
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2010, Article ID 604804, 9 pages
doi:10.1155/2010/604804

Research Article
The Optimal Upper and Lower Power Mean Bounds
for a Convex Combination of the Arithmetic and
Logarithmic Means

Wei-Feng Xia,1 Yu-Ming Chu,2 and Gen-Di Wang2

1 School of Teacher Education, Huzhou Teachers College, Huzhou, Zhejiang 313000, China
2 Department of Mathematics, Huzhou Teachers College, Huzhou, Zhejiang 313000, China

Correspondence should be addressed to Yu-Ming Chu, chuyuming2005@yahoo.com.cn

Received 16 December 2009; Accepted 12 March 2010

Academic Editor: Lance Littlejohn

Copyright q 2010 Wei-Feng Xia et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

For p ∈ R, the power mean Mp(a, b) of order p, logarithmic mean L(a, b), and arithmetic mean
A(a, b) of two positive real values a and b are defined by Mp(a, b) = ((ap + bp)/2)1/p, for p /= 0
and Mp(a, b) =

√
ab, for p = 0, L(a, b) = (b − a)/(log b − loga), for a/= b and L(a, b) = a, for

a = b and A(a, b) = (a + b)/2, respectively. In this paper, we answer the question: for α ∈ (0, 1),
what are the greatest value p and the least value q, such that the double inequality Mp(a, b) ≤
αA(a, b) + (1 − α)L(a, b) ≤ Mq(a, b) holds for all a, b > 0?

1. Introduction

For p ∈ R, the power mean Mp(a, b) of order p and logarithmic mean L(a, b) of two positive
real values a and b are defined by

Mp(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

(
ap + bp

2

)1/p

, p /= 0,

√
ab, p = 0,

(1.1)

L(a, b) =

⎧
⎪⎨

⎪⎩

b − a

log b − loga
, a /= b,

a, a = b,

(1.2)

respectively. In the recent past, both mean values have been the subject of intensive research.
In particular, many remarkable inequalities for power mean or logarithmic mean can



2 Abstract and Applied Analysis

be found in the literature [1–15]. It might be surprising that the logarithmic mean has
applications in physics, economics, and even in meteorology [16–18]. In [16] the authors
study a variant of Jensen’s functional equation involving L, which appears in a heat
conduction problem. A representation of L as an infinite product and an iterative algorithm
for computing the logarithmic mean as the common limit of two sequences of special
geometric and arithmetic means are given in [11]. In [19, 20] it is shown that L can be
expressed in terms of Gauss’s hypergeometric function 2F1. And, in [20] the authors prove
that the reciprocal of the logarithmic mean is strictly totally positive, that is, every n × n
determinant with elements 1/L(ai, bi), where 0 < a1 < a2 < · · · < an and 0 < b1 < b2 < · · · < bn,
is positive for all n ≥ 1.

Let A(a, b) = (1/2)(a + b), G(a, b) =
√
ab, andH(a, b) = 2ab/(a + b) be the arithmetic,

geometric, and harmonic means of two positive numbers a and b, respectively. Then it is well
known that

min{a, b} ≤ H(a, b) = M−1(a, b) ≤ G(a, b) = M0(a, b)

≤ L(a, b) ≤ A(a, b) = M1(a, b) ≤ max{a, b},
(1.3)

and all inequalities are strict for a/= b.
In [21], Alzer and Janous established the following best possible inequality:

Mlog 2/ log 3(a, b) ≤ 2
3
A(a, b) +

1
3
G(a, b) ≤ M2/3(a, b) (1.4)

for all a, b > 0.
In [11, 13, 22] the authors present bounds for L in terms of G and A

G2/3(a, b)A1/3(a, b) < L(a, b) <
2
3
G(a, b) +

1
3
A(a, b) (1.5)

for all a, b > 0 with a/= b.
The following sharp bounds for L in terms of power means are proved by Lin [12]

M0(a, b) < L(a, b) < M1/3(a, b). (1.6)

The main purpose of this paper is to answer the question: for α ∈ (0, 1), what are the
greatest value p and the least value q, such that the double inequality Mp(a, b) ≤ αA(a, b) +
(1 − α)L(a, b) ≤ Mq(a, b) holds for all a, b > 0?

