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Some counterparts of theorems of Phragmén-Lindelöf and of Ahlfors are proved for differential
forms ofWT-classes.

1. WT-Forms

This paper is continuation of the earlier work [1], where the main topic was to examine
the connection between quasiregular (qr) mappings and so-called WT-classes of differential
forms. We first recall some basic notation and terminology from [1].

Let M be a Riemannian manifold of class C3, dimM = n, with or without boundary,
and let

w ∈ L
p

loc(M), degw = k, 0 ≤ k ≤ n, p > 1, (1.1)

be a weakly closed differential form on M, that is, for each form

ϕ ∈ W1
q,loc(M), degϕ = k + 1,

1
p
+
1
q
= 1, (1.2)

with a compact suppϕ inM and such that suppϕ ∩ ∂M = ∅; we have

∫
M

〈
w, δϕ
〉
dv = 0. (1.3)
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Here δϕ = (−1)k�−1d � ϕ, k = degϕ, and �α is the orthogonal complement of a differential
form α on a Riemannian manifoldM.

A weakly closed form w of the kind (1.1) is said to be of the class WT1 on M if there
exists a weakly closed differential form

θ ∈ L
q

loc(M), deg θ = n − k,
1
p
+
1
q
= 1, (1.4)

such that almost everywhere on M we have

ν0|θ|q ≤ 〈w, ∗θ〉 (1.5)

for some constant ν0 > 0.
The differential form (1.1) is said to be of the class WT2 on M if there exists a

differential form (1.4) such that almost everywhere onM

ν1|w|p ≤ 〈w, ∗θ〉, (1.6)

|θ| ≤ ν2|w|p−1, (1.7)

for some constants ν1, ν2 > 0.

Theorem 1.1. WT2 ⊂ WT1

For a proof see [1].
The following partial integration formula for differential forms is useful [1].

Lemma 1.2. Let α ∈ W1
p,loc(M) and β ∈ W1

q (M) be differential forms, degα + deg β = n − 1,
1/p + 1/q = 1, 1 ≤ p, q ≤ ∞, and let β have a compact support supp β ⊂ M. Then

∫
M
dα ∧ β = (−1)degα+1

∫
M
α ∧ dβ. (1.8)

In particular, the form α is weakly closed if and only if dα = 0 a.e. on M.

Let A and B be Riemannian manifolds of dimensions dimA = k, dimB = n − k, 1 ≤
k < n, and with scalar products 〈·, ·〉A, 〈·, ·〉B, respectively. The Cartesian productN = A × B
has the natural structure of a Riemannian manifold with the scalar product

〈·, ·〉 = 〈·, ·〉A + 〈·, ·〉B. (1.9)

We denote by π : A × B → A and η : A × B → B the natural projections of the manifold N
onto submanifolds.

If wA and wB are volume forms on A and B, respectively, then the differential form
wN = π∗wA ∧ η∗wB is a volume form onN.
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Let y1, . . . , yk be an orthonormal system of coordinates in Rk, 1 ≤ k ≤ n. Let A be a
domain in Rk, and let B be an (n − k)-dimensional Riemannian manifold. We consider the
manifold N = A × B.

2. Boundary Sets

Below we introduce the notions of parabolic and hyperbolic type of boundary sets on
noncompact Riemannian manifolds and study exhaustion functions of such sets. We also
present some illuminating examples.

Let M be an n-dimensional noncompact Riemannian manifold without boundary.
Boundary sets on M are analogies to prime ends due to Carathéodory (cf. e.g., [2]).

Let {Uk}, k = 1, 2, . . . be a collection of open setsUk ⊂ Mwith the following properties:

(i) for all k = 1, 2, . . ., Uk+1 ⊂ Uk,

(ii)
⋂∞

k=1 Uk = ∅.

A sequence with these properties will be called a chain on the manifoldM.
Let {U′

k
}, {U′′

k} be two chains of open sets on M. We will say that the chain U′
k
is

contained in the chain {U′′
k
}, if for each m ≥ 1 there exists a number k(m) such that for all

k > k(m) we have U′
k
⊂ U′′

m. Two chains, each of which is contained in the other one, are
called equivalent. Each equivalence class ξ of chains is called a boundary set of the manifoldM.
To define ξ it is enough to determine at least one representative in the equivalence class. If the
boundary set ξ is defined by the chain {Uk}, then we will write ξ � {Uk}.

A sequence of points mk ∈ M converges to ξ if for some (and, therefore, all) chain
{Uk} ∈ ξ the following condition is satisfied: for every k = 1, 2, . . . there exists an integer n(k)
such that mn ∈ Uk for all n > n(k). A sequence (mn) lies off a boundary set ξ � {Uk}, if for
every k = 1, 2, . . . there exists a number n(k) such that for all n > n(k) mn /∈Uk.

A boundary set ξ � {Uk} is called a set of ends of the manifoldM if each of {Uk} has a
compact boundary ∂Uk. If in addition each of the setsUk is connected, then ξ � {Uk} is called
an end of the manifoldM.

2.1. Types of Boundary Set

Let D be an open set on M and let A,B ⊂ D be closed subsets in D such that A ∩ B = ∅. Each
triple (A,B;D) is called a condenser on M.

We fix p ≥ 1. The p-capacity of the condenser (A,B;D) is defined by

capp(A,B;D) = inf
∫
D

∣∣∇ϕ
∣∣p ∗ 1M, (2.1)

where the infimum is taken over the set of all continuous functions of class W1
p,loc(D) such

that ϕ(m)|A = 0, ϕ(m)|B = 1. It is easy to see that for a pair (A,B;D) and (A1, B1;D) with
A1 ⊂ A, B1 ⊂ B we have

capp(A1, B1;D) ≤ capp(A,B;D). (2.2)
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LetA, B be compact inD. A standard approximationmethod shows that capp(A,B;D)
does not change if one restricts the class of functions in the variational problem (2.1) to
Lipschitz functions equal to 0 and 1 in the sets A and B, respectively.

Let {Uk} be an arbitrary chain on a manifold M. We fix a subdomain H ⊂⊂ M. If k
is sufficiently large, the intersection H ∩ Uk = ∅ and we consider the condenser (H,Uk;M).
Then it is clear that for k = 1, 2, . . .

capp

(
H,Uk;M

)
≥ capp

(
H,Uk+1;M

)
. (2.3)

We will say that the chain {Uk} onM has p-capacity zero, if for every subdomain H ⊂⊂ M we
have

lim
k→∞

capp

(
H,Uk;M

)
= 0. (2.4)

We will say that a boundary set ξ is of p-parabolic type if every chain {Uk} � ξ is of
p-capacity zero. A boundary set ξ is of α-hyperbolic type if at least one of the chains {Uk} ∈ ξ is
not of p-parabolic type.

Let

{Uk}∞k=1, Uk ⊂ Uk+1,
∞⋃
k=1

Uk = M (2.5)

be an arbitrary exhaustion of the manifold M by subdomains {Uk}. The manifold M is of
p-parabolic or p-hyperbolic type depending on the p-parabolicity or p-hyperbolicity of the
boundary set {M \ Uk}.

