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We investigate the (2 + 1)-dimensional Broer-Kaup-Kupershmidt equations. Some explicit
expressions of solutions for the equations are obtained by using the bifurcation method and
qualitative theory of dynamical systems. These solutions contain kink-shaped solutions, blow-
up solutions, periodic blow-up solutions, and solitary wave solutions. Some previous results are
extended.

1. Introduction

Consider the (2 + 1)-dimensional Broer-Kaup-Kupershmidt (BKK) equations [1–10]

uty − uxxy + 2(uux)y + 2vxx = 0,
vt + vxx + 2(uv)x = 0.

(1.1)

These equations have been widely applied in many branches of physics like plasma physics,
fluid dynamics, nonlinear optics, and so forth. So a good understanding of more solutions of
the (2 + 1)-dimensional BKK equations (1.1) might be very helpful, especially for coastal and
civil engineers to apply the non-linear water models in a harbor and coastal design.

Recently, the (2 + 1)-dimensional BKK equations have been studied by many authors.
Yomba [1, 2] used the modified extended Fan subequation method to obtain soliton-like
solutions, triangular-like solutions, and single and combined nondegenerate Jacobi elliptic
wave function-like solutions of (1.1). Zhang and Xia [3] used the further improved extended
Fan sub-equation method to obtain soliton-like solutions, triangular-like solutions, single and
combined non-degenerate Jacobi elliptic wave function-like solutions, and Weierstrass elliptic
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doubly-like periodic solutions of (1.1). Abdou and Soliman [4] obtained some traveling
wave solutions of (1.1) by using the modified extended tanh-function method. Song et al.
[5] used the new extended Riccati equation rational expansion method to study multiple
exact solutions of (1.1). Zhang [6] used the Exp-function method to seek generalized exact
solutions with three arbitrary functions of (1.1). El-Wakil and Abdou [7] obtained exact
travelling wave solutions by using improved tanh-function method. Lu et al. [8] obtained
some exact traveling wave solutions of (1.1) by using the first integral method. Davodi et al.
[9] obtained some generalized solitary solutions of (1.1). Bai and Zhao [10] used the Repeated
General Algebraic Method to obtain exact solutions of (1.1).

In this paper, we employ the bifurcation method and qualitative theory of dynamical
systems [11–19] to investigate the (2 + 1)-dimensional BKK equations (1.1), and we
obtain some explicit expressions of solutions for (1.1). These solutions contain kink-shaped
solutions, blow-up solutions, periodic blow-up solutions, and solitary wave solutions, most
of which are new by comparing with the solutions of the references [1–10].

The remainder of this paper is organized as follows. In Section 2, we present our main
results. Section 3 gives the theoretical derivation for our main results. A short conclusion will
be given in Section 4.

2. Main Results

In this section, we state our main results. For ease of exposition, we have omitted the
expressions of v with vn(x, y, t) = φn(ξ) = 1/2(cϕ + ϕ′ − ϕ2), n = 1, 2, . . . , 10, in the entire
process.

Proposition 2.1. For given constants c and g0, which will be given later in (3.10), the (2 + 1)-
dimensional BKK equations have the following exact solutions.

(1) If g = 0, we get two kink solutions:

u1
(
x, y, t

)
=

δc
(
1 + tanh(c/2)

(
x + y − ct

))

δ − 1 + (δ + 1)tanh(c/2)
(
x + y − ct

) ,

u2
(
x, y, t

)
=

c
(
−1 + tanh(c/2)

(
x + y − ct

))

η − 1 +
(
η + 1

)
tanh(c/2)

(
x + y − ct

) ,

(2.1)

where δ and η are constants, two blow-up solutions

u3±
(
x, y, t

)
=
c

2

(
1 ± coth

c

2
(
x + y − ct

))
, (2.2)

and four periodic blow-up solutions

u4±
(
x, y, t

)
=
c

2

(

1 ±
√

2csc

√
2

2
c
(
x + y − ct

)
)

,

u5±
(
x, y, t

)
=
c

2

(

1 ±
√

2 sec

√
2

2
c
(
x + y − ct

)
)

.