2. Lemmas

In order to establish our results we need several lemmas, which we present in this section.
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Lemma 2.1. If α ∈ (0, 1), then (1 + 2α)(log 2 − logα) > 3 log 2.

Proof. For α ∈ (0, 1), let f(α) = (1 + 2α)(log 2 − logα), then simple computations lead to

f ′(α) = 2
(
log 2 − 1

) − 2 logα − 1
α
, (2.1)

f ′′(α) =
1
α2 (1 − 2α). (2.2)

From (2.2) we clearly see that f ′′(α) > 0 for α ∈ (0, 1/2), and f ′′(α) < 0 for α ∈ (1/2, 1).
Then from (2.1)we get

f ′(α) ≤ f ′
(
1
2

)

= 4
(
log 2 − 1

)
< 0 (2.3)

for α ∈ (0, 1).
Therefore f(α) > f(1) = 3 log 2 for α ∈ (0, 1) follows from (2.3).

Lemma 2.2. Let α ∈ (0, 1), if p = log 2/(log 2 − logα), then

−p3 + (4α − 1)p2 − 3αp + α < 0. (2.4)

Proof. For α ∈ (0, 1), let t = − logα, then t ∈ (0,+∞) and

−p3 + (4α − 1)p2 − 3αp + α =
f(t)

(
t + log 2

)3
et
, (2.5)

where f(t) = (t + log 2)3 − 3 log 2(t + log 2)2 + (log 2)2(t + log 2)(4 − et) − (log 2)3et.
To prove Lemma 2.2 we need only to prove that f(t) < 0 for t ∈ (0,+∞). Elementary

calculations yield that

f(0) = 0, (2.6)

f ′(t) = 3
(
t + log 2

)2 − 6 log 2
(
t + log 2

) − (
log 2

)2
tet − (

1 + 2 log 2
)(
log 2

)2
et + 4

(
log 2

)2
,
(2.7)
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f ′(0) = −2(log 2)3 < 0, (2.8)

lim
t→+∞

f ′(t) = −∞, (2.9)

f ′′(t) = 6t − (
log 2

)2
tet − 2

(
log 2

)2(1 + log 2
)
et, (2.10)

f ′′(0) = −2(1 + log 2
)(
log 2

)2
< 0, (2.11)

lim
t→+∞

f ′′(t) = −∞, (2.12)

f ′′′(t) = 6 − (
log 2

)2
tet − (

log 2
)2(3 + 2 log 2

)
et, (2.13)

f ′′′(0) = 6 − 3
(
log 2

)2 − 2
(
log 2

)3
> 0, (2.14)

lim
t→+∞

f ′′′(t) = −∞, (2.15)

f (4)(t) = −(log 2)2tet − 2
(
log 2

)2(2 + log 2
)
et < 0 (2.16)

for t ∈ (0,+∞).
Making use of a computer and the mathematica software, from (2.10)we get

f ′′(1.15) = 0.01679 · · · , (2.17)

f ′′(1.16) = −0.0077 · · · . (2.18)

From (2.14)–(2.16) we clearly see that there exists a unique t0 ∈ (0,+∞), such that
f ′′′(t) > 0 for t ∈ [0, t0) and f ′′′(t) < 0 for t ∈ (t0,+∞). Hence we know that f ′′(t) is strictly
increasing in [0, t0] and strictly decreasing in [t0,+∞).

From (2.11), (2.12), (2.17), (2.18) and the monotonicity of f ′′(t) in [0, t0] and in [t0,+∞)
we know that there exist exactly two numbers t1, t2 ∈ (0,+∞) with t1 < t2, such that f ′′(t) < 0
for t ∈ [0, t1) ∪ (t2,+∞) and f ′′(t) > 0 for t ∈ (t1, t2), and t2 satisfies

1.15 < t2 < 1.16. (2.19)

Hence, we know that f ′(t) is strictly decreasing in [0, t1] ∪ [t2,+∞) and strictly
increasing in [t1, t2].

