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Inspired by the concept of U-spaces introduced by Lau, (1978), we introduced the class of semi-
uniform Kadec-Klee spaces, which is a uniform version of semi-Kadec-Klee spaces studied by
Vlasov, (1972). This class of spaces is a wider subclass of spaces with weak normal structure and
hence generalizes many known results in the literature. We give a characterization for a certain
direct sum of Banach spaces to be semi-uniform Kadec-Klee and use this result to construct a semi-
uniform Kadec-Klee space which is not uniform Kadec-Klee. At the end of the paper, we give a
remark concerning the uniformly alternative convexity or smoothness introduced by Kadets et al.,
(1997).

1. Introduction

Let X be a real Banach space with the unit sphere SX = {x ∈ X : ‖x‖ = 1} and the closed unit
ball BX = {x ∈ X : ‖x‖ ≤ 1}. In this paper, the strong and weak convergences of a sequence
{xn} in X to an element x ∈ X are denoted by xn → x and xn ⇀ x, respectively. We also let

sep{xn} = inf{‖xn − xm‖ : n < m}. (1.1)

Definition 1.1 (see [1]). We say that a Banach space X is a Kadec-Klee space if

{xn} ⊂ BX

(KK) : xn ⇀ x
sep{xn} > 0

⎫
⎬

⎭
=⇒ ‖x‖ < 1. (1.2)

A uniform version of the KK property is given in the following definition.
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Definition 1.2 (see [2]). We say that a Banach space X is uniform Kadec-Klee if for every ε > 0
there exists a δ > 0 such that

{xn} ⊂ BX

(UKK) : xn ⇀ x
sep{xn} ≥ ε

⎫
⎬

⎭
=⇒ ‖x‖ ≤ 1 − δ. (1.3)

Two properties above are weaker than the following one.

Definition 1.3 (see [3]). We say that a Banach space X is uniformly convex if for every ε > 0
there exists a δ > 0 such that

(UC) :
x, y ∈ BX∥
∥x − y

∥
∥ ≥ ε

}

=⇒ 1
2
∥
∥x + y

∥
∥ ≤ 1 − δ. (1.4)

Let us summarize a relationship between these properties in the following implication
diagram:

UC =⇒ UKK =⇒ KK. (1.5)

In the literature, there are some generalizations of UC and KK.

Definition 1.4 (see [4]). We say that a Banach spaceX is aU-space if for every ε > 0 there exists
a δ > 0 such that

(
U-space

)
:

x, y ∈ BX

〈x − y, f〉 ≥ ε for some f ∈ ∇x

}

=⇒ 1
2
∥
∥x + y

∥
∥ ≤ 1 − δ. (1.6)

Here ∇x = {f ∈ SX∗ : 〈x, f〉 = ‖x‖}.

Definition 1.5 (see [5]). We say that a Banach space X is semi-Kadec-Klee if

(semi-KK) :
{xn} ⊂ SX

xn ⇀ x ∈ SX

}

=⇒ 〈x, fn〉 −→ 1 ∀{fn
} ⊂ SX∗

satisfying fn ∈ ∇xn ∀n. . (1.7)

Some interesting results concerning semi-KK property are studied by Megginson [6].

Remark 1.6. It is clear that

U-space =⇒ semi-KK. (1.8)

Remark 1.7. A Banach space X is semi-KK if and only if

{xn} ⊂ BX

xn ⇀ x

inf
{〈
xn − x, fn

〉
: n ∈ N

}
> 0 for some

{
fn
} ⊂ SX∗

satisfying fn ∈ ∇xn , ∀n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=⇒ ‖x‖ < 1. (1.9)
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We now introduce a property lying between U-space and semi-KK.

