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We discuss the solvability of the fourth-order boundary value problem u(4) = f(t, u, u′′), 0 ≤ t ≤ 1,
u(0) = u(1) = u′′(0) = u′′(1) = 0, which models a statically bending elastic beam whose two ends
are simply supported, where f : [0, 1] × R

2 → R is continuous. Under a condition allowing that
f(t, u, v) is superlinear in u and v, we obtain an existence and uniqueness result. Our discussion is
based on the Leray-Schauder fixed point theorem.

1. Introduction and Main Results

In this paper we deal with the existence of a solution of the fourth-order ordinary differential
equation boundary value problem (BVP)

u(4)(t) = f
(
t, u(t), u′′(t)

)
, 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1.1)

where f : [0, 1] × R × R → R is continuous. This problem models deformations of an elastic
beam in the equilibrium state, whose ends are simply supported. Owing to its importance in
physics, the solvability of this problem has been studied by many authors; see [1–14].

In [1], Aftabizadeh showed the existence of a solution to BVP(1.1) under the restriction
that f is a bounded function. In [2, Theorem 1], Yang extended Aftabizadeh’s result and
showed the existence for BVP(1.1) under the growth condition of the form

∣∣f(t, u, v)
∣∣ ≤ a|u| + b|v| + c, (1.2)

where a, b, and c are positive constants such that (a/π4) + (b/π2) < 1.
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In [6], del Pino and Manásevich further extended the result of Yang and obtained the
following existence theorem.

Theorem A. Assume that there is a pair (α, β) ∈ R
2 satisfying

α

(kπ)4
+

β

(kπ)2
/= 1, ∀k ∈ N (1.3)

and that there are positive constants a, b, and c such that

a max
k∈N

1
∣
∣k4π4 − α − k2π2β

∣
∣ + b max

k∈N

k2π2
∣
∣k4π4 − α − k2π2β

∣
∣ < 1, (1.4)

and f satisfies the growth condition

∣∣f(t, u, v) − (αu − βv
)∣∣ ≤ a|u| + b|v| + c, ∀t ∈ [0, 1], u, v ∈ R. (1.5)

Then the BVP(1.1) possesses at least one solution.

Obviously, the result of Yang follows from Theorem A by just setting (α, β) = (0, 0).
Conditions (1.3)–(1.5) concern a nonresonance condition involving the two-parameter linear
eigenvalue problem (LEVP)

u(4)(t) + βu′′(t) − αu(t) = 0,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(1.6)

In [6] it was shown that (α, β) is an eigenvalue pair of LEVP(1.6) if and only if (α/(kπ)4) +
(β/(kπ)2) = 1 for some k ∈ N. Hence, for k ∈ N the straight line

Lk =

{
(
α, β
) | α

(kπ)4
+

β

(kπ)2
= 1

}

(1.7)

is called an eigenline of LEVP(1.6). Conditions (1.3)-(1.4) trivially imply that

a + bk2π2
∣∣k4π4 − α − k2π2β

∣∣ < 1, ∀k ∈ N. (1.8)

It is easy to prove that condition (1.8) is equivalent to the fact that the rectangle

R
(
α, β;a, b

)
= [α − a, α + a] × [β − b, β + b

]
(1.9)

does not intersect any of the eigenline Lk of LEVP(1.6). In [6], del Pino and Manásevich
conjecture that Theorem A is also valid if (1.8) is replaced by (1.4). Particularly, in the case
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that the partial derivatives fu and fv exist, the conjecture means that if for large |u| + |v| the
pair

(
fu(t, u, v),−fv(t, u, v)

)
(1.10)

lies in a certain rectangle R(α, β;a, b) which does not intersect any of the eigenline Lk of
LEVP(1.6); then BVP(1.1) is solvable. But they could not prove the conjecture.

Recently, the present author [11] has partly answered this conjecture and shows that
if the rectangle R(α, β;a, b) is replaced by the circle

B
(
α, β; r

)
=
{(

x, y
)
(x − α)2 +

(
y − β

)2 ≤ r2
}
, (1.11)

the conjecture is correct. In other words, the following result is obtained.

Theorem B. Assume that f has partial derivatives fu and fv in [0, 1] ×R ×R. If there exists a circle
B(α, β; r), which does not intersect any of the eigenline Lk of LEVP(1.6), such that

(
fu(t, u, v),−fv(t, u, v)

) ∈ B
(
α, β; r

)
(1.12)

for large |u| + |v|, then the BVP(1.1) has at least one solution.