It is well-known, see [3], that a noncompact Riemannian manifold M without
boundary is of p-parabolic type if and only if every solution of the inequality

divM
(
|∇u|p−2∇u

)
≥ 0 (2.6)

which is bounded from above is a constant.
The classical parabolicity and hyperbolicity coincides with 2-parabolicity and 2-

hyperbolicity, respectively. Therefore whenever we refer to parabolic or hyperbolic type (of a
manifold or a boundary set) we mean 2-parabolicity or 2-hyperbolicity.

Example 2.1. The space Rn is of p-parabolic type for p ≥ n and p-hyperbolic type for p < n.

We next present a proposition that provides a convenient method of verifying the p-
parabolicity and p-hyperbolicity of boundary sets.

Lemma 2.2 (see [4]). Let ξ be a boundary set onM. If for a chain {Uk � ξ} and for a nonempty open
set H0 ⊂⊂ M the condition (2.4) holds, then the boundary set ξ is of p-parabolic type.
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2.2. A-Solutions

Let M be a Riemannian manifold and let

A : T(M) −→ T(M) (2.7)

be a mapping defined a.e. on the tangent bundle T(M). Suppose that for a.e. m ∈ M the
mapping A is continuous on the fiber Tm, that is, for a.e. m ∈ M the function A(m, ·) :
ξ ∈ Tm → Tm is defined and continuous; the mapping m → Am(X) is measurable for all
measurable vector fields X (see [5]).

Suppose that for a.e.m ∈ M and for all ξ ∈ Tm the inequalities

ν1|ξ|p ≤ 〈ξ, A(m, ξ)〉,

|A(m, ξ)| ≤ ν2|ξ|p−1
(2.8)

hold with p > 1 and for some constants ν1, ν2 > 0. It is clear that we have ν1 ≤ ν2.
We consider the equation

divA
(
m,∇f
)
= 0. (2.9)

Solutions to (2.9) are understood in the weak sense, that is, A-solutions are W1
p,loc-functions

satisfying the integral identity

∫
M

〈
∇θ,A
(
m,∇f
)〉

∗ 1M = 0 (2.10)

for all θ ∈ W1
p(M) with a compact support supp θ ⊂ M.

A function f in W1
p,loc(M) is an A-subsolution of (2.9) in M if

divA
(
m,∇f
)
≥ 0 (2.11)

weakly in M, that is,

∫
M

〈
∇θ,A
(
m,∇f
)〉

∗ 1M ≤ 0 (2.12)

whenever θ ∈ W1
p(M), is nonnegative with a compact support inM.

A basic example of such an equation is the p-Laplace equation

div
(∣∣∇f
∣∣p−2∇f

)
= 0. (2.13)
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3. Exhaustion Functions

Below we introduce exhaustion and special exhaustion functions on Riemannian manifolds
and give illustrating examples.

3.1. Exhaustion Functions of Boundary Sets

Let h : M → (0, h0), 0 < h0 ≤ ∞, be a locally Lipschitz function. For arbitrary t ∈ (0, h0) we
denote by

Bh(t) = {m ∈ M : h(m) < t}, Σh(t) = {m ∈ M : h(m) = t} (3.1)

the h-balls and h-spheres, respectively.
Let h : M → R be a locally Lipschitz function such that: there exists a compactK ⊂ M

such that |∇h(x)| > 0 for a.e.m ∈ M\K. We say that the function h is an exhaustion function
for a boundary set Ξ of M if for an arbitrary sequence of points mk ∈ M, k = 1, 2, . . . the
function h(mk) → h0 if and only ifmk → ξ.

It is easy to see that this requirement is satisfied if and only if for an arbitrary increasing
sequence t1 < t2 < · · · < h0 the sequence of the open sets Vk = {m ∈ M : h(m) > tk} is a chain,
defining a boundary set ξ. Thus the function h exhausts the boundary set ξ in the traditional
sense of the word.

The function h : M → (0, h0) is called the exhaustion function of the manifold M if
the following two conditions are satisfied

(i) for all t ∈ (0, h0) the h-ball Bh(t) is compact;

(ii) for every sequence t1 < t2 < · · · < h0 with limk→∞tk = h0, the sequence of h-balls
{Bh(tk)} generates an exhaustion ofM, that is,

Bh(t1) ⊂ Bh(t2) ⊂ · · · ⊂ Bh(tk) ⊂ · · · ,
⋃
k

Bh(tk) = M. (3.2)

Example 3.1. Let M be a Riemannian manifold. We set h(m) = dist(m,m0) where m0 ∈ M
is a fixed point. Because |∇h(m)| = 1 almost everywhere on M, the function h defines an
exhaustion function of the manifold M.

3.2. Special Exhaustion Functions

Let M be a noncompact Riemannian manifold with the boundary ∂M (possibly empty). Let
A satisfy (2.8) and let h : M → (0, h0) be an exhaustion function, satisfying the following
conditions:

(a1) there is h′ > 0 such that h−1([0, h′]) is compact and h is a solution of (2.9) in the
open set h−1((h′, h0));

(a2) for a.e. t1, t2 ∈ (h′, h0), t1 < t2,

∫
Σh(t2)

〈 ∇h

|∇h|
, A(x,∇h)

〉
dHn−1 =

∫
Σh(t1)

〈 ∇h

|∇h|
, A(x,∇h)

〉
dHn−1. (3.3)
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Here dHn−1 is the element of the (n − 1)-dimensional Hausdorff measure on Σh. Exhaustion
functions with these properties will be called the special exhaustion functions of M with respect
to A. In most cases the mapping Awill be the p-Laplace operator (2.13).

Since the unit vector ν = ∇h/|∇h| is orthogonal to the h-sphere Σh, the condition (a2)
means that the flux of the vector field A(m,∇h) through h-spheres Σh(t) is constant.

Suppose that the function A(m, ξ) is continuously differentiable. If

(b1) h ∈ C2(M\K) and satisfies (2.9), and

(b2) at every pointm ∈ M where ∂M has a tangent plane Tm(∂M) the condition

〈A(m,∇h(m)), ν〉 = 0 (3.4)

is satisfied where ν is a unit vector of the inner normal to the boundary ∂M, then h is a
special exhaustion function of the manifoldM.

The proof of this statement is simple. Consider the open set

M(t1, t2) = {m ∈ M : t1 < h(m) < t2}, 0 < t1 < t2 < ∞, (3.5)

with the boundary ∂M(t1, t2). Using the Stokes formula, we have for noncritical values t1 < t2
(for the definition of critical values of Ck-functions see, e.g., [6, Part II, Chapter 2, Section 10])

∫
Σh(t2)

〈 ∇h

|∇h| , A(m,∇h)
〉
dHn−1 −

∫
Σh(t1)

〈 ∇h

|∇h| , A(m,∇h)
〉
dHn−1

=
∫
∂M(t1,t2)∪∪i=1,2Σh(ti)

〈ν,A(m,∇h)〉dHn−1 =
∫
∂M(t1,t2)

〈ν,A(m,∇h)〉dHn−1

=
∫
M(t1 ,t2)

divA(m,∇h) ∗ 1 = 0,

(3.6)

and (a2) follows.

