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Let p be a finite, positive measure on D", the polydisc in C", and let 0, be 2n-dimensional Lebesgue
volume measure on D". For an Orlicz function ¢, a necessary and sufficient condition on y is given
in order that the identity map J : LYm",c,) — LY(D", u) is bounded.

1. Introduction

We denote by D" the unit polydisc in C" and by T" the distinguished boundary of D". We
will use o, to denote the 2n-dimensional Lebesgue volume measure on D", normalized so
that 0, (D") = 1. We use R to describe rectangles on T", and we use S(R) to denote the corona

associated to these sets. In particular, if I is an interval on T of length 6 € (0,1) centered at
¢i(00+6/2)

SI)y={zeD|1-6<r<1,00<0<0y+6}. (1.1)

Then, if R = I; x I x --- x I, C T", with I; intervals having length 6; and having centers
@9/ S(R) is given by S(R) = S(I1) x S(I) x - -+ x S(I,,), and let

a]’ _ (1 _ 6j)ei(9?+5j/2)’ 1< ] <n. (12)

If V is any open set in T", we define S(V) = UyS(R;) where { R, } runs through all rectangles
inV.
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An Orlicz function is a real-valued, nondecreasing, convex function ¢ : [0,+00) —
[0, +o0) such that ¢(0) = 0 and ¢(o0) = co. To avoid pathologies, we will assume that we
work with an Orlicz function ¢ having the following additional properties: ¢ is continuous
and strictly convex (hence increasing), such that

im 2% o (13)

x—ow X

The Orlicz space L?(u) is the space of all (equivalence classes of) measurable functions
f :Q — C for which there is a constant C > 0 such that

f w(—lf(w” >d#(w) < +oo, (1.4)
Q C

and then || f||,, (the Luxemburg norm) is the infimum of all possible constant C such that this
integral is < 1. It is well known that L?(y) is a Banach space under the Luxemburg norm ||| ..
For f € L?, let

My(f) = [ (1D <+ 15

The Bergman-Orlicz space LY (D", 6,) consists of all analytic functions in L?(D", 0y,),
which is a closed subspace of LY (D", 0,), so it is an analytic Banach space also.

A theorem of Carleson [1, 2] characterizes those positive measure y on D for which
the Hardy space H” norm dominates the L¥ () norm of elements of H?. Since then, there is
a long history of the development and application of Carleson measures, see [3]. This rich
area of research contains a large body of literature on characterizations of different classes of
operators in different spaces and their applications. Chang [4] has characterized the bounded
measures on LP(T?) using a two-line proof referring to a result of Stein. Characterization of
the bounded identity operators on Hardy spaces is an immediate consequence of Chang’s
proof using standard arguments. Hastings [5] has given a similar result for unweighted
Bergman spaces. MacCluer [6] has obtained a Carleson measure characterization of the
identity operators on Hardy spaces of the unit ball in C* using the well-known results of
Hormander. Lefevre et al. [7] have introduced an adapted version of Carleson measure in
Hardy-Orlicz spaces. Xiao [8], Ortiz, and Fernandez [9] have got a characterization of the
Carleson measure in Bergman-Orlicz spaces of the unit disc.

A finite, positive measure y on D" is called a ¢ Carleson measure if there is a constant
C' such that

1

(8()) < ;
T (e (i ()

(1.6)

for every rectangle I C T".
In this paper, we proveTheorem 2.4.
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2. Main Results and Proofs

Lemma 2.1. For a = (a1, ..., a,) € D", let ua(z1,...,2za) = [T (1 - |a]~|2)2/(1 - E]-z]-)4. Then
Ua(21,...,2,) € LY(D"), and

1
o (M (1/8))

Proof. It is easy to see that [[ua(2)lle = T} (1 + |a;]) /(1= |a;]))* = TT7 (2 - 6;)/67)°. Since
©(0) = 0, the convexity of ¢ implies ¢(ax) < ag(x) for 0 < a < 1. Hence, for every C > 0, we
have

[Tt (6;/2 ~ 6)lus(2) NI !
fﬁ”( - donSj:1<2_6]_> Dnlua(z)l‘/’<§>d‘7n

T < g >2||u @)

Li\2-g; ) e )

but H7:1(6j/(2 - 6j))2||ua](z)||1(p(1/C) < 1 if and only if C > 1/(p‘1(H;7:1(2 -
(6;/67))*(1/ lua(2)l1)), that is,

[ua (25, <

(2.1)

(2.2)

1
ua(2)l5, < . 2.3
o7t (T (2 6,/6)°(1/ ua(2)]1)) 29
Moreover,
2 2
a2l = | (-laf) @) (-lef) (z)
Uy (2)|1 = ———doi(z1) - | ————doi1(z,
Chn—amalr Y i
T1(-1af) [ Lt —da(z)
i1 D [1-az)]|
n N2 1 1 (2.4)
= 1- n d :
f—1< |“ | ) f]D) (1—&;27)2 (1—(X]'Z_j)2 ol(Z]>
2
n (11— o)
el
= (1= |ay]?)
So, we have
1 1
lua(2)ll,, < (2.5)

(T (@-6)/6)) ¢ (T (1/3))



4 Abstract and Applied Analysis

Form = (my,...,my,) € Z,k = (ky,..., k,) with1 <k; < 2mitt (1< j<n), let

Tk = {<r1ei9l,...,rne"9n> |1-2" <rj<1-2771,

(2.6)
2kjor (2kj + 1)
j j

let 2k = (2", ..., z"F), where

Z;nk — (1 _ 2—mj)62(k,-+1/2)7ri/2"']'+4/ 1 S] <n, (27)
let
mk 7 —m; .