Making use of a computer and the mathematica software, from (2.7) and (2.19), we
get

f ′(t2) < 3
(
1.16 + log 2

)2 − 6 log 2
(
1.15 + log 2

) − 1.15 × e1.15 × (
log 2

)2

− (
1 + 2 log 2

) × (
log 2

)2 × e1.15 + 4
(
log 2

)2

= −0.807 · · · < 0.

(2.20)
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Now, (2.8), (2.9), (2.20) and the monotonicity of f ′(t) in [0, t1] ∪ [t2,+∞) and in [t1, t2]
imply that

f ′(t) < 0 (2.21)

for t ∈ (0,+∞).
Therefore, f(t) < 0 for t ∈ (0,+∞) follows from (2.6) and (2.21).

Lemma 2.3. For α ∈ (0, 1) and g(t) = α(t− tp)(log t)2+2(1−α)(t+ tp) log t−2(1−α)(t−1)(1+ tp),
one has the following.

(1) If p = log 2/(log 2 − logα), then there exists λ ∈ (1,+∞) such that g(t) > 0 for t ∈ (1, λ)
and g(t) < 0 for t ∈ (λ,+∞).

(2) If p = (1 + 2α)/3, then g(t) < 0 for t ∈ (1,+∞).

Proof. Let g1(t) = t1−pg ′(t), g2(t) = tpg ′
1(t), g3(t) = tg ′

2(t), g4(t) = t2−pg ′
3(t), g5(t) = tg ′

4(t), and
p ∈ {log 2/(log 2 − logα), (1 + 2α)/3}, then simple computations lead to

g(1) = 0, (2.22)

lim
t→+∞

g(t) = −∞, (2.23)

g1(t) = α
(
t1−p − p

)(
log t

)2 + 2
(
t1−p + p − αp − α

)
log t + 2(1 − α)

(
1 + p

)
(1 − t), (2.24)

g1(1) = 0, (2.25)

lim
t→+∞

g1(t) = −∞, (2.26)

g2(t) = α
(
1 − p

)(
log t

)2 + 2
(
1 + α − p − αptp−1

)
log t + 2

(
p − αp − α

)
tp−1

− 2(1 − α)
(
1 + p

)
tp + 2,

(2.27)

g2(1) = 0, (2.28)

lim
t→+∞

g2(t) = −∞, (2.29)

g3(t) = 2α
(
1 − p

)(
1 + ptp−1

)
log t + 2

[
(1 − α)p2 − (1 + α)p + α

]
tp−1

− 2p(1 − α)
(
1 + p

)
tp + 2

(
1 + α − p

)
,

(2.30)

g3(1) = 2
(
1 + 2α − 3p

)
, (2.31)

lim
t→+∞

g3(t) = −∞, (2.32)
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g4(t) = 2α
(
1 − p

)
t1−p − 2αp

(
1 − p

)2 log t − 2p2(1 − α)
(
1 + p

)
t

+ 2
(
p − 1

)[
(1 − α)p2 − (1 + 2α)p + α

]
,

(2.33)

g4(1) = 2p
(
1 + 2α − 3p

)
, (2.34)

lim
t→+∞

g4(t) = −∞, (2.35)

g5(t) = 2α
(
1 − p

)2
t1−p − 2p2(1 − α)

(
1 + p

)
t − 2αp

(
1 − p

)2
, (2.36)

g5(1) = −2
[
p3 − (4α − 1)p2 + 3αp − α

]
, (2.37)

g ′
5(t) = 2α

(
1 − p

)3
t−p − 2p2(1 − α)

(
1 + p

)
, (2.38)

g ′
5(1) = −2

[
p3 − (4α − 1)p2 + 3αp − α

]
. (2.39)

(1) If p = log 2/(log 2 − logα), then from (2.31), (2.34), (2.37)–(2.39), and Lemmas
2.1-2.2 we clearly see that

g3(1) > 0, (2.40)

g4(1) > 0, (2.41)

g5(1) < 0, (2.42)

g ′
5(1) < 0, (2.43)

and g ′
5(t) is strictly decreasing in [1,+∞).
From (2.43) and the monotonicity of g ′

5(t) we know that g5(t) is strictly decreasing in
[1,+∞).

