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We consider the combined Walsh function for the three-dimensional case. A method for the
solution of the neutron transport equation in three-dimensional case by using the Walsh function,
Chebyshev polynomials, and the Legendre polynomials are considered. We also present Tau
method, and it was proved that it is a good approximate to exact solutions. This method is based
on expansion of the angular flux in a truncated series of Walsh function in the angular variable.
Themain characteristic of this technique is that it reduces the problems to those of solving a system
of algebraic equations; thus, it is greatly simplifying the problem.

1. Introduction

TheWalsh functions havemany properties similar to those of the trigonometric functions. For
example, they form a complete, total collection of functions with respect to the space of square
Lebesgue integrable functions. However, they are simpler in structure to the trigonometric
functions because they take only the values 1 and −1. They may be expressed as linear
combinations of the Haar functions [1], so many proofs about the Haar functions carry over
to the Walsh system easily. Moreover, the Walsh functions are Haar wavelet packets. For a
good account of the properties of the Haar wavelets and other wavelets, see [2]. We use the
ordering of theWalsh functions due to Paley [3, 4]. Any function f ∈ L2[0, 1] can be expanded
as a series of Walsh functions

f(x) =
∞∑

i=0

ciWi(x), where ci =
∫1

0
f(x)Wi(x). (1.1)
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In [5], Fine discovered an important property of theWalsh Fourier series: them = 2nth partial
sum of the Walsh series of a function f is piecewise constant, equal to the L1 mean of f , on
each subinterval [(i − 1)/m, i/m]. For this reason, Walsh series in applications are always
truncated to m = 2n terms. In this case, the coefficients ci of the Walsh (-Fourier) series are
given by

ci =
m−1∑

j=0

1
m
Wijfj , (1.2)

where fj is the average value of the function f(x) in the jth interval of width 1/m in the
interval (0, 1), and Wij is the value of the ith Walsh function in the jth subinterval. The order
mWalsh matrix, Wm, has elements Wij .

Let f(x) have a Walsh series with coefficients ci and its integral from 0 to x have a
Walsh series with coefficients bi:

∫x
0 f(t)dt =

∑∞
i=0 biWi(x). If we truncate to m = 2n terms

and use the obvious vector notation, then integration is performed by matrix multiplication
b = PT

mc, where

PT
m =

⎡
⎢⎢⎣

Pm/2
1
2m

Im/2

− 1
2m

Im/2 Om/2

⎤
⎥⎥⎦, PT

2 =

⎡
⎢⎢⎣

1
2

1
4

−1
4

0

⎤
⎥⎥⎦, (1.3)

and Im is the unit matrix, Om is the zero matrix (of order m), see [6].

2. The Three-Dimensional Spectral Solution

In the literature there several works on driving a suitablemodel for the transport equation in 2
and 3-dimensional case as well as in cylindrical domain, for example, see [7], and by using the
eigenvalue error estimates for two-dimensional neutron transport, see [8], by applying the
finite element method in an infinite cylindrical domain, see [9], similarly by using Chebyshev
spectral-SN method, see [10], and the discrete ordinates in the infinite cylindrical domain, see
[11].

In this paper, we consider combined Walsh function with the Sumudu transform in
order to extend the transport problem for the three-dimensional case by following the similar
method that was proposed in [7]. This method is based on expansion of the angular flux in a
truncated series of Walsh function in the angular variable. By replacing this development in
the transport equation, this will result a first-order linear differential system. First of all we
consider the three-dimensional linear, steady state, transport equation which is given by

μ
∂

∂x
Ψ
(
x, μ, θ

)
+
√
1 − μ2

(
cos θ

∂

∂y
Ψ
(
x, μ, θ

)
+ sin θ

∂

∂z
Ψ
(
x, μ, θ

))
+ σtΨ

(
x, μ, θ

)