Definition 1.8. We say that a Banach space X is semi-uniform Kadec-Klee if for every ε > 0 there
exists a δ > 0 such that

(semi-UKK) :

{xn} ⊂ SX

xn ⇀ x
〈
xn − x, fn

〉 ≥ ε, for some
{
fn
} ⊂ SX∗

satisfying fn ∈ ∇xn ∀n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=⇒ ‖x‖ ≤ 1 − δ. (1.10)

In this paper, we prove that semi-UKK property is a nice generalization of U-space
and semi-KK property. Moreover, every semi-UKK space has weak normal structure. We also
give a characterization of the direct sum of finitely many Banach spaces which is semi-KK
and semi-UKK. We use such a characterization to construct a Banach space which is semi-
UKK but not UKK. Finally we give a remark concerning the uniformly alternative convexity
or smoothness introduced by Kadets et al. [7].

2. Results

2.1. Some Implications

For a sequence {xn} ⊂ SX and {fn} ⊂ SX∗ satisfying fn ∈ ∇xn for all n, we let

sep{fn}{xn} = inf
{〈
xn − xm, fn

〉
: n < m

}
. (2.1)

It is clear that sep{fn}{xn} ≤ sep{xn}.

Theorem 2.1. A Banach space X is semi-UKK if and only if for every ε > 0 there exists a δ > 0 such
that

{xn} ⊂ SX

xn ⇀ x

sep{fn}{xn} ≥ ε, for some
{
fn
} ⊂ SX∗

satisfying fn ∈ ∇xn , ∀n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=⇒ ‖x‖ ≤ 1 − δ. (2.2)

The following theorem shows that our new property is well placed.

Theorem 2.2. The following implication diagram holds:

UC =⇒ UKK =⇒ KK
⇓ ⇓ ⇓

U-space =⇒ semi-UKK =⇒ semi-KK.
(2.3)

Remark 2.3. The implication U -space ⇒ semi-UKK strengthens the result of Vlasov. In fact, it
was proved by Vlasov ([5, Theorem 7]) that every uniformly smooth Banach space is semi-
KK and by Lau ([4, Corollary 2.5]) that every uniformly smooth Banach space is a U-space.
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2.2. Sufficient Conditions for Weak Normal Structure

Recall that a Banach space X has weak normal structure (normal structure, resp.) if for every
weakly compact (bounded and closed, resp.) convex subset C of X containing more than
one point there exists a point x0 ∈ C such that sup{‖x0 − z‖ : z ∈ C} < diamC (see [8]).
It is clear that normal structure and weak normal structure coincide whenever the space is
reflexive. It was Kirk [9] who proved that if a Banach space X has weak normal structure,
then every nonexpansive self-mapping defined on a weakly compact convex subset of X has
a fixed point. In this subsection, we present a new and wider class of Banach spaces with
weak normal structure.

Lemma 2.4 (Bollobás [10]). Let X be a Banach space, and let 0 < ε < 1. Given z ∈ BX and h ∈ SX∗

with 1 − 〈z, h〉 < ε2/4, then there exist y ∈ SX and g ∈ ∇y such that ‖y − z‖ < ε and ‖g − h‖ < ε.

Theorem 2.5. If a Banach space X has the following property:
there are two constants 0 < ε < 1 and 0 < δ < 1 such that

{xn} ⊂ SX

xn ⇀ x
〈
xn − x, fn

〉 ≥ ε, for some
{
fn
} ⊂ SX∗

satisfying fn ∈ ∇xn , ∀n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=⇒ ‖x‖ ≤ 1 − δ, (2.4)

then X has weak normal structure.

Proof. Suppose that X does not have weak normal structure. Then there exists a sequence
{xn} in X such that the following properties are satisfied (see [11]):

(i) diam{xn} = 1;

(ii) xn ⇀ 0;

(iii) ‖xn − x‖ → 1 for all x ∈ co{xn}.
In particular, since 0 ∈ co{xn}, we have ‖xn‖ → 1.

We now show that for each 0 < ε < 1 and 0 < δ < 1, there are an element z ∈ X and
sequences {zn} ⊂ SX and {fn} ⊂ SX∗ such that

(i) zn ⇀ z;

(ii) 〈zn − z, fn〉 ≥ ε and 〈zn, fn〉 = 1 for all n;

(iii) ‖z‖ > 1 − δ.