Umk={(zl,--.,zn)||z—zj |§§2 f,lsjsn}. (2.8)
O

Lemma 2.2. For fixed m® = (m®, ..., m%) and the corresponding k® = (K%, ..., kS), Tyoxo intersect
U,k for at most N = (5.57)" choices of the pair (m, k).

Proof. See [5]. O

Lemma 2.3. If f € LY (D"), then
o((fz) <O odlfldon 29)
j=1 umk

for (6/8)27™ < p; < (7/8)27™iand any z € Ty

Proof. 1t is clear that ¢(|f(z1,...,24)]) is an n-subharmonic function in D". Repeated
application of Harnack’s inequality yields

(P(lf(zll~'-rzn)|)

1 n p+|
< (M)n]_[ ] |

A A

Z]'—

Z;nk|J‘27r”.J‘2” (if(zmk+ it Zmk ei9n> )d@...d@
T o AR TRE e B P S

>d91 .. de,.

< CZ@ J‘jﬂ e J‘:r (p<|f<z;”k +pre?, ..., zmk pnei9">
(2.10)
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Hence, for z € T,

j=1 /92 J(6/8)2m

SCzcs<ﬁ4””>f o(If)don.
j=1 Uk

Theorem 2.4 (Main theorem). Let pu be a finite, positive measure on D", and suppose that ¢ is an
Orlicz function. Then, the identity map

n (7/8)2m (7/8)2-m
o(|f(z1,...,zn)]) = C2 H4m1‘ f I o(|f2))p1--- pudps -+ dpn

(2.11)

O

J: LY(D",0,) — L?(D", ) (2.12)

is bounded if and only if p is a ¢ Carleson measure.

Proof. Suppose that there exists a constant C such that

7@, <Cligll, (2.13)
forall g € LY(Dm). By Lemma 2.1,
2
n (1 - |6¥]| > ¢ 4
ug(z) = [ [-—— € LED"). (2.14)
= (1-a5z))
However, for z; € S(I;), we have
1= Fz] < [1 - e @072 4 @ @0/ - 7|
S6'+ 1-16: <ei(90+6;/2)_i i_z)
] ( | ]|) |Z| |Z| (2.15)
<8+ (1-6;)(6;+ (1)
so,
o (1-10l?) 1 es)
[ta(z1,...,20)| = Hﬁ 2 —nH—] > . (2.16)



6
Therefore,
f@n(,o(ﬂ"l(ml(lc/ﬁ?))“a(z)'
(11 0/))
> LU) (p( ]3"C j du
(T (1762

- <p<q) mgiﬁl ) >#(S<I)>,

that is,

u(S(D) < !

Abstract and Applied Analysis

)

(2.17)

with C' =1/3"C.
Conversely, suppose that f(z) € LY (D"), we have

I (p< |f(Zl, cen
o P\ CNRE ]

,cn) )y )y

Ou 1= (1 e 100) 11820 e (k. ) 1<y <27

o(Co (M (1/83)))

(2.18)

g
ClN#(D”)”f”
|f(z1,...,cn)l

SZZH(ka){Clnj ‘P<
o =1 J U

C1Nu(Dr)

|f(zl/ .

e}

,Cn)l

< CW(D");ZkJ {f ‘P<

= Cup(D")

s o
m kmg,kg ¥ Tn0x0 "Wk
s3f e
mo,kom,k 7 T 0 Uk

mo ko I 000 <

= Cip(D")

<CipuD")YN

CINp@|I ],

e

Lcn)l

|f(z1,...

|f(21,
CNp@|I£1l,,

rCn)l

]
el
=
=

ClN/l(]D)"

|f(z1,...,cn)l
CNp@) || £,

;Cn)|

-comon| o L

and the proof is complete.

CINp@ | f]]

>d0n} S 1/

(2.19)

O
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Corollary 2.5. Let u be a finite, positive measure on D", and suppose that ¢ is an Orlicz function.
Then p is a ¢ Carleson measure if and only if there exists some C > 1 such that

C
() =

[ua(2)l5, <

for every rectangle I C D"

Proof. As a fact, for any measure p and Orlicz function ¢, we have

a2 |
= "”< PRE >d" =0 <3n||uu<z)||an >ﬂ<5<1>> @21)

by the proof of the Main theorem. So,

u(S()) <

1
9(1/3"[ua(2)ll,,) (2.22)

and the corollary follows. O
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