Example 3.2. We fix an integer k, 1 ≤ k ≤ n, and set

dk(x) =

(
k∑
i=1

x2
i

)1/2

. (3.7)

It is easy to see that |∇dk(x)| = 1 everywhere in Rn \ Σ0 where Σ0 = {x ∈ Rn : dk(x) = 0}. We
will call the set

Bk(t) = {x ∈ Rn : dk(x) < t} (3.8)
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a k-ball and the set

Σk(t) = {x ∈ Rn : dk(x) = t} (3.9)

a k-sphere in Rn.

We will say that an unbounded domain D ⊂ Rn is k-admissible if for each t >
infx∈Ddk(x) the set D ∩ Bk(t) has compact closure.

It is clear that every unbounded domain D ⊂ Rn is n-admissible. In the general case
the domainD is k-admissible if and only if the function dk(x) is an exhaustion function of D.
It is not difficult to see that if a domain D ⊂ Rn is k-admissible, then it is l-admissible for all
k < l < n.

Fix 1 ≤ k < n. LetΔ be a bounded domain in the (n − k)-plane x1 = · · · = xk = 0 and let

D = {x = (x1, . . . , xk, xk+1, . . . , xn) ∈ Rn : (xk+1, . . . , xn) ∈ Δ} (3.10)

be a domain in Rn.
The domainD is k-admissible. The k-spheres Σk(t) are orthogonal to the boundary ∂D

and therefore 〈∇dk, ν〉 = 0 everywhere on the boundary. The function

h(x) =

⎧⎨
⎩
log dk(x), p = k,

d
(p−n)/(p−1)
k (x), p /=k,

(3.11)

is a special exhaustion function of the domain D. Therefore for p ≥ k the domain D is of
p-parabolic type and for p < k p-hyperbolic type.

Example 3.3. Fix 1 ≤ k < n. Let Δ be a bounded domain in the plane x1 = · · · = xk = 0 with a
piecewise smooth boundary and let

D = {x = (x1, . . . , xn) ∈ Rn : (xk+1, . . . , xn) ∈ Δ} = Rn−k ×Δ (3.12)

be the cylinder domain with base Δ.

The domainD is k-admissible. The k-spheres Σk(t) are orthogonal to the boundary ∂D
and therefore 〈∇dk, ν〉 = 0 everywhere on the boundary, where dk is as in Example 3.2.

Let h = φ(dk) where φ is a C2-function. We have ∇h = φ′∇dk and

n∑
i=1

∂

∂xi

(
|∇h|n−2 ∂h

∂xi

)
=

k∑
i=1

∂

∂xi

((
φ′)n−1 ∂dk

∂xi

)

= (n − 1)
(
φ′)n−2φ′′ +

k − 1
dk

(
φ′)n−1.

(3.13)
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From the equation

(n − 1)φ′′ +
k − 1
dk

φ′ = 0 (3.14)

we conclude that the function

h(x) = (dk(x))(n−k)/(n−1) (3.15)

satisfies (2.13) in D \K and thus it is a special exhaustion function of the domainD.

Example 3.4. Let (r, θ), where r ≥ 0, θ ∈ Sn−1(1), be the spherical coordinates in Rn. Let U ⊂
Sn−1(1), ∂U/= ∅, be an arbitrary domain on the unit sphere Sn−1(1). We fix 0 ≤ r1 < ∞ and
consider the domain

D = {(r, θ) ∈ Rn : r1 < r < ∞, θ ∈ U}. (3.16)

As mentioned above it is easy to verify that the given domain is n-admissible and the function

h(|x|) = log
|x|
r1

(3.17)

is a special exhaustion function of the domainD for p = n.

Example 3.5. Fix 1 ≤ n ≤ p. Let x1, x2, . . . , xn be an orthonormal system of coordinates in
Rn,1 ≤ n < p. Let D ⊂ Rn be an unbounded domain with piecewise smooth boundary and
let B be an (p−n)-dimensional compact Riemannian manifold with or without boundary. We
consider the manifold M = D × B.

We denote by x ∈ D, b ∈ B, and (x, b) ∈ M the points of the corresponding manifolds.
Let π : D × B → D and η : D × B → B be the natural projections of the manifold M.

Assume now that the function h is a function on the domain D satisfying the
conditions (b1), (b2) and (2.13). We consider the function h∗ = h ◦ π : M → (0,∞).

We have

∇h∗ = ∇(h ◦ π) = (∇xh) ◦ π,

div
(
|∇h∗|p−2∇h∗

)
= div
(
|∇(h ◦ π)|p−2∇(h ◦ π)

)

= div
(
|∇xh|p−2 ◦ π(∇xh) ◦ π

)
=

(
n∑
i=1

∂∂xi

(
|∇xh|p−2∂h∂xi

))
◦ π.

(3.18)

Because h is a special exhaustion function of D we have

div
(
|∇h∗|p−2∇h∗

)
= 0. (3.19)
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Let (x, b) ∈ ∂M be an arbitrary point where the boundary ∂M has a tangent
hyperplane and let ν be a unit normal vector to ∂M.

If x ∈ ∂D, then ν = ν1 + ν2 where the vector ν1 ∈ Rk is orthogonal to ∂D and ν2 is a
vector from Tb(B). Thus

〈∇h∗, ν〉 = 〈(∇xh) ◦ π, ν1〉 = 0, (3.20)

because h is a special exhaustion function onD and satisfies the property (b2) on ∂D. If b ∈ ∂B,
then the vector ν is orthogonal to ∂B × Rn and

〈∇h∗, ν〉 = 〈(∇xh) ◦ π, ν〉 = 0, (3.21)

because the vector (∇xh) ◦ π is parallel to Rn.
The other requirements for a special exhaustion function for the manifold M are easy

to verify.
Therefore, the function

h∗ = h∗(x, b) = h ◦ π : M −→ (0,∞) (3.22)

is a special exhaustion function on the manifoldM = D × B.

Example 3.6. Let A be a compact Riemannian manifold, dimA = k, with piecewise smooth
boundary or without boundary. We consider the Cartesian product M = A × Rn, n ≥ 1. We
denote by a ∈ A, x ∈ Rn and (a, x) ∈ M the points of the corresponding spaces. It is easy to
see that the function

h(a, x) =

⎧⎨
⎩
log|x|, p = n,

|x|(p−n)/(p−1) , p /=n,
(3.23)

is a special exhaustion function for the manifold M. Therefore, for p ≥ n the given manifold
is of p-parabolic type and for p < n p-hyperbolic type.

Example 3.7. Let (r, θ), where r ≥ 0, θ ∈ Sn−1(1), be the spherical coordinates in Rn. Let U ⊂
Sn−1(1) be an arbitrary domain on the unit sphere Sn−1(1). We fix 0 ≤ r1 < r2 < ∞ and consider
the domain

D = {(r, θ) ∈ Rn : r1 < r < r2, θ ∈ U} (3.24)

with the metric

ds2M = α2(r)dr2 + β2(r)dl2θ, (3.25)

where α(r), β(r) > 0 are C0-functions on [r1, r2) and dlθ is an element of length on Sn−1(1).
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The manifold M = (D, ds2M) is a warped Riemannian product. In the case α(r) ≡ 1,
β(r) = 1, and U = Sn−1 the manifold M is isometric to a cylinder in Rn+1. In the case α(r) ≡ 1,
β(r) = r, andU = Sn−1 the manifold M is a spherical annulus in Rn.