To see this, let 0 < δ < 1 and 0 < ε < 1 be given. We may assume that ‖x1‖ > 1 − δ. For each n,
let gn ∈ ∇xn−(1/2)x1 . This implies 〈xn − (1/2)x1, gn〉 = ‖xn − (1/2)x1‖ → 1. We observe that

1 =
〈

xn − 1
2
x1, gn

〉

=
1
2
〈
xn − x1, gn

〉
+
1
2
〈xn, gn〉

≤ 1
2
‖xn − x1‖ + 1

2
‖xn‖ −→ 1.

(2.5)

In particular, 〈xn − x1, gn〉 → 1 and 〈xn, gn〉 → 1.
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By Lemma 2.4, there are sequences {zn} ⊂ SX and {fn} ⊂ SX∗ such that

fn ∈ ∇zn , ∀n, ‖zn − (xn − x1)‖ −→ 0,
∥
∥fn − gn

∥
∥ −→ 0. (2.6)

Put z = −x1. It is clear that zn ⇀ z. Moreover, we have

∣
∣
〈
zn − z, fn

〉 − 〈
xn, gn

〉∣
∣

≤ ∣
∣
〈
zn − z, fn

〉 − 〈
zn − z, gn

〉∣
∣ +

∣
∣
〈
zn − z, gn

〉 − 〈
xn, gn

〉∣
∣

≤ ‖zn − z‖∥∥fn − gn
∥
∥ + ‖zn − (xn − x1)‖

∥
∥gn

∥
∥ −→ 0.

(2.7)

Consequently, 〈zn − z, fn〉 → 1 > ε.
By discarding terms from the beginning of the sequence {zn}, we obtain a

contradiction with the assumption. This finishes the proof.

Corollary 2.6. A Banach space X has weak normal structure if X is semi-UKK.

Corollary 2.7 (see [12]). Every wUKK space has weak normal structure. Recall that a Banach space
X is wUKK if there are two constants ε > 0 and δ > 0 such that

{xn} ⊂ BX

(wUKK) : xn ⇀ x
sep{xn} ≥ ε

⎫
⎬

⎭
=⇒ ‖x‖ ≤ 1 − δ. (2.8)

Corollary 2.8 (see [13]). EveryU-space has weak normal structure.

2.3. Stability Results under Taking Finite Direct Sums

In this subsection, we give a necessary and sufficient condition for the direct sum of finitely
many Banach spaces to be semi-KK and semi-UKK. Let us recall some definitions.

Let Z be a finite dimensional normed space (RN, ‖ · ‖z), which has a monotone norm;
that is,

‖(a1, . . . , aN)‖z≤ ‖(b1, . . . , bN)‖z (2.9)

if 0 ≤ ai ≤ bi for each i = 1, . . . ,N. We write (X1 ⊕ · · · ⊕XN)Z for the Z-direct sum of the
Banach spaces X1, . . . , XN equipped with the norm

‖(x1, . . . , xN)‖=
∥
∥(‖x1‖X1

, . . . , ‖xN‖XN
)
∥
∥
Z
, (2.10)

where xi ∈ Xi for each i = 1, . . . ,N.
One should notice that in defining (X1 ⊕ · · · ⊕XN)Z, we only need to know the

behavior of the Z-norm on R
N
+ . Consequently, we can and do assume that the Z-norm is

absolute; that is,

‖(a1, . . . , aN)‖Z= ‖(|a1|, . . . , |aN |)‖Z, ∀(a1, . . . , aN) ∈ R
N. (2.11)
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The following fact can be proved easily but plays an important role in this paper.