=
∫1

−1

∫2π

0
σs

(
μ′, θ′ −→ μ, θ

)
Ψ
(
x, μ′, θ′)dθ′dμ′ + S

(
x, μ, θ

)
,

(2.1)
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where we assume that the spatial variable x := (x, y, z) varies in the cubic domain Ω :=
{(x, y, z) : −1 ≤ x, y, z ≤ 1}, andΨ(x, μ, θ) := Ψ(x, y, z, μ, θ) is the angular flux in the direction
defined by μ ∈ [−1, 1] and θ ∈ [0, 2π]. σt and σs denote the total and the differential cross
section, respectively, σs(μ′, φ′ → μ, φ) describes the scattering from an assumed pre-collision
angular coordinates (μ′, θ′) to a postcollision coordinates (μ, θ) and S is the source term. See
[12] for further details.

Note that, in the case of one-speed neutron transport equation; taking the angular
variable in a disc, this problemwill corresponds to a three dimensional case with all functions
being constant in the azimuthal direction of the z variable. In this way the actual spatial
domain may be assumed to be a cylinder with the cross-section Ω and the axial symmetry
in z. Then D will correspond to the projection of the points on the unit sphere (the “speed”)
onto the unit disc (which coincides with D). See [13] for the details.

Given the functions f1(y, z, μ, φ), f2(x, z, μ, φ), and f3(x, y, μ, φ) describing the
incident flux, we seek for a solution of (2.1) subject to the following boundary conditions.

For the boundary terms in x, for 0 ≤ θ ≤ 2π , let

Ψ
(
x = ±1, y, z, μ, θ) =

⎧
⎨

⎩
f1
(
y, z, μ, θ

)
, x = −1, 0 < μ ≤ 1,

0, x = 1, −1 ≤ μ < 0.
(2.2)

For the boundary terms in y and for −1 ≤ μ < 1,

Ψ
(
x, y = ±1, z, μ, θ) =

⎧
⎨

⎩
f2
(
x, z, μ, θ

)
, y = −1, 0 < cos θ ≤ 1,

0, y = 1, −1 ≤ cos θ < 0.
(2.3)

Finally, for the boundary terms in z, for −1 ≤ μ < 1,

Ψ
(
x, y, z = ±1, μ, θ) =

⎧
⎨

⎩
f3
(
x, y, μ, θ

)
, z = −1, 0 ≤ θ < π,

0, z = 1, π < θ ≤ 2π.
(2.4)

Theorem 2.1. Consider the integrodifferential equation (2.1) under the boundary conditions (2.2),
(2.3) and (2.4), then the function Ψ(x, y, z, μ, θ) satisfy the following first-order linear differential
equation system for the spatial component Ψi,j(x, μ, θ)

μ
∂Ψi,j

∂x

(
x, μ, θ

)
+ σtΨi,j

(
x, μ, θ

)

= G i,j

(
x;μ, θ

)∫∫1

−1
σs

(
μ′, θ′ −→ μ, θ

)
Ψi,j

(
x, μ′, θ′)dθ′dμ′,

(2.5)

with the boundary conditions

Ψi,j

(−1, μ, η) = f
i,j

1

(
μ, θ

)
, (2.6)
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where

f
i,j

1

(
μ, θ

)
=

4
π2

∫∫1

−1

Ti
(
y
)
Rj(z)

√(
1 − y2

)
(1 − z2)

f1
(
y, z, μ, θ

)
dzdy,

Ψi,j

(
1,−μ, θ) = 0,

Gi,j

(
x;μ, θ

)
= Si,j

(
x, μ, θ

) −
√
1 − μ2

⎡

⎣cos θ
I∑

k=i+1

Ak
i Ψk,j

(
x, μ, θ

)
+ sin θ

J∑

l=j+1

Bl
jΨi,l

(
x, μ, θ

)
⎤

⎦,

(2.7)

with

Si,j

(
x, μ, θ

)
=

4
π2

∫∫1

−1

Ti
(
y
)
Rj(z)

√(
1 − y2

)
(1 − z2)

S
(
x, μ, θ

)
dzdy,

Ak
i =

2
π

∫1

−1

d

dy

(
Tk

(
y
)) Ti

(
y
)

√
1 − y2

dy,

Bl
j =

2
π

∫1

−1

d

dy

(
Rl

(
y
)) Rj(z)√

1 − z2
dz.