The volume element in the metric (3.25) is given by the expression

dσM = α(r)βn−1(r)dr dSn−1(1). (3.26)

If φ(r, θ) ∈ C1(D), then the length of the gradient ∇φ inM takes the form

∣∣∇φ
∣∣2 = 1

α2

(
φ′
r

)2 + 1
β2
∣∣∇θφ
∣∣2, (3.27)

where ∇θφ is the gradient in the metric of the unit sphere Sn−1(1).
For the special exhaustion function h(r, θ) ≡ h(r) (2.13) reduces to the following form

d

dr

((
1

α(r)

)p−1(
h′
r(r)
)p−1

βn−1(r)

)
= 0. (3.28)

Solutions of this equation are the functions

h(r) = C1

∫ r
r1

α(t)
β(n−1)/(p−1)(t)

dt + C2 (3.29)

where C1 and C2 are constants.
Because the function h satisfies obviously the boundary condition (a2) as well as the

other conditions of Section 3.2, we see that under the assumption

∫ r2 α(t)
β(n−1)/(p−1)(t)

dt = ∞ (3.30)

the function

h(r) =
∫ r
r1

α(t)
β(n−1)/(p−1)(t)

dt (3.31)

is a special exhaustion function on the manifold M.

Theorem 3.8. Let h : M → (0, h0) be a special exhaustion function of a boundary set ξ of the
manifoldM. Then

(i) if h0 = ∞, the set ξ is of p-parabolic type,

(ii) if h0 < ∞, the set ξ is of p-hyperbolic type.
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Proof. Choose 0 < t1 < t2 < h0 such that K ⊂ Bh(t1). We need to estimate the p-capacity of the
condenser (Bh(t1),M\ Bh(t2);M). We have

capp

(
Bh(t1),M\ Bh(t2);M

)
=

J

(t2 − t1)p−1
, (3.32)

where

J =
∫
Σh(t)

|∇h|p−1dHn−1
M (3.33)

is a quantity independent of t > h(K) = sup{h(m) : m ∈ K}. Indeed, for the variational
problem (2.1) we choose the function ϕ0, ϕ0(m) = 0 for m ∈ Bh(t1),

ϕ0(m) =
h(m) − t1
t2 − t1

, m ∈ Bh(t2) \ Bh(t1) (3.34)

and ϕ0(m) = 1 for m ∈ M \ Bh(t2). Using the Kronrod-Federer formula [7, Theorem 3.2.22],
we get

capp(Bh(t1),M\ Bh(t2);M) ≤
∫
M

∣∣∇ϕ0
∣∣p ∗ 1M

≤ 1
(t2 − t1)p

∫
t1<h(m)<t2

|∇h(m)|p ∗ 1M

=
∫ t2
t1

dt

∫
Σh(t)

|∇h(m)|p−1dHn−1
M .

(3.35)

Because the special exhaustion function satisfies (2.13) and the boundary condition
(a2), one obtains for arbitrary τ1, τ2, h(K) < τ1 < τ2 < h0

∫
Σh(t2)

|∇h|p−1dHn−1
M −
∫
Σh(t1)

|∇h|p−1dHn−1
M

=
∫
Σh(t2)

|∇h|p−2〈∇h, ν〉dHn−1
M −
∫
Σh(t1)

|∇h|p−2〈∇h, ν〉dHn−1
M

=
∫
t1<h(m)<t2

divM
(
|∇h|p−2∇h

)
∗ 1M = 0.

(3.36)

Thus we have established the inequality

capp(Bh(t1),M\ Bh(t2);M) ≤ J

(t2 − t1)p−1
. (3.37)
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By the conditions, imposed on the special exhaustion function, the function ϕ0 is
an extremal in the variational problem (2.1). Such an extremal is unique and therefore the
preceding inequality holds in fact with equality. This conclusion proves (3.32).

If h0 = ∞, then letting t2 → ∞ in (3.32) we conclude the parabolicity of the type of
ξ. Let h0 < ∞. Consider an exhaustion {Uk} and choose t0 > 0 such that the h-ball Bh(t0)
contains the compact set K.

Set tk = supm∈∂Uk
h(m). Then for tk > t0 we have

capp

(
Uk0 ,Uk;M

)
≥ capp(Bh(t0), Bh(tk);M) =

J

(tk − t0)p−1
, (3.38)

hence

lim inf
k→∞

capp

(
Uk0 ,Uk;M

)
≥ J

(h0 − t0)p−1
> 0, (3.39)

and the boundary set ξ is of p-hyperbolic type.

4. Energy Integral

The fundamental result of this section is an estimate for the rate of growth of the energy
integral of forms of the class WT2 on noncompact manifolds under various boundary
conditions for the forms. As an application we get Phragmén-Lindelöf type theorems for
the forms of this class and we prove some generalizations of the classical theorem of Ahlfors
concerning the number of distinct asymptotic tracts of an entire function of finite order.

4.1. Boundary Conditions

Let M be an n-dimensional Riemannian manifold with nonempty boundary ∂M. We will
fix a closed differential form w, degw = k, 1 ≤ k ≤ n, w ∈ L

p

loc(M) of class WT1 and the
complementary closed form θ, degθ = n − k, θ ∈ L

q

loc(M), satisfying the condition (1.4). We
assume that there exists a differential form Z ∈ W1

p,loc with continuous coefficients for which
dZ = w.

Let h : M → (0, h0) be an exhaustion function ofM. As mentioned before we let Bh(τ)
be an h-ball and Σh(τ) an h-sphere.

4.2. Dirichlet Condition with Zero Boundary Values

We will say that the form Z ∈ W1
p,loc(with continuous coefficients and such that dZ = w)

satisfies Dirichlet’s condition with zero boundary values on ∂M if for every differential form
v ∈ L

q

loc(M), degv = n − k, and for almost every τ ∈ (0, h0)

∫
Bh(τ)

w ∧ v + (−1)k−1
∫
Bh(τ)

Z ∧ dv =
∫
Σh(τ)

Z ∧ v. (4.1)
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In particular, the form Z satisfies the boundary condition (4.1), if its coefficients are
continuous and if its support does not intersect with ∂M, that is

suppZ ∩ ∂M = ∅, where suppZ = {m ∈ M : Z(m)/= 0}. (4.2)

IfM is compact then (4.1) takes the form

∫
M
w ∧ v + (−1)k−1

∫
M
Z ∧ dv = 0. (4.3)

4.3. Neumann Condition with Zero Boundary Values

We will say that a form Z satisfies Neumann’s condition with zero boundary values, if for
every differential form v ∈ W1

p,loc(M), degv = k − 1, and for almost every τ ∈ (0, h0)

∫
Bh(τ)

dv ∧ θ =
∫
Σh(τ)

v ∧ θ. (4.4)

IfM is compact then (4.4) takes the form

∫
M
dv ∧ θ = 0. (4.5)

4.4. Mixed Zero Boundary Condition

We will say that a form Z satisfies mixed zero boundary condition if for an arbitrary function
φ ∈ C1(M) and for almost every τ ∈ (0, h0) we have

∫
Bh(τ)

φw ∧ θ + (−1)n−1
∫
Bh(τ)

Z ∧ θ ∧ dφ =
∫
Σh(τ)

φZ ∧ θ. (4.6)