Lemma 2.9. Suppose that X1, . . . , XN are Banach spaces. Then each element f in the dual
(X1 ⊕ · · · ⊕XN)∗Z of the Z-direct sum (X1 ⊕ · · · ⊕XN)Z is identified with the element (x∗

1, . . . , x
∗
N)

in the Z∗-direct sum (X∗
1 ⊕ · · · ⊕X∗

N)
Z∗ such that

〈(x1, . . . , xn), f〉 = 〈x1, x
∗
1〉 + · · · + 〈xN, x∗

N〉 (2.12)

for all (x1, . . . , xN) ∈ (X1 ⊕ · · · ⊕XN)Z. Moreover,

∥
∥f

∥
∥ =

∥
∥
∥(
∥
∥x∗

1

∥
∥
X∗

1
, . . . ,

∥
∥x∗

N

∥
∥
X∗

N
)
∥
∥
∥
Z∗
. (2.13)

Recently, Dowling et al. [14] proved the following theorem.

Theorem 2.10. Let X1, . . . , XN be Banach spaces. Then (X1 ⊕ · · · ⊕XN)Z is KK (UKK, resp.) if and
only if for each 1 ≤ j ≤ N,

(1) Xj is KK (UKK, resp.), and

(2) either Xj is Schur or Z is strictly monotone in the jth coordinate.

Recall that a Banach space X is a Schur space if weak and norm sequential
convergences coincide in X, and Z is strictly monotone in the jth coordinate if

‖(a1, . . . , an)‖Z < ‖(b1, . . . , bn)‖Z, (2.14)

where 0 ≤ ai ≤ bi for each i = 1, . . . , n and 0 ≤ aj < bj . Note that by the triangle inequality
and the assumption that the Z-norm is absolute, Z is strictly monotone in the jth coordinate
if and only if

‖(a1, . . . , an)‖Z < ‖(b1, . . . , bn)‖Z, (2.15)

where 0 ≤ ai = bi for each i /= j and 0 = aj < bj .
We first define a generalization of Schur spaces.

Definition 2.11. A Banach space X is a semi-Schur space if

{xn} ⊂ X
(semi-Schur) : xn ⇀ x

{
fn
} ⊂ SX∗ satisfying fn ∈ ∇xn , ∀n

⎫
⎬

⎭
=⇒ ‖xn‖ −

〈
x, fn

〉 −→ 0. (2.16)

The following two propositions follow easily from the definition of semi-Schur spaces
and semi-KK spaces.
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Proposition 2.12. A Banach space X is semi-Schur if and only if

{xn} ⊂ SX

xn ⇀ x
{
fn
} ⊂ SX∗ satisfying fn ∈ ∇xn , ∀n

⎫
⎬

⎭
=⇒ ‖xn‖ − 〈x, fn〉 −→ 0. (2.17)

Proposition 2.13. A Banach space X satisfies semi-KK property if and only if

{xn} ⊂ X

xn ⇀ x

‖xn‖ −→ ‖x‖
{
fn
} ⊂ SX∗ satisfying fn ∈ ∇xn , ∀n

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=⇒ 〈x, fn〉 −→ ‖x‖. (2.18)

We say that Z has property (S-j) where 1 ≤ j ≤ N if whenever a1, . . . , aN, b1, . . . , bN ≥ 0
and 0 ≤ a′

j < aj satisfy

∥
∥
∥
∥
∥
(a1, . . . ,

jth

a′
j , . . . , aN)

∥
∥
∥
∥
∥
Z

=
∥
∥(a1, . . . , aj , . . . , aN)

∥
∥
Z
= 1,

∥
∥(b1, . . . , bj , . . . , bN)

∥
∥
Z∗ = a1b1 + · · · + ajbj + · · · + aNbN = 1,

(2.19)

it follows that bj = 0.

Theorem 2.14. Suppose that X1, . . . , XN are Banach spaces. Then the direct sum (X1 ⊕ · · · ⊕XN)Z
is semi-KK if and only if for each j = 1, . . . ,N

(a) Xj is semi-KK and

(b) either Xj is semi-Schur or Z has property (S-j).

