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The method of the quasilinearization technique in Caputo’s sense fractional-order differential
equation is applied to obtain lower and upper sequences in terms of the solutions of linear
Caputo’s sense fractional-order differential equations. It is also shown that these sequences
converge to the unique solution of the nonlinear Caputo’s sense fractional-order differential
equation uniformly and semiquadratically with less restrictive assumptions.

1. Introduction

The well-known quasilinearization method [1, 2] in differential equation has been employed
to obtain a sequence of lower and upper bounds which are the solutions of linear differential
equations that converge quadratically. However, the convexity and concavity assumption
that is demanded by the method of quasilinearization has been a stumbling block for further
development of the theory. Recently, this method has been generalized, refined, and extended
in several directions so as to be applicable to a much larger class of nonlinear problems by
not demanding convexity and concavity property [1, 3–7]. Moreover, other possibilities that
have been explored make the method of generalized quasilinearization universally useful in
applications [3, 6, 7].

The theory of nonlinear fractional-order dynamic systems has been investigated
depending on the development in the theory of fractional-order differential equations. In this
context, generalized quasilinearization method has been reconsidered, and similar results
parallel to classical theory of differential equations have been obtained [1, 2, 8].

In this work, the quasilinearization technique coupled with lower and upper solutions
is employed to study Caputo’s fractional-order differential equation for which particular
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and general results that include several special cases are obtained. Moreover, one gets
monotone sequences whose iterates are the solutions of corresponding linear problems
and the sequences converge to the solutions of the original nonlinear problems. Instead of
imposing the convexity assumption on the function involved, we assume weaker conditions
as well as for the concave functions. This is a definite advantage of this constructive
technique. Furthermore, these monotone flows are shown to converge semiquadratically.

Consider the following initial value problem:

cDq x(t) = F(t, x), x(t0) = x0 for t ≥ t0, (1.1)

where F ∈ C([t0, T] × R,R) and cDq is Caputo’s sense fractional-order derivative. Let
α0, β0 ∈ Cq([t0, T],R) and be the lower and upper solutions of (1.1) satisfying the following
inequalities (1.2) and (1.3), respectively, on J :

cDq α0 ≤ F(t, α0), α0(t0) ≤ u0 for t ≥ t0, (1.2)

cDq β0 ≥ F
(
t, β0

)
, β0(t0) ≥ u0 for t ≥ t0. (1.3)

The corresponding Volterra fractional integral equation is

x(t) = x0 +
1

Γ
(
q
)
∫ t

t0

(t − s)q−1F(s, x(s))ds. (1.4)

Caputo’s sense fractional-order differential equation is given by (1.1), and the
corresponding Volterra fractional integral equation is given by (1.4). Here, we consider the
function F(t, x) on the right-hand side of (1.1) and split it into three parts as f(t, x), g(t, x),
and h(t, x), where f satisfies a weaker condition than convexity, g satisfies a weaker condition
than concavity, and h is two-sided Lipschitzian.

2. Preliminaries

In this section, we state a comparison result and a corollary. For the proof, please see [2].

Theorem 2.1. Let α0, β0 ∈ Cp([t0, T],R) be locally Hölder continuous for an exponent 0 < λ < 1
and λ > q, p = 1 − q, F ∈ C([t0, T] × R,R), where Cp([t0, T],R) = [u ∈ C([t0, T],R) and u(t) ·
(t − t0)

p ∈ C([t0, T],R)], and

(i) Dqα0(t) ≤ F(t, α0(t)),

(ii) Dqβ0(t) ≥ F(t, β0(t)), t0 < t ≤ T , where Dq is Riemann-Liouville fractional-order
derivative and q is such that 0 < q < 1.