The monotonicity of g5(t) and (2.42) implies that g5(t) < 0 for t ∈ [1,+∞), then we
conclude that g4(t) is strictly decreasing in [1,+∞).

From the monotonicity of g4(t) and (2.35) together with (2.41)we clearly see that there
exists t1 ∈ (1,+∞), such that g4(t) > 0 for t ∈ [1, t1) and g4(t) < 0 for t ∈ (t1,+∞). Hence we
know that g3(t) is strictly increasing in [1, t1] and strictly decreasing in [t1,+∞).

Themonotonicity of g3(t) in [1, t1] and in [t1,+∞) together with (2.32) and (2.40) imply
that there exists t2 ∈ (1,+∞), such that g3(t) > 0 for t ∈ [1, t2) and g3(t) < 0 for t ∈ (t2,+∞).
Then we know that g2(t) is strictly increasing in [1, t2] and strictly decreasing in [t2,+∞).

From (2.28) and (2.29) together with the monotonicity of g2(t) in [1, t2] and in [t2,+∞)
we clearly see that there exists t3 ∈ (1,+∞), such that g2(t) > 0 for t ∈ [1, t3) and g2(t) < 0 for
t ∈ (t3,+∞). Hence we know that g1(t) is strictly increasing in [1, t3] and strictly decreasing
in [t3,+∞).

Equations (2.25) and (2.26) together with the monotonicity of g1(t) in [1, t3] and in
[t3,+∞) imply that there exists t4 ∈ (1,+∞), such that g1(t) > 0 for t ∈ [1, t4) and g1(t) < 0 for
t ∈ (t4,+∞). Then we conclude that g(t) is strictly increasing in [1, t4] and strictly decreasing
in [t4,+∞).
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Now (2.22), (2.23) and the monotonicity of g(t) in [1, t4] and in [t4,+∞) imply that
there exists λ ∈ (1,+∞), such that g(t) > 0 for t ∈ [1, λ) and g(t) < 0 for t ∈ (λ,+∞).

(2) If p = (1 + 2α)/3, then (2.31), (2.34), and (2.37)–(2.39) lead to

g4(1) = g3(1) = 0, (2.44)

g ′
5(1) = g5(1) = − 1

27

[
8
(
1 − α3

)
+ 12α

(
1 − α2

)
+ 60α2(1 − α)

]
< 0, (2.45)

and g ′
5(t) is strictly decreasing in [1,+∞).
Therefore, Lemma 2.3(2) follows from (2.22), (2.25), (2.28), (2.44), (2.45), and the

monotonicity of g ′
5(t).

3. Main Result

Theorem 3.1. For α ∈ (0, 1), the double inequality Mlog 2/(log 2−logα)(a, b) ≤ αA(a, b) + (1 −
α)L(a, b) ≤ M(1+2α)/3(a, b) holds for all a, b > 0, each inequality becomes an equality if and only
if a = b, and the given parameters log 2/(log 2 − logα) and (1 + 2α)/3 in each inequality are best
possible.

Proof. If a = b, then from (1.1) and (1.2)we clearly see thatMlog 2/(log 2−logα)(a, b) = αA(a, b)+
(1 − α)L(a, b) = M(1+2α)/3(a, b) = a for α ∈ (0, 1). Next, we assume that a/= b.

Firstly, we prove thatMlog 2/(log 2−logα)(a, b) < αA(a, b) + (1−α)L(a, b) < M(1+2α)/3(a, b)
for a, b > 0 with a/= b.

Without loss of generality, we assume that a > b. Let t = a/b > 1 and p ∈ {log 2/(log 2−
logα), (1 + 2α)/3}, then (1.1) and (1.2) leads to

αA(a, b) + (1 − α)L(a, b) −Mp(a, b) = b

[
α(t + 1) log t + 2(1 − α)(t − 1)

2 log t
−
(
tp + 1
2

)1/p
]

.