(2.3)
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(2) If 0 < g < g0, we get a solitary wave solution

u6
(
x, y, t

)
=
c
(√

2(α − 1)β cosh θ
(
x + y − ct

))
+ (α − 1)

(
1 + β − cosh 2θ

(
x + y − ct

))

α
(
−1 + α + β − (α − 1) cosh 2θ

(
x + y − ct

)) ,

(2.4)

and two blow-up solutions

u7±
(
x, y, t

)
=
c
(
α
(
2 + β

)
− 2 − 2(α − 1) cosh θ

(
x + y − ct

)
± β(3/2) coth(θ/2)

(
x + y − ct

))

2α
(
−1 + α + β − (α − 1) cosh θ

(
x + y − ct

)) ,

(2.5)

where β = 6 − 6α + α2 and θ = c
√
β/α.

(3) If g = g0, we get three blow-up solutions as follows:

u8
(
x, y, t

)
=
−12
√

3 +
(

6 + 6
√

3
)
c
(
x + y − ct

)
−
(

3 +
√

3
)
c2(x + y − ct

)2

6
(

2
√

3
(
x + y − ct

)
− c
(
x + y − ct

)2
) ,

u9
(
x, y, t

)
=

12
√

3 +
(

6 + 6
√

3
)
c
(
x + y − ct

)
+
(

3 +
√

3
)
c2(x + y − ct

)2

6
(

2
√

3
(
x + y − ct

)
+ c
(
x + y − ct

)2
) ,

u10
(
x, y, t

)
=
−9c + 9

√
3c +

(
3 +
√

3
)
c3(x + y − ct

)2

−18 + 6c2
(
x + y − ct

)2
.

(2.6)

3. The Derivations of Main Results

In this section, we will give the derivations for our main results.
For given constant wave speed c, substituting u = ϕ(ξ), v = φ(ξ) with ξ = x + y − ct

into the (2 + 1)-dimensional BKK equations (1.1), it follows that
⎧
⎨

⎩

−cϕ′′ − ϕ′′′ + 2
(
ϕϕ′
)′ + 2φ′′ = 0,

−cφ′ + φ′′ + 2
(
ϕφ
)′ = 0.

(3.1)

Integrating the first equation of (3.1) twice and letting integral constants be zero, we have

φ =
1
2

(
cϕ + ϕ′ − ϕ2

)
. (3.2)

Integrating the second equation of (3.1) once, we have

−cφ + φ′ + 2ϕφ =
1
2
g, (3.3)

where (1/2)g is integral constant.
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Substituting (3.2) into (3.3), we get

1
2
ϕ′′ − 1

2
c2ϕ +

3
2
cϕ2 − ϕ3 =

1
2
g. (3.4)

Letting ψ = ϕ′, we get the following planar system:

dϕ
dξ

= ψ,

dψ
dξ

= 2ϕ3 − 3cϕ2 + c2ϕ + g.

(3.5)

Obviously, the above system (3.5) is a Hamiltonian system with Hamiltonian function

H
(
ϕ, ψ
)
=

1
2
ψ2 − 1

2
ϕ4 + cϕ3 − 1

2
c2ϕ2 − gϕ. (3.6)

Now, we consider the phase portraits of system (3.5). Set

f0
(
ϕ
)
= 2ϕ3 − 3cϕ2 + c2ϕ,

f
(
ϕ
)
= 2ϕ3 − 3cϕ2 + c2ϕ + g.

(3.7)

f0(ϕ) has three fixed points ϕ0, ϕ1, ϕ2, and their expressions are given as follows:

ϕ0 = 0, ϕ1 =
c

2
, ϕ2 = c. (3.8)

It is easy to obtain the two extreme points of f0(ϕ) as follows:

ϕ∗± =
3c ±

√
3c

6
. (3.9)

Let

g0 =
∣∣f0
(
ϕ∗±
)∣∣ =

c3

6
√

3
, (3.10)

then it is easily seen that g0 is the extreme values of f0(ϕ).
Let (ϕi, 0) be one of the singular points of system (3.5). Then the characteristic values

of the linearized system of system (3.5) at the singular points (ϕi, 0) are

λ± = ±
√
f ′
(
ϕi
)
. (3.11)
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From the qualitative theory of dynamical systems, we therefore know that,

(i) if f ′(ϕi) > 0, (ϕi, 0) is a saddle point;

(ii) if f ′(ϕi) < 0, (ϕi, 0) is a center point;

(iii) if f ′(ϕi) = 0, (ϕi, 0) is a degenerate saddle point.