Suppose further that the standard Lipschitz condition is satisfied; that is,

F(t, x) − F
(
t · y) ≤ L

(
x − y

)
, x ≥ y, L > 0. (2.1)
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Table 1

Quasilinearization method Integer derivative Caputo’s derivative
Monotone sequences Yes Yes
Unique solution exists Yes Yes
Uniform convergence Yes Yes
Quadratic (semiquadratic) convergence Yes Yes

Then, α0
0 ≤ β00, where α0

0 = α0(t)(t − t0)
1−q|t=t0 and β00 = β0(t)(t − t0)

1−q|t=t0 imply that α0(t) ≤
β0(t), t0 ≤ t ≤ T.

Corollary 2.2. The function F(t, u) = σ(t)u, where σ(t) ≤ L, is admissible in Theorem 2.1 to yield
u(t) ≤ 0 on t0 ≤ t ≤ T .

We note that Theorem 2.1 and Corollary 2.2 also hold for Caputo’s fractional
derivative; see [2].

3. Monotone Technique and Method of Quasilinearization

In monotone iterative technique that we have used an existence result of nonlinear fractional-
order differential equations with Caputo’s derivative in a sector based on theoretical
considerations and described a constructive method which implies monotone sequences of
functions that converge to the solution of (1.1). Since each member of these sequences is
the solution of a certain linear fractional-order differential equation with Caputo’s derivative
which can be explicitly computed, the advantage and the importance of the technique need
no special emphasis. Moreover, these methods can successfully be employed to generate two-
sided pointwise bounds on solutions of initial value problems of fractional-order differential
equations with Caputo’s derivatives from which qualitative and quantitative behaviors can
be investigated.

The idea of relating the study of nonlinear fractional-order differential equations with
Caputo’s derivative through its related linear fractional-order differential equations with
Caputo’s derivative finds further extension in the method of quasilinearization. In this case,
again, we obtain existence of solutions of (1.1) under certain restrictions after formulating
sequences of solutions of related linear fractional-order differential equations with Caputo’s
derivative. These sequences converge quadratically in the constructive methods. The method
involves the formulation of upper and lower solutions.

Due to some advantages of Caputo’s derivative, we have applied the quasilin-
earization technique to the given nonlinear fractional-order differential equations with
Caputo’s derivative not Riemann-Liouville (R-L) derivative. Themain advantage of Caputo’s
derivative is that the initial conditions for fractional-order differential equations are of the
same form as those of ordinary differential equations with integer derivatives. Another
difference is that Caputo’s derivative for a constant C is zero, while the Riemann-
Liouville fractional-order derivative for a constant C is not zero but equals to DqC =
C(t − t0)

−q/Γ(1 − q), which is not zero. Table 1 depicts the correspondence between the
features of quasilinearization in the context of the integer order and fractional-order with
Caputo’s derivative. Therefore, under the suitable assumptions but different conditions, we
have Table 1.
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4. Main Result

In this section, wewill prove themain theorem that gives several different conditions to apply
the method of generalized quasilinearization to the nonlinear fractional-order differential
equations with Caputo’s derivative and state four remarks for special cases.

Theorem 4.1. Assume that

(i) f, g, h ∈ C([t0, T] × R,R), α0, β0 ∈ Cq([t0, T],R), and

cDqα0 ≤ F(t, α0), α0(t0) ≤ x0,

cDqβ0 ≥ F
(
t, β0

)
, β0(t0) ≥ x0

(4.1)

α0(t) ≤ β0(t) on J, α0(t0) ≤ x0 ≤ β0(t0), where F(t, x) = f(t, x) + g(t, x) + h(t, x) and
J = [t0, T].