IfM is compact then (4.6) takes the form

∫
M
φw ∧ θ + (−1)n−1

∫
M
Z ∧ θ ∧ dφ = 0. (4.7)

We assume that the form

Z ∈ C2(intM) ∩ C1(∂M) (4.8)

has the property (4.1). On the basis of Stokes’ formula (the standard Stokes formula with
generalized derivatives)we conclude that for almost every τ ∈ (0, h0)

∫
Bh(τ)

dZ ∧ v + (−1)k−1
∫
Bh(τ)

Z ∧ dv =
∫
∂Bh(τ)

Z ∧ v (4.9)
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holds. Therefore we get

∫
∂Bh(τ)\Σh(τ)

Z ∧ v = 0, ∀v ∈ W1
q,loc(M). (4.10)

This implies that the restriction of Z onto the boundary ∂M is the zero form, that is,

Z|∂M(m) = 0 at every point m ∈ ∂M. (4.11)

We next clarify the geometric meaning of the condition (4.11). We assume thatm ∈ ∂M
is a point where the boundary ∂M has a tangent plane Tm(∂M) and that the form Z satisfies
the regularity condition (4.8) in some neighborhood of the point m.

Proposition 4.1. If a form Z is simple at a point m ∈ M, then the condition (4.11) is fulfilled if and
only if the form Z is of the form

Z = ω ∧ dxn, (4.12)

where ω is a form, degω = degZ − 1.

Proof. We give an orthonormal system of coordinates x1, . . . , xn at the point m such that the
hyperplane Tm(∂M) is given by the equation xn = 0. Let degZ = l. Because the form Z is
simple, we can represent it as follows

Z =

(
l∑

i=1

a1,idxi + a1,ndxn

)
∧ · · · ∧

(
l∑

i=1

al,idxi + al,ndxn

)
, (4.13)

where ai,j = ai,j(m) are some constants. The condition (4.11) can now be rewritten as follows

(
l∑

i=1

a1,idxi

)
∧ · · · ∧

(
l∑

i=1

al,idxi

)
= 0, (4.14)

and we easily obtain (4.12).
The proof of the converse implication is obvious.

We next clarify the geometric meaning of the Neumann condition (4.4). We fix the
forms

Z, v ∈ C2(intM) ∩C1(∂M). (4.15)

By Stokes’ formula we have for almost every τ ∈ (0, h0)

∫
∂Bh(τ)

v ∧ θ =
∫
Bh(τ)

dv ∧ θ + (−1)k−1
∫
Bh(τ)

v ∧ dθ. (4.16)
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Because the form θ is closed, condition (4.4) gives

∫
Σh(τ)

v ∧ θ = 0 ∀v ∈ W1
p,loc. (4.17)

Therefore

θ|∂M(m) = 0 (4.18)

at every pointm ∈ ∂M.
Exactly in the same way we verify that the mixed zero boundary condition (4.6) is

equivalent to the condition

Z ∧ θ|∂M(m) = 0 (4.19)

at every pointm ∈ ∂M.
Consider the case of quasilinear equations (2.9). Letm ∈ ∂M be a regular point and let

x1, . . . , xn be local coordinates in a neighborhood of this point. We have

θ = ∗
n∑
i=1

Ai

(
m,∇f(m)

)
dxi

=
n∑
i=1

(−1)i−1Ai

(
m,∇f(m)

)
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

(4.20)

We set Z = f . In the case (4.1) we choose v = φθ where θ is an arbitrary locally Lipschitz
function. We obtain

∫
Bh(τ)

φdf ∧ θ +
∫
Bh(τ)

fd
(
φθ
)
=
∫
Σh(τ)

φfθ (4.21)

and further

∫
Bh(τ)

n∑
i=1

(
φf
)
xi
Ai

(
m,∇f
)
∗ 1 =
∫
Σh(τ)

φfθ, ∀φ. (4.22)

This condition characterizes generalized solutions of (2.9) with zero Dirichlet boundary
condition on ∂M.

On the other side, choosing in the case of the Neumann condition (4.4) for v an
arbitrary locally Lipschitz function φ we get for almost every τ ∈ (0, h)

∫
Bh(τ)

〈
∇φ,A
(
m,∇f
)〉

∗ 1 =
∫
Σh(τ)

φ
〈
A
(
m,∇f
)
, ν
〉
dHn−1

M (4.23)
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which characterizes generalized solutions of (2.9) with zero Neumann boundary conditions
on ∂M.

It is easy to see that at every point of the boundary we have

(−1)i−1dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

∣∣∣
∂M

= cos(ν, xi)dHn−1
M , (4.24)

where (ν, xi) is the angle between the inner normal vector ν to ∂M and the direction 0xi;
dHn−1

M is the element of surface area on M.
Thus, at a regular boundary point, the condition (4.18) is equivalent to the requirement

〈
A
(
m,∇f(m)

)
, ν
〉
= 0. (4.25)

Using (4.11) we see that the condition (4.6) is equivalent to the traditional mixed
boundary condition at regular boundary points.

4.5. Maximum Principle for WT-Forms

Let M be a compact Riemannian manifold with nonempty boundary, dimM = n, and let
v ∈ L

p

loc, degw = k, 1 ≤ k ≤ n, be a differential form of class WT1 on M. Let θ, deg θ = n − k,
be a form complementary to the formw.

Theorem 4.2. Suppose that there exists a differential form Z ∈ W1
p,loc(M), dZ = w on M. If either

(4.3) or (4.5) holds, then θ ≡ 0 on M.

Proof. We assume that (4.3) holds and set v = θ. Then (4.3) yields

∫
M
w ∧ θ = 0. (4.26)

Because

(−1)k(n−k)(−1)k(n−k) ∗ (w ∧ θ) = (−1)k(n−k)∗−1(w ∧ θ)

= ∗−1
(
w ∧ (−1)k(n−k)θ

)

= ∗−1(w ∧ ∗(∗θ)) = 〈w, ∗θ〉,

(4.27)

we get

∫
M
w ∧ θ =

∫
M
∗(w ∧ θ) ∗ 1 =

∫
M
〈w, ∗θ〉 ∗ 1. (4.28)

Using (1.5) we deduce

0 =
∫
M
w ∧ θ ≥ ν0

∫
M
|θ|q ∗ 1. (4.29)
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We assume that the boundary condition (4.5) holds. Choose v = Z. Then (4.5) gives

∫
M
w ∧ θ = 0. (4.30)

As above, we arrive at the inequality (4.29). This inequality implies that θ ≡ 0 onM.

In order to illustrate Theorem 4.2 we consider the example of generalized solutions
f ∈ W1

p,loc(M) of (2.9) under the condition

ν0|A(m, ξ)|p ≤ 〈ξ, A(m, ξ)〉 (4.31)

for all ξ ∈ Tm(M) with the constants p > 1 and ν0 > 0.
Setting Z = f we get

Corollary 4.3. Suppose that the manifold M is compact and the boundary ∂M is not empty. If the
function f satisfies the condition (4.22) or (4.23), then f ≡ const on M.

5. Estimates for Energy Integral: Applications

This chapter is devoted to Phragmén-Lindelöf and Ahlfors theorems for differential forms.

