Cn. This shows that Cn is nonempty and obviously it
is closed and convex. Therefore, xn+1 = PCnx is defined. By induction, we obtain that {xn} is
well defined.

Next, we show that (i)–(iv) are equivalent. We know from Theorem 4.1 for a single
mapping that (i) implies (ii). We also have that {xn} converges to PF(T)x = P⋂∞

n=1 Cn
x. It is trivial

that (ii) implies (iii). Let us suppose that (iii) holds and show (iv). Since {xn} is bounded,
there exists a subsequence {xnk} which is Δ-convergent to some x0 ∈ B. From the definition
of subsequence, for any n ∈ N, there exists k0 ∈ N such that nk > n for all k ≥ k0. Since {Cn} is
decreasing with respect to inclusion, we have xnk ⊂ Cnk−1 ⊂ Cn for all k ≥ k0. By Theorem 2.2,
we have that x0 ∈ Cn for every n ∈ N, and hence (iv) holds. Lastly, we show that (iv) implies
(i). Assume that C =

⋂∞
n=1 Cn is nonempty. By Theorem 3.2, {xn} converges to PCx. Then, as

in the proof of Theorem 4.1, we have that PCx ∈ F(T), and thus (i) holds. Consequently, these
four conditions are all equivalent.
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