(3.1)

Let

f(t) = log
[
α(t + 1) log t + 2(1 − α)(t − 1)

2 log t

]

− 1
p
log

(
tp + 1
2

)

, (3.2)

then

lim
t→ 1

f(t) = 0, (3.3)

f ′(t) =
g(t)

t
[
α(t + 1) log t + 2(1 − α)(t − 1)

]
(1 + tp) log t

, (3.4)

where g(t) = α(t − tp)(log t)2 + 2(1 − α)(t + tp) log t − 2(1 − α)(t − 1)(1 + tp).
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If p = log 2/(log 2 − logα), then it is not difficult to verify that

lim
t→+∞

f(t) = 0. (3.5)

From (3.4) and Lemma 2.3(1) we know that there exists λ ∈ (1,+∞), such that f(t) is
strictly increasing in [1, λ] and strictly decreasing in [λ,+∞). Then (3.3) and (3.5) together
with the monotonicity of f(t) in [1, λ] and in [λ,+∞) imply that f(t) > 0 for t ∈ (1,+∞),
and from (3.1) and (3.2)we know that αA(a, b) + (1− α)L(a, b) > Mlog 2/(log 2−logα)(a, b) for all
a, b > 0 with a/= b.

If p = (1+2α)/3, then from Lemma 2.3(2) and (3.1)–(3.4)we clearly see that αA(a, b)+
(1 − α)L(a, b) < M(1+2α)/3(a, b) for all a, b > 0 with a/= b.

Secondly, we prove that the parameters log 2/(log 2 − logα) and (1 + 2α)/3 cannot be
improved in each inequality.

For any ε > 0 and x > 1, from (1.1) and (1.2) we get

lim
x→+∞

Mlog 2/(log 2−logα)+ε(1, x)
αA(1, x) + (1 − α)L(1, x)

=
2
α
×
(
1
2

)(log 2−logα)/(log 2+ε(log 2−logα))

>
2
α
×
(
1
2

)(log 2−logα)/ log 2

= 1.

(3.6)

Inequality (3.6) implies that for any ε > 0 there exists X = X(ε) > 1, such that
Mlog 2/(log 2−logα)+ε(1, x) > αA(1, x) + (1 − α)L(1, x) for x ∈ (X,+∞). Hence the parameter
log 2/(log 2 − logα) cannot be improved in the left-side inequality.

Next for 0 < ε < (1 + 2α)/3, let 0 < x < 1, then (1.1) and (1.2) leads to

[αA(1, 1 + x) + (1 − α)L(1, 1 + x)](1+2α−3ε)/3 − [
M(1+2α)/3−ε(1, 1 + x)

](1+2α−3ε)/3

=
[
(1 − α)x + α(1 + x/2) log(1 + x)

log(1 + x)

](1+2α−3ε)/3
− 1 + (1 + x)(1+2α−3ε)/3

2

=
f(x)

[
log(1 + x)

](1+2α−3ε)/3 ,

(3.7)

where f(x) = [(1 − α)x + α(1 + α/2) log(1 + x)](1+2α−3ε)/3 − ((1 + (1 + x)(1+2α−3ε)/3)/2)[log(1 +
x)](1+2α−3ε)/3.

Let x → 0, making use of the Taylor expansion we get

f(x) =
1
24

ε(1 + 2α − 3ε)x(1+2α−3ε)/3
[
x2 + o

(
x2
)]

. (3.8)

Equations (3.7) and (3.8) imply that for any 0 < ε < (1 + 2α)/3 there exists 0 < δ =
δ(ε, α) < 1, such that αA(1, 1+x)+(1−α)L(1, 1+x) > M(1+2α)/3−ε(1, 1+x) for x ∈ (0, δ). Hence
the parameter (1 + 2α)/3 cannot be improved in the right-side inequality.
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[7] J. E. Pečarić, “Generalization of the power means and their inequalities,” Journal of Mathematical
Analysis and Applications, vol. 161, no. 2, pp. 395–404, 1991.

[8] A. O. Pittenger, “Inequalities between arithmetic and logarithmic means,” Publikacije Elektrotehničkog
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