5.1. Basic Theorem

Let M be a noncompact Riemannian manifold, dimM = n. We consider a class F of
differential forms Z ∈ W1

p,loc(M), degZ = k − 1, such that the form dZ = w satisfies the

conditions (1.1) and is in the class WT2. Let θ ∈ L
q

loc be a form satisfying the condition (1.4),
complementary to w.

If the boundary ∂M is nonempty then we will assume that the form Z satisfies on ∂M
some boundary condition B. In the case considered below such a boundary condition can be
any of the conditions (4.1), (4.2), (4.4), and (4.6). We will denote by FB(M) the set of forms
Z, dZ ∈ WT2, satisfying the boundary condition B onM. In particular, below we will operate
with the classes of the FD,F0,FN , andFDN forms corresponding to the boundary conditions
(4.1), (4.2), (4.4), and (4.6), respectively.

We fix a locally Lipschitz exhaustion function h : M → (0, h0), 0 < h0 ≤ ∞. Let
τ ∈ (0, h0) and let Bh(τ) be an h-ball, and Σh(τ) its boundary sphere as before.

We introduce a characteristic ε(τ) setting

ε(τ ;FB) = inf

∫
Σh(τ)

|w|p|∇h|−1dHn−1
M∣∣∣∫Σh(τ)

〈Z, ∗θ〉dHn−1
M

∣∣∣ , (5.1)

where the infimum is taken over all Z ∈ FB(M), Z/= 0.
Some estimates of (5.1) are given in [8, 9].
Under these circumstances we have the following theorem.
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Theorem 5.1. Suppose that the form Z ∈ FB(M) satisfies one of the boundary condition (4.1), (4.4),
or (4.6). Then for almost all τ ∈ (0, h0) and for an arbitrary τ0 the following relation holds

d

dτ

(
I(τ) exp

{
−ν1
∫ τ
τ0

ε(t;FB)dt

})
≥ 0, (5.2)

where

I(τ) =
∫
Bh(τ)

|w|p ∗ 1. (5.3)

In particular, for all τ1 < τ2 we have

I(τ1) ≤ I(τ2) exp

{
−ν1
∫ τ2
τ1

ε(t)dt

}
. (5.4)

Proof. The Kronrod-Federer formula yields

I(τ) =
∫ τ
0
dt

∫
Σh(τ)

|w|p
dHn−1

M

|∇h|
(5.5)

and, in particular, the function I(τ) is absolutely continuous on closed intervals of (0, h0).
Now it is enough to prove the inequality

d

dτ
I(τ) ≥ ν1I(τ) ε(τ). (5.6)

From (5.5) we have for almost every τ ∈ (0, h0)

d

dτ
I(τ) =

∫
Σh(τ)

|w|p
dHn−1

M

|∇h|
. (5.7)

By (1.6) we obtain

I(τ) =
∫
Bh(τ)

|w|p ∗ 1 ≤ ν−11

∫
Bh(τ)

〈w, ∗θ〉 ∗ 1

= ν−11

∫
Bh(τ)

w ∧ θ = ν−11

∫
Bh(τ)

dZ ∧ θ.

(5.8)

However, the form Z is weakly closed and satisfies one of the conditions (4.1), (4.2), or (4.4).
Therefore for a.e. τ ∈ (0, h0),

∫
Bh(τ)

dZ ∧ θ =
∫
Σh(τ)

Z ∧ θ. (5.9)
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Thus we get

I(τ) ≤ ν−11

∫
Σh(τ)

〈Z, ∗θ〉dHn−1
M . (5.10)

Further from (5.1) it follows that

∫
Σh(τ)

|w|p
dHn−1

M

|∇h|
≥ ε(τ ;FB)

∣∣∣∣∣
∫
Σh(τ)

〈Z, ∗θ〉dHn−1
M

∣∣∣∣∣. (5.11)

Combining the above inequalities we obtain

I(τ) ≤
ν−11

ε(τ ;FB)

∫
Σh(τ)

|w|p
dHn−1

M

|∇h|
. (5.12)

This inequality together with the equality (5.7) yields

I(τ) ≤
ν−11

ε(τ ;FB)
d

dτ
I (τ). (5.13)

We thus obtain the desired conclusion (5.6).

We will need also some other estimates of the energy integral. We now prove the first
of these inequalities. Denote by F(Bh(τ)) the set of all differential forms

Z0 ∈ C1(Bh(τ)), degZ0 = k − 1, dZ0 = 0, (5.14)

such that for almost every τ ∈ (0, h0) and for an arbitrary Lipschitz function φ the following
formula holds

∫
Σh(τ)

φ Z0 ∧ θ =
∫
Bh(τ)

dφ ∧ Z0 ∧ θ. (5.15)

Theorem 5.2. If the differential form Z ∈ FB(M), dZ ∈ WT2, satisfies the boundary condition
(4.1), (4.4), or (4.6), then for all τ1 < τ2 < h0 and for an arbitrary form Z0 ∈ F(Bh(τ2)) the following
relation holds

ν1

∫
Bh(τ1)

|dZ|p ∗ 1 ≤
p

τ2 − τ1

∫
Bh(τ2)\Bh(τ1)

|∇h||(Z − Z0) ∧ θ| ∗ 1. (5.16)
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Proof. We consider the function

φ(m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for m ∈ Bh(τ1),

τ2 − h(m)
τ2 − τ1

for m ∈ Bh(τ2) \ Bh(τ1),

0 for m ∈ M \ Bh(τ2).

(5.17)

Suppose that the form Z satisfies the condition (4.1). Setting in (4.1) v = (φ)pZ ∧ θ we get

∫
Bh(τ2)

(
φ
)p
w ∧ θ + (−1)k−1

∫
Bh(τ2)

Z ∧ d
(
φ
)p ∧ θ = 0, (5.18)

or

∫
Bh(τ2)

(
φ
)p〈w, ∗θ〉 ∗ 1 = (−1)k p

∫
Bh(τ2)

(
φ
)p−1

Z ∧ dφ ∧ θ. (5.19)

The function (φ)p is locally Lipschitz on Bh(τ2) and φ|Σh(τ2) = 0. Thus by (5.15) we get

∫
Bh(τ2)

dφp ∧ Z0 ∧ θ =
∫
Bh(τ2)

d
(
φ
)p ∧Z0 ∧ θ

+
∫
Bh(τ2)

(
φ
)p

dZ0 ∧ θ +
∫
Bh(τ2)

(
φ
)p

Z0 ∧ dθ

=
∫
Σh(τ2)

(
φ
)p

Z0 ∧ θ = 0.