See [11, Theorem 2 and Corollary 2]. Condition (1.12) means that f is linear growth
on u and v. If f is not linear growth on u or v, Theorem B is invalid.

In this paper, we will extend Theorem B to the case that the circle B(α, β; r) is replaced
by an unbounded domain. Let ε ∈ (0, π6) be a positive constant; then we will use the
parabolic sector

Dε =

{
(
x, y
) ∈ R

2 | y ≤ − x2

4(π6 − ε)

}

(1.13)

to substitute the the circle B(α, β; r) in Theorem B. Noting thatDε is contained in the parabolic
sector

D0 =

{
(
x, y
) ∈ R

2 | y ≤ − x2

4π6

}

(1.14)

and D0 only contacts the first eigenline L1 at (2π4, −π2), we see that Dε does not intersect
any of the eigenline Lk. Our new result is as follows.

Theorem 1.1. Assume that f has partial derivatives fu and fv in [0, 1] ×R ×R. If there is a positive
constant ε ∈ (0, π6) such that

(
fu(t, u, v),−fv(t, u, v)

) ∈ Dε, (1.15)

then the BVP(1.1) has a unique solution.
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In Theorem 1.1, Condition (1.15) allows f(t, u, v) to be superlinear in u and v, and an
example will be showed at the end of the paper. The proof of Theorem 1.1 is based on Leray-
Schauder fixed point theorem and a differential inequality, which will be given in the next
section.

2. Proof of the Main Results

Let I = [0, 1] and H = L2(I) be the usual Hilbert space with the interior product (u, v) =
∫1
0 u(t)v(t)dt and the norm ‖u‖2 = (

∫1
0 |u(t)|2dt)

1/2
. Form ∈ N, letWm,2(I) be the usual Sobolev

space with the norm ‖u‖m,2 =
√∑m

i=0 ‖u(i)‖22 . u ∈ Wm,2(I) which means that u ∈ Cm−1(I),
u(m−1)(t) is absolutely continuous on I and u(m) ∈ L2(I).

Given h ∈ L2(I), we consider the linear fourth-order boundary value problem (LBVP)

u(4)(t) = h(t), t ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(2.1)

Let G(t, s) be Green’s function to the second-order linear boundary value problem

−u′′ = 0, u(0) = u(1) = 0, (2.2)

which is explicitly expressed by

G(t, s) =

⎧
⎨

⎩

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.
(2.3)

For every given h ∈ L2(I), it is easy to verify that the LBVP(2.1) has a unique solution u ∈
W4,2(I) in Carathéodory sense, which is given by

u(t) =
∫∫1

0
G(t, τ)G(τ, s)h(s)dsdτ := Sh(t). (2.4)

If h ∈ C(I), the solution is in C4(I), and it is a classical solution. Moreover, the solution
operator of LBVP(2.1), S : L2(I) → W4,2(I) is a linearly bounded operator. By the
compactness of the Sobolev embedding W4,2(I) ↪→ C2(I), we see that S : L2(I) → C2(I)
is a completely continuous operator. Hence the restriction S : C(I) → C2(I) is completely
continuous.

Lemma 2.1. For every h ∈ H, the unique solution of LBVP(2.1) u = Sh ∈ W4,2(I) satisfies the
inequalities

π6‖u‖22 ≤ π4∥∥u′∥∥2
2 ≤ π2∥∥u′′∥∥2

2 ≤
∥∥u′′′∥∥2

2. (2.5)
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Proof. Since sine system {sin kπt | k ∈ N} is a complete orthogonal system of L2(I), every
h ∈ L2(I) can be expressed by the Fourier series expansion

h(t) =
∞∑

k=1

hk sin kπt, (2.6)

where hk = 2
∫1
0 h(s) sin kπsds, k = 1, 2, . . ., and the Parseval equality

‖h‖22 =
1
2

∞∑

k=1

|hk|2 (2.7)

holds. Let u = Sh, then u ∈ W4,2(I) is the unique solution of LBVP(2.1), and u, u′′, and u(4)

can be expressed by the Fourier series expansion of the sine system. Since u(4) = h, by the
integral formula of Fourier coefficient, we obtain that

u(t) =
∞∑

k=1

hk

k4π4
sin kπt,

u′′(t) = −
∞∑

k=1

hk

k2π2
sin kπt.