(2.8)

Proof. Expanding the angular flux Ψ(x, y, z, μ, φ) in a truncated series of Chebyshev
polynomials Ti(y) and Rj(z) leads to

Ψ
(
x, y, z, μ, θ

)
=

I∑

i=0

J∑

j=0

Ψi,j

(
x, μ, θ

)
Ti
(
y
)
Rj(z). (2.9)

We insert Ψ(x, y, z, μ, θ) given by (2.9) into the boundary condition in (2.3), for y = ±1.
Multiplying the resulting expressions by Rj(z)/

√
1 − z2 and integrating over z, we get the

components Ψ0,j(x, μ, θ) for j = 0, . . . , J ,

Ψ0,j
(
x, μ, θ

)
= f

j

2

(
x, μ, θ

) −
I∑

i=1

(−1)jΨi,j

(
x, μ, θ

)
, 0 < cos θ ≤ 1,

Ψ0,j
(
x, μ, θ

)
= −

I∑

i=1

Ψi,j

(
x, μ, θ

)
, −1 ≤ cos θ < 0.

(2.10)
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Similarly, we substitute Ψ(x, y, z, μ, θ) from (2.9) into the boundary conditions for z = ±1,
multiply the resulting expression by Ti(y)/

√
1 − y2, i = 0, . . . , I and integrating over y, to

define the components Ψi,0(x, μ, θ). For −1 ≤ x ≤ 1, −1 < μ < 1,

Ψi,0
(
x, μ, θ

)
= fi

3

(
x, μ, θ

) −
J∑

j=1

(−1)jΨi,j

(
x, μ, θ

)
, 0 ≤ θ < π,

Ψi,0
(
x, μ, θ

)
= −

J∑

j=1

Ψi,j

(
x, μ, θ

)
, π < θ ≤ 2π,

(2.11)

where

f
β

2

(
x, μ, θ

)
=

2 − δ0,j

π

∫1

−1
f2
(
x, z, μ, θ

) Rj(z)√
1 − z2

dz,

fi
3

(
x, μ, θ

)
=

2 − δi,0
π

∫1

−1
f3
(
x, y, μ, θ

) Ti
(
y
)

√
1 − y2

dy.

(2.12)

To determine the componentsΨi,j(x, μ, θ), i = 1, . . . , I, and j = 1, . . . , J we substituteΨ(x, μ, θ),
from (2.3) into (2.1) and the boundary conditions for x = ±1. Multiplying the resulting

expressions by (Ti(y)/
√
1 − y2) × (Rj(z)/

√
1 − z2), and integrating over y and z we obtain

I × J one-dimensional transport problems, namely,

μ
∂Ψi,j

∂x

(
x, μ, θ

)
+ σtΨi,j

(
x, μ, θ

)
= Gi,j

(
x;μ, θ

)∫∫1

−1
σs

(
μ′, θ′ −→ μ, θ

)
Ψi,j

(
x, μ′, θ′)dθ′dμ′,

(2.13)

with the boundary conditions

Ψi,j

(−1, μ, η) = f
i,j

1

(
μ, θ

)
, (2.14)

where

f
i,j

1

(
μ, θ

)
=

4
π2

∫∫1

−1

Ti
(
y
)
Rj(z)

√(
1 − y2

)
(1 − z2)

f1
(
y, z, μ, θ

)
dzdy,

Ψi,j

(
1,−μ, θ) = 0,

(2.15)
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for 0 < μ ≤ 1, and 0 ≤ θ ≤ 2π . Finally,

Gi,j

(
x;μ, θ

)
= Si,j

(
x, μ, θ

) −
√
1 − μ2

⎡

⎣cos θ
I∑

k=i+1

Ak
i Ψk,j

(
x, μ, θ

)
+ sin θ

J∑

l=j+1

Bl
jΨi,l

(
x, μ, θ

)
⎤

⎦,

(2.16)

with

Si,j

(
x, μ, θ

)
=

4
π2

∫∫1

−1

Ti
(
y
)
Rj(z)

√(
1 − y2

)
(1 − z2)

S
(
x, μ, θ

)
dzdy,

Ak
i =

2
π

∫1

−1

d

dy

(
Tk

(
y
)) Ti

(
y
)

√
1 − y2

dy,

Bl
j =

2
π

∫1

−1

d

dy

(
Rl

(
y
)) Rj(z)√

1 − z2
dz.