(5.20)

Hence we arrive at the relation

∫
Bh(τ2)

(
φ
)p〈w, ∗θ〉 ∗ 1 = (−1)k p

∫
Bh(τ2)

(
φ
)p−1(Z − Z0) ∧ dφ ∧ θ, (5.21)

which by (1.6) yields

ν1

∫
Bh(τ2)

(
φ
)p|w|p ∗ 1 ≤

p

τ2 − τ1

∫
Bh(τ2)

(
φ
)p−1 |(Z −Z0) ∧ θ||∇h| ∗ 1. (5.22)

Observing that φ(m) = 1 form ∈ Bh(τ1) and φ(m) = 0 form ∈ M \ Bh(τ2)we obtain

ν1

∫
Bh(τ1)

|w|p ∗ 1 ≤
p

τ2 − τ1

∫
Bh(τ2)\Bh(τ1)

(
φ
)p−1|∇h||(Z − Z0) ∧ θ| ∗ 1. (5.23)

Because |φ| ≤ 1, the inequality (5.16) follows.
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Let the form Z satisfy the condition (4.4). We choose v = (φ)pZ and observe that

v|Σh(τ2)= 0. (5.24)

Then we get

∫
Bh(τ2)

(
φ
)p

w ∧ θ = −
∫
Bh(τ2)

d
(
φ
)p ∧ Z ∧ θ = (−1)k p

∫
Bh(τ2)

(
φ
)p−1

Z ∧ dφ ∧ θ. (5.25)

Further details of the proof in this case are similar to those carried out above.
We assume that the form Z satisfies the mixed boundary condition (4.6). Observing

that

(
φ
)p∣∣

Σh(τ2)
= 0, (5.26)

we get

∫
Bh(τ2)

(
φ
)p

w ∧ θ = (−1)n
∫
Bh(τ2)

Z ∧ θ ∧ d
(
φ
)p = (−1)n−k p

∫
Bh(τ2)

(
φ
)p−1

Z ∧ dφ ∧ θ.

(5.27)

Arguing as above we complete the proof of the theorem.

There is also an estimate for the energy integral which does not use the complementary
form θ of dZ = w. Such an estimate is given in the next theorem.

Theorem 5.3. If the form Z, dZ ∈ WT2(M), satisfies on ∂M one of the boundary conditions (4.1),
(4.4), or (4.6), then for all 0 < τ1 < τ2 < h0 and for an arbitrary form Z0 ∈ F(Bh(τ2)) we have

∫
Bh(τ1)

|dZ|p ∗ 1 ≤
(

pν2

(τ2 − τ1)ν1

)p ∫
Bh(τ2)\Bh(τ1)

|∇h|p|Z − Z0|p ∗ 1. (5.28)

Proof. We use the earlier established relation (5.22). We estimate the integral on the right
hand side of (5.22). By (1.7) we get

∫
M

(
φ
)p−1|∇h||(Z − Z0)| ∧ θ ∗ 1 ≤

∫
M

(
φ
)p−1|∇h||Z − Z0||θ| ∗ 1

≤ ν2

∫
M

(
φ
)p−1|∇h||Z − Z0||w|p−1 ∗ 1

≤ ν2

(∫
M
|∇h|p|Z − Z0|p ∗ 1

)1/p(∫
M
φp|w|p ∗ 1

)(p−1)/p
.

(5.29)
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From (5.22) we get

(
ν1
ν2

)p ∫
M
|w|p ∗ 1 ≤

(
p

τ2 − τ1

)p ∫
M
|∇h|p|Z − Z0|p ∗ 1. (5.30)

Using the facts that φ = 1 on Bh(τ1) and φ = 0 onM\ Bh(τ2) we easily obtain (5.28).

5.2. Phragmén-Lindelöf Theorem

LetM be an n-dimensional noncompact Riemannianmanifold with or without boundary and
let w ∈ WT2 be a differential form as in (1.1), degw = k, and θ its complementary form as in
(1.4).

We assume that there exists a differential formZ ∈ W1
p,loc with dZ = w. If the boundary

∂M is nonempty, then we will assume that Z satisfies the boundary condition of Dirichlet
(4.1), Neumann’s condition (4.4), or the condition (4.6).

We fix a locally Lipschitz exhaustion function h : M → (0, h0), 0 < h0 ≤ ∞. Let, as
above

I(τ ;Z) =
∫
Bh(τ)

|dZ|p ∗ 1, (5.31)

and let

μ(τ ;Z) = inf
∫
τ<h(m)<τ+1

|∇h||(Z − Z0) ∧ θ| ∗ 1,

m(τ ;Z) = inf
∫
τ<h(m)<τ+1

|∇h|p |Z − Z0|p ∗ 1,

(5.32)

where the infimum is taken over all closed forms Z0, satisfying conditions (5.14), (5.15) on
Bh(τ).

The following theorem exhibits a generalization of the classical Phragmén-Lindelöf
principle for holomorphic functions.

Theorem 5.4. Suppose that the form Z, dZ ∈ WT2(M), satisfies one of the boundary conditions
(4.1), (4.4) or (4.6). The following alternatives hold: either the form dZ = 0 a.e. on the manifold M,
or for all τ0 ∈ (0, h0) we have

lim inf
τ →h0

I(τ ;Z) exp

{
−ν1
∫ τ
τ0

ε(t;FB)dt

}
> 0; (5.33)

lim inf
τ →h0

μ(τ ;Z) exp

{
−ν1
∫ τ
τ0

ε(t;FB)dt

}
> 0, (5.34)

lim inf
τ →h0

m(τ ;Z) exp

{
−ν1
∫ τ
τ0

ε(t;FB)dt

}
> 0. (5.35)
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Proof. The property (5.33) follows readily from (5.4) and is presented here only for the sake
of completeness.

By (5.4) and (5.16), for a.e. τ ∈ (τ0, h0) we have

I(τ0) ≤ I(τ) exp

{
−ν1
∫ τ
τ0

ε(t)dt

}

≤ pν−11

∫
Bh(τ+1)\Bh(τ)

|∇h||(Z −Z0) ∧ θ| ∗ 1 exp

{
−ν1
∫τ
τ0

ε(t)dt

}
.

(5.36)

Therefore we get

I(τ0) ≤ pν−11 μ(τ ;Z) exp

{
−ν1
∫ τ
τ0

ε(t)dt

}
. (5.37)

Analogously, using (5.28) we get

I(τ0) ≤
(
ν2
ν1

)p
ppm(τ ;Z) exp

{
−ν1
∫ τ
τ0

ε(t)dt

}
. (5.38)

If we now assume that the form w/≡ 0, then I(τ0) > 0 for some τ0 ∈ (0, h0). From this
there easily follow (5.34) and (5.35).

5.3. Integral of Energy and Allocation of Finite Forms

There is another application of the above estimates of energy integrals connected with
a generalization of the classical Denjoy-Carleman-Ahlfors theorem about the number of
different asymptotic tracts of an entire function of a given order. In the present case this
theorem can be interpreted as a statement concerning the connection between the number
of finite forms in the class WT2 defined on the manifold M and the rate of growth of their
energy integrals.

Let M be an n-dimensional noncompact Riemannian manifold with or without
boundary. We fix a locally Lipschitz exhaustion function h : M → (0, h0), 0 < h0 ≤ ∞, of
the manifold M.

We assume that there are L ≥ 1 mutually disjoint domains O1,O2, . . . ,OL on M such
that Oi ∩ ∂M = ∅ if the boundary ∂M is nonempty. We also assume that on each domain Oi

there is given a differential form Zi with continuous coefficients and the properties:

(i) degZi = k − 1, dZ /≡ 0,

(ii) dZi = w ∈ WT2 with structure constants p, ν1, ν2, independent of i = 1, 2, . . . , L,

(iii) Zi satisfies on ∂Oi the zero boundary condition (4.2).