(2.8)

On the other hand, since cosine system {cos kπt | k = 0, 1, 2, . . .} is another complete
orthogonal system of L2(I), every v ∈ L2(I) can be expressed by the cosine series expansion

v(t) =
a0

2
+

∞∑

k=1

ak cos kπt, (2.9)

where ak = 2
∫1
0 h(s) cos kπsds, k = 0, 1, 2, . . .. For the above u = Sh, by the integral formula

of the coefficient of cosine series, we obtain the cosine series expansions of u′ and u′′′:

u′(t) =
∞∑

k=1

hk

k3π3
cos kπt,

u′′′(t) = −
∞∑

k=1

hk

kπ
cos kπt.

(2.10)
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By (2.8)–(2.10) and Parseval equality, we have that

‖u‖22 =
1
2

∞∑

k=1

∣
∣
∣
∣

hk

k4π4

∣
∣
∣
∣

2

≤ 1
2π2

∞∑

k=1

∣
∣
∣
∣

hk

k3π3

∣
∣
∣
∣

2

=
1
π2

∥
∥u′∥∥2

2,

∥
∥u′∥∥2

2 =
1
2

∞∑

k=1

∣
∣
∣
∣

hk

k3π3

∣
∣
∣
∣

2

≤ 1
2π2

∞∑

k=1

∣
∣
∣
∣

hk

k2π2

∣
∣
∣
∣

2

=
1
π2

∥
∥u′′∥∥2

2,

∥
∥u′′∥∥2

2 =
1
2

∞∑

k=1

∣
∣
∣
∣

hk

k2π2

∣
∣
∣
∣

2

≤ 1
2π2

∞∑

k=1

∣
∣
∣
∣
hk

kπ

∣
∣
∣
∣

2

=
1
π2

∥
∥u′′′∥∥2

2.

(2.11)

This implies that (2.5) holds.

Proof of Theorem 1.1. We define a mapping F : C2(I) → C(I) by

F(u)(t) := f
(
t, u(t), u′′(t)

)
, u ∈ C2(I). (2.12)

By the continuity of f , F : C2(I) → C(I) is continuous and it maps every bounded set of
C2(I) into a bounded set of C(I). Hence, the composite mapping S ◦ F : C2(I) → C2(I) is
completely continuous. By the definition of the solution operator S of LBVP(2.1), the solution
of BVP(1.1) is equivalent to the fixed point of S◦F. We first use the Leray-Schauder fixed point
theorem [15] to show that S ◦ F has a fixed point. For this, we consider the homotopic family
of the operator equations

u = λ(S ◦ F)(u), 0 < λ < 1. (2.13)

We need to prove that the set of the solutions of (2.13) is bounded in C2(I).
Let u ∈ C2(I) be a solution of (2.13) for λ ∈ (0, 1). Set h = λF(u). Since h ∈ C(I), by

the definition of S, u = Sh ∈ C4(I) is the unique solution of LBVP(2.1). Hence u satisfies the
differential equation

u(4)(t) = λf
(
t, u(t), u′′(t)

)
, 0 ≤ t ≤ 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(2.14)

SetM = maxt∈I |f(t, 0, 0)|. Multiplying the first formula of (2.14) by −u′′(t) and by the theorem
of differential mean value, we have

−u(4)u′′ = −λf(t, u, u′′)u′′

= −λ[f(t, u, u′′) − f(t, 0, 0)
]
u′′ − λf(t, 0, 0)u′′

= −λfu
(
t, ξ, η

)
uu′′ − λfv

(
t, ξ, η

)(
u′′)2 − λf(t, 0, 0)u′′

≤ λ

(
f2
u

(
t, ξ, η

)

4(π6 − ε)
− fv
(
t, ξ, η

)
)
(
u′′)2 + λ

(
π6 − ε

)
u2 +M

∣∣u′′∣∣,

(2.15)
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where ξ = θu, η = θu′′ for some θ ∈ (0, 1). In the last step of this estimation we use the
inequality

− fu
(
t, ξ, η

)
uu′′ ≤ f2

u

(
t, ξ, η

)

4(π6 − ε)
(
u′′)2 +

(
π6 − ε

)
u2 (2.16)

which is derived from the inequality 2pq ≤ p2 + q2 by choosing

p = − fu
(
t, ξ, η

)

2
√
π6 − ε

u′′, q =
√
π6 − εu. (2.17)

Since (fu(t, ξ, η),−fv(t, ξ, η)) ∈ Dε, it follows that

f2
u

(
t, ξ, η

)