Proof. Sufficiency. Suppose that there exists j ∈ {1, . . . ,N} such that Xj is not semi-Schur and
Z does not have property (S-j). For convenience, we may assume that j = 1. Since X1 is not
semi-Schur, there exist sequences {x1

n} ⊂ SX1 , {f1
n} ⊂ SX∗

1
, and a number ε0 > 0 such that

x1
n ⇀ x1 ∈ BX1 , f1

n ∈ ∇x1
n
,

〈
x1, f1

n

〉
≤ 1 − ε0, ∀n. (2.20)

Since Z does not have property (S-1), there exist numbers a1, . . . , aN, b1, . . . , bN ≥ 0 such that
the following properties are satisfied:

(i) ‖(0, a2, . . . , aN)‖Z = ‖(a1, a2, . . . , aN)‖Z = 1;

(ii) ‖(b1, . . . , bN)‖Z∗ = a1b1 + · · · + aNbN = 1;

(iii) a1 > 0 and b1 > 0.
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For j = 2, . . . ,N, let xj ∈ SXj and fj ∈ ∇xj . Now we put

x =
(
a1x

1, a2x
2, . . . , aNxN

)
,

xn =
(
a1x

1
n, a2x

2, . . . , aNxN
)
,

fn =
(
b1f

1
n, b2f

2, . . . , bNfN
)
.

(2.21)

It is clear that {xn} is a sequence of norm one elements converging weakly to x and fn ∈ ∇xn
for all n. Moreover, by the monotonicity of ‖ · ‖Z, we have ‖x‖ = 1. Finally, we show that
〈x, fn〉 � 1. To see this, we consider

〈x, fn〉 = a1b1
〈
x1, f1

n

〉
+ a2b2

〈
x2, f2

〉
+ · · · + aNbN〈xN, fN〉

≤ (1 − ε0)a1b1 + a2b2 + · · · + aNbN.

(2.22)

It then follows from a1 > 0 and b1 > 0 that (1 − ε0)a1b1 + · · · + aNbN < 1. This shows that
(X1 ⊕ · · · ⊕XN)Z is not semi-KK and hence the first half of the proof is done.

Necessity. Suppose that the conditions (a) and (b) hold. Put

A =
{
j : Xj is a semi-Schurs pace

}
, B =

{
j : Z has property

(
S-j

)}
. (2.23)

Then, by (b), A ∪ B = {1, . . . ,N}. Let {xn} be a sequence of norm one elements in (X1 ⊕ · · · ⊕
XN)Z converging weakly to a norm one element x ∈ (X1 ⊕ · · · ⊕XN)Z and {fn} a sequence of
norm one elements in ((X1 ⊕ · · · ⊕XN)Z)

∗ = (X∗
1 ⊕ · · · ⊕X∗

N)
Z∗ such that fn ∈ ∇xn for all n. For

convenience, let us write

x =
(
x1, . . . , xN

)
, xn =

(
x1
n, . . . , x

N
n

)
, fn =

(
f1
n, . . . , f

N
n

)
, (2.24)

where xj , x
j
n ∈ Xj and f

j
n ∈ X∗

j for all j and n. We prove that

〈
x1, f1

n

〉
+ · · · + 〈xN, fN

n 〉 −→ 1. (2.25)

Notice that

1 =
∥
∥
∥

(
x1
n, . . . , x

N
n

)∥
∥
∥ = 〈xn, fn〉 = 〈x1

n, f
1
n〉 + · · · + 〈xN

n , fN
n 〉

≤
∥
∥
∥x1

n

∥
∥
∥

∥
∥
∥f1

n

∥
∥
∥ + · · · +

∥
∥
∥xN

n

∥
∥
∥

∥
∥
∥fN

n

∥
∥
∥ ≤

∥
∥
∥

(
x1
n, . . . , x

N
n

)∥
∥
∥

∥
∥
∥

(
f1
n, . . . , f

N
n

)∥
∥
∥
∗
= 1.