(ii) Assume also that fx(t, x) exists and fx(t, x) is nondecreasing in x for each t as

f(t, x) ≥ f
(
t, y

)
+ fx

(
t, y

)(
x − y

)
, x ≥ y,

∣∣fx(t, x) − fx
(
t, y

)∣∣ ≤ L1
∣∣x − y

∣∣ with L1 ≥ 0.
(4.2)

Furthermore, gx(t, x) exists and gx(t, x) is nonincreasing in x for each t as

g(t, x) ≥ g
(
t, y

)
+ gx(t, x)

(
x − y

)
, x ≥ y,

∣∣gx(t, x) − gx
(
t, y

)∣∣ ≤ L2
∣∣x − y

∣∣ with L2 ≥ 0.
(4.3)

(iii) Moreover assume that h(t, x) is two-sided Lipschitzian in x such that |h(t, x) − h(t, y)| ≤
K|x − y|, where K > 0 is the Lipschitz constant.

Then, there exist monotone sequences {αn} and {βn} which converge uniformly and
monotonically to the unique solution x(t) of (1.1) and the convergence is semiquadratic.

Proof. Consider the following linear fractional-order initial value problems with Caputo’s
derivatives order q:

cDqαk+1 = F(t, αk) +
[
fx(t, αk) + gx

(
t, βk

) − k
]
(αk+1 − αk),

αk+1(t0) = x0,

cDqβk+1 = F
(
t, βk

)
+
[
fx(t, αk) + gx

(
t, βk

) − k
](
βk+1 − βk

)
,

βk+1(t0) = x0.

(4.4)

Since the right-hand sides of the equations satisfy a Lipschitz condition, it is obvious that
unique solutions exist. We will show that

α0 ≤ α1 ≤ · · · ≤ αk ≤ βk ≤ · · · ≤ β1 ≤ β0 on J. (4.5)
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First, we will prove that

α0 ≤ α1 ≤ β1 ≤ β0 on J. (4.6)

Put p(t) = α0(t) − α1(t) on J . Then,

cDqp = c
D

qα0−cDqα1

≤ F(t, α0) − F(t, α0) −
[
fx(t, α0) + gx

(
t, β0

) −K
]
(α1 − α0)

=
[
fx(t, α0) + gx

(
t, β0

) −K
]
p,

(4.7)

and p(t0) ≤ 0. Hence, applying Corollary 2.2, we get

α0(t) ≤ α1(t) on J. (4.8)

Let us set p(t) = α1(t) − β0(t); then, using (ii) and (iii) and the fact that β0 ≥ α0, we have

cDqp = c
D

qα1−cDqβ0

≤ F(t, α0) +
[
fx(t, α0) + gx

(
t, β0

) −K
]
(α1 − α0) − F

(
t, β0

)

≤ F(t, α0) +
[
fx(t, α0) + gx

(
t, β0

) −K
]
(α1 − α0)

− f(t, α0) − fx(t, α0)
(
β0 − α0

) − g(t, α0) − gx
(
t, β0

)(
β0 − α0

)

− h(t, α0) +K
(
β0 − α0

)

=
[
fx(t, α0) + gx

(
t, β0

) −K
](
α1 − β0

)
.

(4.9)

This implies that

cDqp ≤ [
fx(t, α0) + gx

(
t, β0

) −K
]
p, p(t0) ≤ 0, (4.10)

which because of Corollary 2.2 yields p(t) ≤ 0 on J. Thus, we have α1 ≤ β0 on J. Similarly, one
can prove that α0 ≤ β1 ≤ β0 on J. We now prove that α1(t) ≤ β1(t) on J . For this purpose we
set p(t) = α1 − β1 and note that p(t0) = 0.

Then,

cDqp = c
D

qα1−cDqβ1

= f(t, α0) + g(t, α0) + h(t, α0) +
[
fx(t, α0) + gx

(
t, β0

) −K
]
(α1 − α0)

− f
(
t, β0

) − g
(
t, β0

) − h
(
t, β0

) − [
fx(t, α0) + gx

(
t, β0

) −K
](
β1 − β0

)
.