(2.17)

Now, starting from the solution of the problem given by (2.13)–(2.17) for ΨI,J(x, μ, θ), we
then solve the problems for the other components, in the decreasing order in i and j. Recall
that

∑I
i=I+1 · · · =

∑J
j=J+1 ≡ 0. Hence, solving I × J one-dimensional problems, the angular flux

Ψ(x, μ, θ) is now completely determined through (2.9).

Remark 2.2. If we deal with different type of boundary conditions, then we consider the first
components Ψi,0(x, μ, θ) and Ψ0,j(x, μ, θ) for i = 1, . . . , I and j = 1, . . . , J will satisfy one-
dimensional transport problems subject to the same of boundary conditions of the original
problem in the variable x.

3. Analysis

Now, we solve the first-order linear differential equation system with isotropic scattering,
that is, σs(μ′, φ′ → μ, φ) ≡ σs = constant. Assuming isotropic scattering, the equation (2.13)
is written as

μ
∂Ψi,j

∂x

(
x, μ, θ

)
+ σtΨi,j

(
x, μ, θ

)
= Gi,j

(
x;μ, θ

)
σ

∫1

−1

∫2π

0
Ψi,j

(
x, μ′, θ′)dθ′ dμ′, (3.1)

for x ∈ Ω := {(x, y) : 0 ≤ x ≤ 1,−1 ≤ y ≤ 1}, μ ∈ [−1, 1], and θ ∈ [0, 2π].
Then, we have the following theorem that is subject to the boundary conditions (2.14).
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Theorem 3.1. Consider the integrodifferential equation (3.1) under the boundary conditions (2.14),
then the function Ψi,j(x, μ, θ) satisfy the following linear system of algebraic equations:

N∑

n=0

Dn,mpβn,i,j
(
p, θ

) − σs

N∑

n=0

pαn,i,j

(
p, θ

)
+ σtαn,i,j

(
p, θ

)

=
∫1

−1
Gi,j

(
x, μ, θ

)
We

n

(
μ
)
dμ +

N∑

n=0

Dn,mβn,i,j(0, θ),

N∑

n=0

Dn,mpαn,i,j

(
p, θ

) − σs

N∑

n=0

pβn,k
(
p, θ

)
+ σtβn,i,j

(
p, θ

)

=
∫1

−1
Gi,j

(
x, μ, θ

)
Wo

n

(
μ
)
dμ +

N∑

n=0

Dn,mαn,i,j(0, θ).

(3.2)

Proof. For this problem we expand the angular flux in terms of the Walsh function in the
angular variable with its domain extended into the interval [−1, 1]. To end this, the Walsh
function Wn(μ) are extended in an even and odd fashion as follows, see [14]:

We
n

(
μ
)
=

⎧
⎨

⎩
Wn

(
μ
)

if μ ≥ 0,

Wn

(−μ) if μ < 0,

Wo
n

(
μ
)
=

⎧
⎨

⎩
Wn

(
μ
)

if μ ≥ 0,

−Wn

(−μ) if μ < 0,

(3.3)

for n = 0, 1, . . . ,N. The important feature of this procedure relies on the fact that a function
f(μ) is defined in the interval [−1, 1] it can be expanded in terms of these extended functions
in the manner:

f
(
μ
)
=

∞∑

n=0

[
anW

e
n

(
μ
)
+ bnW

o
n

(
μ
)]
, (3.4)

where the coefficients an and bn are determined as

an =
1
2

∫1

−1
f
(
μ
)
We

n

(
μ
)
dμ,

bn =
1
2

∫1

−1
f
(
μ
)
Wo

n

(
μ
)
dμ.