(2.26)

Then 〈xj
n, f

j
n〉 = ‖xj

n‖‖fj
n‖ and

∥
∥
∥x1

n

∥
∥
∥

∥
∥
∥f1

n

∥
∥
∥ + · · · +

∥
∥
∥xN

n

∥
∥
∥

∥
∥
∥fN

n

∥
∥
∥ = 1 (2.27)
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for all n. In order to show that (2.25) holds, it suffices to show that

〈xj , f
j
n〉 −

∥
∥
∥x

j
n

∥
∥
∥

∥
∥
∥f

j
n

∥
∥
∥ −→ 0, asn −→ ∞ (2.28)

for all j = 1, . . . ,N.
Let us note the following facts:

(i) fj
n/‖fj

n‖ ∈ ∇
x
j
n
provided that fj

n /= 0;

(ii) xj
n ⇀ xj as n → ∞ for all j.

We first prove that (2.28) holds for all j ∈ A. To see this, we note that if fj
n = 0, then 〈xj , f

j
n〉 =

‖xj
n‖‖fj

n‖ = 0. Now, we assume that fj
n /= 0 for all n. It follows then that fj

n/‖fj
n‖ ∈ ∇

x
j
n
and

hence from the semi-Schur property of Xj that 〈xj , f
j
n/‖fj

n‖〉 − ‖xj
n‖ → 0.

Passing to a subsequence, we may assume that the following limits:

lim
k

∥
∥
∥x

j
nk

∥
∥
∥, lim

k

∥
∥
∥f

j
nk

∥
∥
∥ exist. (2.29)

Notice that

∥
∥
∥
∥

(

lim
k

∥
∥
∥x1

nk

∥
∥
∥, . . . , lim

k

∥
∥
∥xN

nk

∥
∥
∥

)∥
∥
∥
∥
Z

=
∥
∥
∥
∥

(

lim
k

∥
∥
∥f1

nk

∥
∥
∥, . . . , lim

k

∥
∥
∥fN

nk

∥
∥
∥

)∥
∥
∥
∥
Z∗

= 1,

lim
k

∥
∥
∥x1

nk

∥
∥
∥lim

k

∥
∥
∥f1

nk

∥
∥
∥ + · · · + lim

k

∥
∥
∥xN

nk

∥
∥
∥lim

k

∥
∥
∥fN

nk

∥
∥
∥ = 1.

(2.30)

We next show that (2.28) holds for all j ∈ B. Let us split the proof into two cases.

Case 1. There exists j ∈ B such that

∥
∥
∥xj

∥
∥
∥ < lim

k

∥
∥
∥x

j
nk

∥
∥
∥. (2.31)

In this case, it follows from the property (S-j) that

lim
k

∥
∥
∥f

j
nk

∥
∥
∥ = 0. (2.32)

This implies that 〈xj , f
j
nk
〉 − ‖xj

nk
‖‖fj

nk
‖ → 0.

Case 2. ‖xj‖ = limk‖xj
nk
‖ for all j ∈ B. Again, if fj

nk
= 0, then 〈xj , f

j
n〉 = ‖xj‖‖fj

n‖ = 0. Now
we may assume that fj

nk /= 0 for all k. This implies that fj
nk
/‖fj

nk
‖ ∈ ∇

x
j
nk

and hence it follows

from the semi-KK property of Xj that 〈xj , f
j
nk
/‖fj

nk
‖〉 − ‖xj‖ → 0. In particular, 〈xj , f

j
nk
〉 −

‖xj
nk
‖‖fj

nk
‖ → 0.

From both cases, we have proved that every subsequence of the sequence {〈x, fn〉} has
a further subsequence {〈x, fnk〉} such that 〈x, fnk〉 → 1. Hence 〈x, fn〉 → 1, as desired.



10 Abstract and Applied Analysis

Using the proof of the preceding theorem and the fact that the property (S-j) is a
uniform property, we obtain the following result.