Therefore, we obtain the phase portraits of system (3.5) in Figure 1.
Now, we will obtain the explicit expressions of solutions for the (2 + 1)-dimensional

BKK equations (1.1).
(1) If g = 0, we will consider two kinds of orbits.
(i) First, we see that there are two heteroclinic orbits Γ1 and Γ2 connected at saddle

points (ϕ0, 0) and (ϕ2, 0). In (ϕ, ψ)-plane, the expressions of the heteroclinic orbits are given
as

ψ = ±ϕ
(
ϕ − c

)
. (3.12)

Substituting (3.12) into dϕ/dξ = ψ and integrating them along the heteroclinic orbits
Γ1 and Γ2, it follows that

∫ϕ
ϕ∗

1
s(c − s)ds =

∫ ξ
0 ds,

∫ϕ∗
ϕ

1
s(s − c)ds =

∫0
ξ ds,

(3.13)

where ϕ∗ ∈ (0, c) is constant and

±
∫+∞

ϕ

1
s(s − c)ds =

∫ ξ

0
ds. (3.14)

From (3.13), we have

ϕ(ξ) =
δc(1 + tanh(c/2)ξ)

δ − 1 + (δ + 1) tanh(c/2)ξ
,

ϕ(ξ) =
c(−1 + tanh(c/2)ξ)

η − 1 +
(
η + 1

)
tanh(c/2)ξ

,

(3.15)

where δ = ϕ∗/(ϕ∗ − c), η = (ϕ∗ − c)/ϕ∗.
From (3.14), we have

ϕ(ξ) =
c

2

(
1 ± coth

c

2
ξ
)
. (3.16)

Noting that u = ϕ(ξ) and ξ = x+y−ct, we get two kink-shaped solutions u1(x, y, t), u2(x, y, t)
and two blow-up solutions u3±(x, y, t) as (2.1), and (2.2). (ii) From the phase portrait, we note
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Figure 1: The phase portraits of system (3.5).

that there are two special orbits Γ3 and Γ4, which have the same Hamiltonian with that of the
center point (ϕ1, 0). In (ϕ, ψ)-plane, the expressions of these two orbits are given as

ψ = ±
(
ϕ − ϕ1

)√(
ϕ − ϕ3

)(
ϕ − ϕ4

)
, (3.17)

where

ϕ3 =
1 −
√

2
2

c,

ϕ4 =
1 +
√

2
2

c. (3.18)

Substituting (3.17) into dϕ/dξ = ψ and integrating them along the two orbits Γ3 and Γ4, it
follows that

±
∫+∞

ϕ

1
(
s − ϕ1

)√(
s − ϕ3

)(
s − ϕ4

)ds =
∫ ξ

0
ds. (3.19)

From (3.19), we have

ϕ(ξ) =
c

2

(

1 ±
√

2csc
√

2
2
cξ

)

. (3.20)

At the same time, we note that if u = ϕ(ξ) is a solution of system (3.5), then u = ϕ(ξ+γ)
is also a solution of system (3.5). Specially, when we take γ = π/2, we get other two solutions

ϕ(ξ) =
c

2

(

1 ±
√

2sec

√
2

2
cξ

)

. (3.21)
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Noting that u = ϕ(ξ) and ξ = x + y − ct, we get four periodic blow-up solutions
u4±(x, y, t) and u5±(x, y, t) as (2.3).

(2) If 0 < g < g0, we set the largest solution of f(ϕ) = 0 as ϕ5 = (c/α)(1 < α < 2), then
we can get another two solutions of f(v) = 0 as follows:

ϕ6 =
c
(
−2 + 3α −

√
−12 + 12α + α2

)

4α
,

ϕ7 =
c
(
−2 + 3α +

√
−12 + 12α + α2

)

4α
.