4(π6 − ε)
− fv

(
t, ξ, η

) ≤ 0. (2.18)

Hence, we obtain that

−u(4)u′′ ≤ λ
(
π6 − ε

)
u2 +M

∣∣u′′∣∣ ≤
(
π6 − ε

)
u2 +

ε

2π4

(
u′′)2 +

π4M2

2ε
, (2.19)

in which we use the inequality pq ≤ (p2/2) + (q2/2) for M|u′′| by choosing p = (
√
ε/π2)|u′′|

and q = π2M/
√
ε. Integrating inequality (2.19) on I using integration by parts and

Lemma 2.1, we have

∥∥u′′′∥∥2
2 ≤
(
π6 − ε

)
‖u‖22 +

ε

2π4

∥∥u′′∥∥2
2 +

π4M2

2ε

≤ π6 − ε

π6

∥∥u′′′∥∥2
2 +

ε

2π6

∥∥u′′′∥∥2
2 +

π4M2

2ε

=
(
1 − ε

2π6

)∥∥u′′′∥∥2
2 +

π4M2

2ε
,

(2.20)

from which it follows that

∥∥u′′′∥∥2
2 ≤

π10M2

ε2
. (2.21)

From this and Lemma 2.1, we obtain that

‖u‖3,2 ≤
(

3∑

i=0

∥∥∥u(i)
∥∥∥
2

2

)1/2

≤
(

1
π6

+
1
π4

+
1
π2

+ 1
)1/2∥∥u′′′∥∥

2 ≤
2π5M

ε
. (2.22)
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Hence, by the continuity of the Sobolev embedding W3,2(I) ↪→ C2(I), we have

‖u‖C2(I) ≤ C‖u‖3,2 ≤ C
2π5M

ε
=: C, (2.23)

where C is the Sobolev embedding constant. This means that the set of the solutions of (2.13)
is bounded in C2(I). By the Leray-Schauder fixed point theorem [15], S ◦ F has a fixed point
in C2(I)which is a solution of BVP(1.1).

Now, let u1, u2 ∈ C4(I) be two solutions of BVP(1.1). Set u = u2 − u1 and h = F(u2) −
F(u1). Then u = S(F(u2) − F(u2)) = Sh is the solution of LBVP(2.1), and it satisfies the
equation

u(4)(t) = f
(
t, u2, u

′′
2
) − f

(
t, u1, u

′′
2
)
, t ∈ I. (2.24)

Multiplying this equality by −(u2 − u1)
′′ and by the theorem of differential mean value and

Condition (1.15), we have that

−u(4)u′′ = − (f(t, u2, u
′′
2
) − f

(
t, u1, u

′′
2
))
u′′

= −fu
(
t, ξ, η

)
uu′′ − fv

(
t, ξ, η

)(
u′′)2

≤
(

f2
u

(
t, ξ, η

)

4(π6 − ε)
− fv
(
t, ξ, η

)
)
(
u′′)2 +

(
π6 − ε

)
u2

≤
(
π6 − ε

)
u2,

(2.25)

where ξ = u1 + θ(u2 − u1), η = u′′
1 + θ(u′′

2 − u′′
1) for some θ ∈ (0, 1). Integrating this inequality

on I and using Lemma 2.1, we obtain that

π6‖u‖22 ≤
∥∥u′′′∥∥2

2 ≤
(
π6 − ε

)
‖u‖22. (2.26)

This implies that ‖u‖2 = 0, and hence we have u1 = u2. Thus BVP(1.1) has only one solution.
The proof of Theorem 1.1 is completed.

Example 2.2. Consider the fourth-order boundary value problem

u(4)(t) = a(t)u(t) + u′′(t) +
(
u′′(t)

)3 + sinπt, t ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(2.27)

where a ∈ C(I). Noting that

f(t, u, v) = a(t)u + v + v3 + sinπt (2.28)
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is upperlinear growth on v, one can check that all the known results of [1–14] are not
applicable to this equation. But, if maxt∈I |a(t)| < 2π3, then

f2
u

4(π6 − ε)
− fv =

a2(t)
4(π6 − ε)

− 1 − 3v2

≤ a2(t)
4(π6 − ε)

− 1 =
a2(t) − 4

(
π6 − ε

)

4(π6 − ε)
≤ 0

(2.29)

for small enough ε ∈ (0, 4π6). Hence, Condition (1.15) holds, and by Theorem 1.1, the
boundary value problem (2.27) has a unique solution.
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