Theorem 2.15. Suppose that X1, . . . , XN are Banach spaces. Then (X1 ⊕ · · · ⊕XN)Z is semi-UKK if
and only if for each j = 1, . . . ,N,

(a) Xj is semi-UKK and

(b) either Xj is semi-Schur or Z has property (S-j).

Finally, we use the characterization above and Theorem 2.10 to construct a Banach
space which is semi-UKK but not UKK.

Example 2.16 (A Banach space which is semi-UKK but not UKK). Let Z be a two-dimensional
space R

2 equipped with the norm

∣
∣
(
α, β

)∣
∣ =

⎧
⎪⎪⎨

⎪⎪⎩

∣
∣β
∣
∣ if |α| ≤ ∣

∣β
∣
∣,

α2 + β2

2|α| , if |α| > ∣
∣β
∣
∣.

(2.33)

It follows that Z is a (uniformly) smooth space, and its unit sphere consists of

(i) two half unit circles: the first one is a right half centered at (1, 0) and the second is a
left half centered at (−1, 0)

(ii) two horizontal line segments joining the points (−1, 1) and (1, 1) and the points
(−1,−1) and (1,−1), respectively.

Furthermore, Z has properties (S-1) and (S-2) but is not strictly monotone in the first-
coordinate. Let X = (�2 ⊕ R)Z. Then X is semi-UKK but not UKK. The latter follows since
Z is not strictly monotone in the first coordinate and �2 does not have the Schur property.

3. U-Spaces and Uniformly Alternatively Convex or Smooth Spaces

In this section, we discuss some properties of uniformly alternatively convex or smooth
spaces which was introduced by Kadets et al. [7].

Definition 3.1. A Banach space X is uniformly alternatively convex or smooth if

{xn},
{
yn

} ⊂ SX

(UACS) :
∥
∥xn + yn

∥
∥ −→ 2

〈
xn, fn

〉 −→ 1 for some
{
fn
} ⊂ SX∗

⎫
⎪⎪⎬

⎪⎪⎭

=⇒ 〈
yn, fn

〉 −→ 1. (3.1)
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Remark 3.2. It is not hard to see that X is UACS if and only if

{xn},
{
yn

} ⊂ SX
∥
∥xn + yn

∥
∥ −→ 2

{
fn
} ⊂ SX∗ satisfying fn ∈ ∇xn , ∀n

⎫
⎪⎪⎬

⎪⎪⎭

=⇒ 〈yn, fn〉 −→ 1. (3.2)

Consequently, X is UACS if and only if it is aU-space.

It is proved by Gao and Lau ([13, Theorem 4.4]) that every UACS space has uniform
normal structure which is the same result of Theorem 3.1 of Sirotkin [15]. In fact, this result
is recently strengthened by Saejung in [16]. Recall that a Banach space X has uniform normal
structure if there exists a constant 0 < c < 1 such that for every bounded closed convex subset
C of X containing more than one point there exists a point x0 ∈ C such that sup{‖x0 − z‖ : z ∈
C} < c · diamC.

Moreover, it was Lau ([4, Theorem 2.4]) who proved that X is UACS if and only if
its dual space X∗ is UACS. By Sirotkin’s result ([15, Theorem 2.3]), we have the following
theorem.

Theorem 3.3. Let (S,Σ, μ) be a complete measure space and X be a Banach space. Then the following
statements are equivalent:

(i) Lp(μ,X) is UACS for some (and hence all) 1 < p < ∞;

(ii) Lp(μ,X∗) is UACS for some (and hence all) 1 < p < ∞;

(iii) X is UACS;

(iv) X∗ is UACS.

In particular, if X is UACS, then both Lp(μ,X) and Lp(μ,X∗) have uniform normal structure.

Recall that Lp(μ,X), where 1 < p < ∞, is the Lebesgue-Bochner function space of μ-
equivalence classes of strongly measurable functions f : S → X with

∫

S ‖f(t)‖pdμ < ∞,

endowed with the norm ‖f‖ = (
∫

S ‖f(t)‖pdμ)
1/p (for more detail, see [17, 18]).
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