(3.22)

We see that there is a homoclinic orbit Γ5, which passes the saddle point (ϕ5, 0). In (ϕ, ψ)-
plane, the expressions of the homoclinic orbit are given as

ψ = ±
(
ϕ − ϕ5

)√(
ϕ − ϕ8

)(
ϕ − ϕ9

)
, (3.23)

where

ϕ8 =
c(α − 1) − c

√
2(α − 1)

α
,

ϕ9 =
c(α − 1) + c

√
2(α − 1)

α
.

(3.24)

Substituting (3.23) into dϕ/dξ = ψ and integrating them along the homoclinic orbit, it
follows that

±
∫ϕ

ϕ9

1
(
s − ϕ5

)√(
s − ϕ8

)(
s − ϕ9

)ds =
∫ ξ

0
ds,

±
∫+∞

ϕ

1
(
s − ϕ5

)√(
s − ϕ8

)(
s − ϕ9

)ds =
∫ ξ

0
ds.

(3.25)

From (3.25), we have

ϕ(ξ) =
c
(√

2(α − 1)β cosh θξ
)
+ (α − 1)

(
1 + β − cosh 2θξ

)

α
(
−1 + α + β − (α − 1) cosh 2θξ

) ,

ϕ(ξ) =
c
(
α
(
2 + β

)
− 2 − 2(α − 1) cosh θξ ± β3/2 coth(θ/2)ξ

)

2α
(
−1 + α + β − (α − 1) cosh θξ

) ,

(3.26)

where β = 6 − 6α + α2 and θ = (c
√
β)/α.

Noting that u = ϕ(ξ) and ξ = x + y − ct, we get a solitary wave solution u6(x, y, t) and
two blow-up solutions u7±(x, y, t) as (2.4) and (2.5).
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(3) If g = g0, from the phase portrait, we see that there are two orbits Γ7 and Γ8, which
have the same Hamiltonian with the degenerate saddle point (ϕ∗+, 0). In (ϕ, ψ)-plane, the ex-
pressions of these two orbits are given as

ψ = ±
(
ϕ − ϕ∗+

)√(
ϕ − ϕ∗+

)(
ϕ − ϕ12

)
, (3.27)

where

ϕ12 =
1
2

(
c −
√

3c
)
. (3.28)

Substituting (3.27) into dϕ/dξ = ψ and integrating them along these two orbits Γ7 and
Γ8, it follows that

∫+∞

ϕ

1
(
s − ϕ∗+

)√(
s − ϕ∗+

)(
s − ϕ12

)ds =
∫ ξ

0
ds,

∫ϕ12

ϕ

1
(
s − ϕ∗+

)√(
s − ϕ∗+

)(
s − ϕ12

)ds =
∫ ξ

0
ds

(3.29)

From (3.29), we have

ϕ =
−12
√

3 +
(

6 + 6
√

3
)
cξ −

(
3 +
√

3
)
c2ξ2

6
(

2
√

3ξ − cξ2
) ,

ϕ =
12
√

3 +
(

6 + 6
√

3
)
cξ +

(
3 +
√

3
)
c2ξ2

6
(

2
√

3ξ + cξ2
) ,

ϕ =
−9c + 9

√
3c +

(
3 +
√

3
)
c3ξ2

−18 + 6c2ξ2
.

(3.30)

Noting that u = ϕ(ξ) and ξ = x + y − ct, we get three blow-up solutions u8(x, y, t)), u9(x, y, t),
and u10(x, y, t) as (2.6). Thus, we obtain the results given in Proposition 2.1.

Remark 3.1. One may find that we only consider the case when g ≥ 0 in Proposition 2.1. In
fact, we may get exactly the same solutions in the opposite case.

4. Conclusion

In this paper, we have obtained many new solutions for the (2+1)-dimensional BKK equations
(1.1) by employing the bifurcation method and qualitative theory of dynamical systems. The
explicit expressions of the solutions have been given in Proposition 2.1. The method can be
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applied to many other nonlinear evolution equations, and we believe that many new results
wait for further discovery by this method.
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