(3.5)
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So, in order to use the Walsh function for the solution of the problem (3.1), the angular flux is
approximated by the truncated expansion:

Ψi,j

(
x, μ, θ

)
=

N∑

n=0

[
αn,i,j(x, θ)We

n

(
μ
)
+ βn,i,j(x, θ)Wo

n

(
μ
)]
. (3.6)

Inserting this expansion into the linear transport (3.1), it turns out

N∑

n=0

[{
μ
∂αn,i,j

∂x
(x, θ) + σtαn,i,j(x, θ)

}
We

n

(
μ
)
+

{
μ
∂βn,i,j

∂x
(x, θ) + σtβn,i,j(x, θ)

}
Wo

n

(
μ
)
]

=
N∑

n=0

σs

[∫1

−1

∫2π

0
αn,i,j

(
x, θ′)We

n

(
μ′)dθ′dμ′ +

∫1

−1

∫2π

0
αn,i,j

(
x, θ′)Wo

n

(
μ′)dθ′dμ′

]

+Gi,j

(
x, μ, θ

)
.

(3.7)

Multiplying (3.7) byWe
m,m = 0, . . . ,N and integrating over the interval [−1, 1], results:

N∑

n=0

[
∂βn,i,j

∂x
(x, θ)

∫1

−1
μWo

n

(
μ
)
We

n

(
μ
)
dμ

]
+ σtαn,i,j(x, θ)

∫1

−1
We

n

(
μ
)
We

m

(
μ
)
dμ

=
N∑

n=0

σs

[∫2π

0
αn,i,j

(
x, θ′)dθ′

∫1

−1
Wo

n

(
μ′)Wo

n

(
μ′)dμ′

]
+
∫1

−1
Gi,j

(
x, μ, θ

)
We

n

(
μ
)
dμ.

(3.8)

Similarly, multiplying (3.7) by W0
m,m = 0, . . . ,N and integrating yields:

N∑

n=0

[
∂αn,i,j

∂x
(x, θ)

∫1

−1
μWo

n

(
μ
)
We

n

(
μ
)
dμ + σtβn,i,j(x, θ)

∫1

−1
W0

n

(
μ
)
W0

m

(
μ
)
dμ

]

=
N∑

n=0

σs

[∫2π

0
βn,i,j

(
x, θ′)dθ′

∫1

−1
Wo

n

(
μ′)Wo

n

(
μ′)dμ′

]
+
∫1

−1
Gi,j

(
x, μ, θ

)
W0

n

(
μ
)
dμ.

(3.9)

The integrals appearing in (3.8) and (3.9) are known and are given [14] as

Dn,m =
1
2

∫1

−1
μWo

n

(
μ
)
We

m

(
μ
)
dμ =

∫1

0
μW(n+m) mod 2

(
μ
)

(3.10)

or

Dn,m =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2

if n = m,

−2−(k+2), if (n +m) mod 2 = 2k k natural,

0 at another case,

(3.11)
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where the notation (n +m) mod 2 denotes the mod 2 sum of the binary digits n andm [15]

N∑

n=0

Dn,mpβn,i,j
(
p, θ

) − σs

N∑

n=0

pαn,i,j

(
p, θ

)
+ σtαn,i,j

(
p, θ

)

=
∫1

−1
Gi,j

(
x, μ, θ

)
We

n

(
μ
)
dμ +

N∑

n=0

Dn,mβn,i,j(0, θ),

N∑

n=0

Dn,mpαn,i,j

(
p, θ

) − σs

N∑

n=0

pβn,k
(
p, θ

)
+ σtβn,i,j

(
p, θ

)

=
∫1

−1
Gi,j

(
x, μ, θ

)
Wo

n

(
μ
)
dμ +

N∑

n=0

Dn,mαn,i,j(0, θ).