We define a form Z onM by setting Z|Oi = Zi and Z = 0 onM\
⋃L

i=1 Oi.
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According to Theorem 4.2 each of the domains Oi has a noncompact closure. Then
by Theorem 5.4 the ”narrower” the intersection of the domains Oi with h-spheres Σh(t)
for t → ∞, the higher is the rate of growth of the form Z. Below we will consider the
Denjoy-Carleman-Ahlfors theorem as a statement on the connection between the number
L of mutually disjoint domains Oi on M0 and the rate of growth of the energy of the form Z
(or of the form Z itself) with respect to an exhaustion function h(m) of the manifold M. We
will prove that such a formulation of the problem contains, in particular, the classical Denjoy-
Carleman-Ahlfors problem for holomorphic functions of the complex plane. In the case of
harmonic functions of Rn see [10, 11] for the history of the problem.

We next introduce some necessary notation. We consider an open subsetD ⊂ Mwith a
noncompact closure and we assume that the restriction of the form Z toD satisfies condition
(4.2).

The function h|D : D → (0,∞) is an exhaustion function of D. We fix an h-ball Bh(τ).
Considering the variational problem (5.1) for the class of forms Z, satisfying the boundary
condition (4.2) on D1 we define the characteristic

ε(t;D) = ε(t;F0) (5.39)

where F0 is defined in Section 5.1 and in (4.1).
Following [12] we introduce the N-mean

E(t;N) = inf
1
N

N∑
k=1

ε(t;Dk) (5.40)

where the infimum is taken over all decompositions of D into N nonintersecting open sets
D1, D2, . . . , DN with noncompact closures.

We record the following simple result.

Lemma 5.5. Let D1 ⊂ D2 be arbitrary open subsets of M with noncompact closures. Then

ε(t;D2) ≤ ε(t;D1), (5.41)

ε(t;M) ≤ E(t;N), N ≥ 1. (5.42)

Proof. It is enough to observe that each pair of forms Z,Z0 admissible for the variational
problem (5.1) for the set D1 is also admissible for this problem for the set D2.

From (5.41) we get (5.42).

We next derive a more general assertion about the monotonicity of N-means.

Lemma 5.6. For arbitrary N > 1 we have

E(t;N + 1) ≥ E(t;N). (5.43)
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Proof. We consider an arbitrary family of open subsets {Dk}, k = 1, 2, . . .,N + 1, admissible
for the infimum in (5.40). It is not difficult to see that

1
N + 1

N+1∑
k=1

ε(t;Dk) =
1

N + 1

N+1∑
k=1

⎛
⎝ 1

N

N+1∑
j=1,j /= k

ε
(
t;Dj

)
⎞
⎠. (5.44)

Because

1
N

N+1∑
j=1,j /= k

ε(t;Dk) ≥ E(t;N), (5.45)

we see that

1
N + 1

N+1∑
k=1

ε(t;Dk) ≥ E(t;N) (5.46)

and the lemma is proved.

The next theorem provides a solution to the aforementioned problem concerning the
connection between the number L of finite forms on M, and the rate of growth of the total
energy of these forms or the sum of their Lp-norms on an h-ball Bh(τ).

Theorem 5.7. Suppose that the manifold M satisfies the properties listed in the beginning of this
subsection and that for someN = 1, 2, . . .

∫h0

h0E(t,N)dt = ∞. (5.47)

If the differential form Z, dZ ∈ WT2(M), is such that

lim inf
τ →h0

∫
h(m)<τ

|dZ|p ∗ 1 exp

{
−ν1
∫ τ
τ0

E(t;N)dt

}
= 0, (5.48)

or

lim inf
τ ′ ,τ ′′ →h0
0<τ ′<τ ′′<h0

∫
τ ′<h(m)<τ ′′

|∇h||Z ∧ θ| ∗ 1 exp

{
−ν1
∫ τ ′
τ0

E(t;N)dt

}
= 0, (5.49)

or

lim inf
τ ′ ,τ ′′ → h0
0<τ ′<τ ′′<h0

∫
τ ′<h(m)<τ ′′

|∇h|p|Z|p ∗ 1 exp

{
−ν1
∫τ ′
τ0

E(t;N)dt

}
= 0, (5.50)

then L < N.
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Proof. We assume that there exists N mutually nonintersecting domains O1,O2, . . . ,ON on
the setM0 and the forms Zi defined on Oi with above properties. We denote by

d(Ok) = inf
m∈Ok

h(m), d = max
1≤k≤N

d(Ok). (5.51)

Fix τ0 > d. Using the inequality (5.4) from Theorem 5.1 for an arbitrary k = 1, 2, . . . ,N
and a.e. 0 < τ0 < τ ′ < h0 we have

Ik(τ0) exp

{
ν1

∫ τ ′
τ0

εk(t)dt

}
≤ Ik
(
τ ′), (5.52)

where

Ik
(
τ ′) =
∫
Ok∩Bh(τ ′)

|dZk|p ∗ 1, εk
(
τ ′) = ε
(
τ ′;Ok

)
. (5.53)

Adding these inequalities, we get

min
1≤k≤N

Ik(τ0)
N∑
k=1

exp

{
ν1

∫τ ′
τ0

εk(t)dt

}
≤ I
(
τ ′), (5.54)

where

I
(
τ ′) =
∫
Bh(τ ′)

|dZ|p ∗ 1. (5.55)

Applying the arithmetic-geometric mean inequality

1
N

N∑
k=1

exp

{
ν1

∫ τ ′
τ0

εk(t)dt

}
≥

N∏
k=1

exp

{
ν1
N

∫ τ ′
τ0

εk(t)dt

}
(5.56)

we get

min
1≤k≤N

Ik(τ0)N exp

{
ν1
N

∫τ ′
τ0

1
N

N∑
k=1

εk(t)dt

}
≤ I
(
τ ′). (5.57)
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The domains O1,O2, . . . ,ON are nonintersecting. Therefore for all τ0 < t < h0 we have

1
N

N∑
k=1

εk(t) ≥ E(t;N). (5.58)

The preceding inequality gives now

min
1≤k≤N

Ik(τ0)N exp

{
ν1

∫ τ ′
τ0

E(t;N)dt

}
≤ I
(
τ ′). (5.59)

For the estimation of the integral I(τ ′) we use the inequalities (5.16) and (5.28) and
obtain

min
1≤k≤N

Ik(τ0) ≤ C1

∫
τ ′<h(m)<τ ′′

|∇h||Z ∧ θ| ∗ 1 exp

{
−ν1
∫τ ′
τ0

E(t;N)dt

}
(5.60)

or

min
1≤k≤N

Ik(τ0) ≤ C2

∫
τ ′<h(m)<τ ′′

|∇h|p|Z|p ∗ 1 exp

{
−ν1
∫τ ′
τ0

E(t;N)dt

}
, (5.61)

where

C1 =
p

τ ′′ − τ ′ , C2 =
(

pν2

(τ ′′ − τ ′)ν1

)
. (5.62)

On the basis of the conditions (5.47)–(5.50) imposed on the form Z, for some k, 1 ≤
k ≤ N, we have Ik(τ0) = 0. Thus dZk(m) ≡ 0 on Ok ∩ Bh(τ0). Because we have chosen
τ0 > d arbitrarily, we can conclude that at least on one of the components Ok, dZk ≡ 0. A
contradiction.
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