(3.12)

4. Operational Tau Method and Converting Transport Equation

The operational approach to the Tau method proposed by [16] describes converting of a
given integral, integrodifferential equation or system of these equations to a system of linear
algebraic equations based on three simple matrices:

γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 1 0

0 1

0

· · · :::

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, η =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1 0

0 2 0 · · ·
0 0 3 0

· · · :::

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · ·

0
1
2

0 · · ·

0
1
3

· · ·
0 · · ·

· · · :::

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.1)

We recall the following properties [17].

Lemma 4.1. Let un(x) be a polynomial as

un(x) =
n∑

i=0

aix
i =

∞∑

i=0

aix
i = �anX, (4.2)

then we have

(i) (dr/dxr)un(x) = �anη
rX, r = 1, 2, 3, . . .,

(ii) xrun(x) = �anγ
rX, r = 1, 2, 3, . . .,

(iii)
∫x
a un(x)dx = �anlX|xa = �anlX − �anlA,

where �an = [a0, a1, . . . , an, 0, 0, . . .] and A = [1, a, a2, . . . , an, . . .]T .
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Now we solve (3.12) using the Tau method, for this we consider this equation because
is equivalent

μ
∂Ψi,j

∂x

(
x, μ, θ

)
+ σtΨi,j

(
x, μ, θ

)
= Gi,j

(
x;μ, θ

)
+
∫1

−1

∫2π

0
σs

(
μ′, θ′)Ψi,j

(
x, μ′, θ′)dθ′dμ′ (4.3)

for x ∈ Ω := {(x, y) : 0 ≤ x ≤ 1,−1 ≤ y ≤ 1}, μ ∈ [−1, 1], and θ ∈ [0, 2π] subject to the
following boundary conditions (2.14).

In order to convert (5.1) to a system of linear algebraic equations we define the linear
differential operator D of order ζ with polynomial coefficients defined by

D :=
ζ∑

r=0

pr(x)
∂r

∂xr
(4.4)

we will write for

pr(x) :=
αr∑

k=0

prkx
k, (4.5)

where αr is the degree of pr(x) and pr = (pr0,...,prαr , 0, 0, . . .), Υ = (1, μ, μ2, . . . )T . We notice that
μ is the independent variable and will be defined in a finite interval.

4.1. Matrix Representation for the Different Parts

Let V = {v0(μ), v1(μ), . . .} be a polynomial basis given by V := VΥ, where V is nonsingular
lower triangular matrix and degree (vi(μ)) ≤ i, for i = 0, 1, 2, . . ., Also for any matrix P ,
Pv = VPV −1.

Matrix Representation for DΨi,j(x, μ, θ)

Theorem 4.2 (see [16]). For any linear differential operator D defined by (5.2) and any series

Ψi,j

(
x, μ, θ

)
:= aV ,

a :=
(
Ψ0,j

(
x, θ′),Ψ1,j

(
x, θ′),Ψ2,j

(
x, θ′), . . . ,Ψi,0

(
x, θ′),Ψi,1

(
x, θ′),Ψi,2

(
x, θ′), . . . ,

)
,

(4.6)

we have

DΨi,j

(
x, μ, θ

)
= aΞvV , (4.7)
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where

Ξv = V
ζ∑

i=0

ηipi
(
γ
)
V −1. (4.8)

Matrix Representation for the Integral Form

Let us assume that

σs

(
μ′, θ′) =

n∑

j=0

σs

(
θ′)vj

(
μ′),

Ψi,j

(
x, μ′, θ′) =

n∑

i,j=0

Ψi,j

(
x, θ′)vi

(
μ′) = aV ,

(4.9)

then we can write

∫1

−1

∫2π

0
σs

(
μ′, θ′)Ψi,j

(
x, μ′, θ′)dθ′dμ′ =

n∑

i,j=0

∫2π

0
σs

(
θ′)Ψi,j

(
x, μ′, θ′)dθ′

∫1

−1
vj

(
μ′)vi

(
μ′)dμ′

= aKV ,

(4.10)

where

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑

j=0

k0,j�j0 · · ·
n∑

i,j=0

k0,j�ij 0 0 · · ·

· · · · · · · · · · · · · · · · · ·
n∑

j=0

k0,j�ij · · ·
n∑

i,j=0

k0,j�ij 0 0 · · ·

· · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.11)

with ki,j =
∫2π
0 σs(θ′), Ψi,j(x, μ′, θ′)dθ′, and�ij =

∫1
−1 vi(μ′)vj(μ′)dμ′ for i, j = 0, 1, . . . , n.

Matrix Representation for the Boundary Conditions

Ψi,j

(
x, μ′, θ′) =

∞∑

i=0

ζ∑

k=0

Ψjk

(
x, θ′)vj

(
μ′)

= aCol
[
Ψ0,j

(
x, θ′),Ψ1,j

(
x, θ′), . . . ,Ψi,0

(
x, θ′),Ψi,1

(
x, θ′), . . . ,

]
= aBj,

(4.12)
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where j = 1, . . . , ζ. It follows from (5.4) and (5.5) that

μ
∂Ψi,j

∂x

(
x, μ, θ

)
+ σtΨi,j

(
x, μ, θ

)
=
∫1

−1

∫2π

0
σs

(
μ′, θ′)Ψi,j

(
x, μ′, θ′)dθ′dμ′

=
1
μ

[
aKV − aΞvV

]
.

(4.13)

Let Gi,j(x;μ, θ) =
∑n

d=0 Gi,jd(x; θ)vd(μ) = Gi,j(x; θ)V with Gi,j = (Gi,j0, . . . , Gi,jn, 0, 0, . . .).

5. Error Estimation

Consider now the discrete ordinates (SN) approximation of the equation (2.13) for m =
1, . . . ,M,

μm

∂Ψα,β,N

∂x

(
x, μm, θ

)
+ σtΨα,β,N

(
x, μm, θ

)
=

M∑

n=1

ωnΨα,β,N

(
x, μm, θ

)
+Gα,β

(
x, μm, θ

)
. (5.1)

In this part, we evaluate an error estimator for the approximate solution of (2.13), we suppose
that equations (2.13) and (5.1) have the same boundary conditions. Let us call

εm
(
x, μ, θ

)
= Ψi,j

(
x, μm, θ

) −Ψi,j,m

(
x, μ, θ

)
(5.2)

this error function of the approximate solution Ψi,j,m to Ψi,j where Ψi,j is the exact solution of
(2.13). Hence, Ψi,j(x, μm, θ) satisfies the following problem:

μm

∂Ψα,β,N

∂x

(
x, μm, θ

)
+ σtΨα,β,N

(
x, μm, θ

)
=

M∑

n=1

ωnΨα,β,N

(
x, μm, θ

)
+G

α,β

(
x, μm, θ

)
+HN

(
μm

)
.

(5.3)

We can evaluate the perturbation term HN(μm) by substituting the computed solution into
the equation

HN

(
μm

)
= μm

∂Ψα,β,N

∂x

(
x, μ, θ

)
+ σtΨα,β,N

(
x, μ, θ

) −
M∑

n=1

ωnΨα,β,N

(
x, μm, θ

) −G
α,β

(
x, μm, θ

)

(5.4)

after doing some algebraic manipulations, the error functions εm(μ) satisfies the problem

HN

(
μm

)
= μm

∂εm
(
x, μ, θ

)

∂x
+ σtεm

(
x, μ, θ

) −
M∑

n=1

ωnεm
(
x, μ, θ

)
. (5.5)
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6. Conclusion

In general, obtaining solutions of some integrodifferential equations are usually difficult. In
our recent works we have used Walsh functions, Chebyshev polynomials and Lengendre
polynomials in order to reduces these kind of equations. However our present work suggests
that the Tau method can be a good approximation to the exact solutions. The application of
the Tau method by using the orthogonal polynomials will be considered as a future work.
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