(4.11)
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Since β0 ≥ α0, by using nondecreasing property of fx and nonincreasing property of gx, we
obtain

cDqp ≤ fx(t, α0)
(
α0 − β0

)
+ gx

(
t, β0

)(
α0 − β0

) −K
(
α0 − β0

)

+
[
fx(t, α0) + gx

(
t, β0

) −K
](
α1 − α0 − β1 + β0

)

=
[
fx(t, α0) + gx

(
t, β0

) −K
](
α1 − β1

)
,

(4.12)

which shows that cDqp ≤ [fx(t, α0) + gx(t, β0) − K]p. This proves that p(t) ≤ 0. Therefore,
α1(t) ≤ β1(t) on J.Hence, (4.6) is proved.

Using mathematical induction with k > 1, we obtain

α0 ≤ αk−1 ≤ αk ≤ βk ≤ βk−1 ≤ β0 on J. (4.13)

We must prove that

αk ≤ αk+1 ≤ βk+1 ≤ βk on J. (4.14)

To do so, we set p(t) = αk − αk+1. Then,

cDqp = c
D

qαk−cDqαk+1

= F(t, αk−1) +
[
fx(t, αk−1) + gx

(
t, βk−1

) −K
]
(αk − αk−1)

− F(t, αk) −
[
fx(t, αk) + gx

(
t, βk

) −K
]
(αk+1 − αk)

=
[
f(t, αk−1) − f(t, αk)

]
+
[
g(t, αk−1) − g(t, αk)

]
+ [h(t, αk−1) − h(t, αk)]

+
[
fx(t, αk−1) + gx

(
t, βk−1

) −K
]
(αk − αk−1) −

[
fx(t, αk) + gx

(
t, βk

) −K
]
(αk+1 − αk)

≤ fx(t, αk−1)(αk−1 − αk) + gx
(
t, βk−1

)
(αk−1 − αk) +K(αk − αk−1) + fx(t, αk−1)(αk − αk−1)

+ gx
(
t, βk−1

)
(αk − αk−1) +

[
fx(t, αk) + gx

(
t, βk

)]
(αk − αk+1) +K(αk−1 − αk + αk+1 − αk)

=
[
fx(t, αk) + gx

(
t, βk

) −K
]
(αk − αk+1),

(4.15)

where we have used the inequalities in (ii), (iii) and the fact that fx is nondecreasing in x and
gx is nonincreasing in x. Thus, we have

cDqp ≤ [
fx(t, αk) + gx

(
t, βk

) −K
]
p, p(t0) = 0. (4.16)

Again, from Corollary 2.2, we get αk ≤ αk+1 on J. Similarly, it can be shown that βk+1 ≤ βk
on J.
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Next we need to show that αk+1 ≤ βk+1 on J.
Set p(t) = αk+1 − βk+1; then,

cDqp = c
D

qαk+1−cDqβk+1

= F(t, αk) +
[
fx(t, αk) + gx

(
t, βk

) −K
]
(αk+1 − αk)

− F
(
t, βk

)
+
[
fx(t, αk) + gx

(
t, βk

) −K
](
βk+1 − βk

)

≤ fx(t, αk)
(
αk − βk

)
+ gx

(
t, βk

)(
αk − βk

) −K
(
αk − βk

)

+
[
fx(t, αk) + gx

(
t, βk

) −K
](
αk+1 − αk − βk+1 + βk

)

≤ [
fx(t, αk) + gx

(
t, βk

) −K
](
αk+1 − βk+1

)
.

(4.17)

Thus, we have cDqp ≤ [fx(t, αk)+gx(t, βk)−K]p and p(t0) = 0.Consequently, as before,
it follows from Corollary 2.2 we get that αk+1 ≤ βk+1 on J.

Employing the standard arguments [2], one can easily show that {αn} and {βn}
converge uniformly and monotonically to the unique solution of (1.1).

To prove the semiquadratic convergence, we set pn+1 = x − αn+1 and rn+1 = βn+1 − x.
Note that pn+1(t0) = rn+1(t0) = 0 and

cDqpn+1 = c
D

qx−cDqαn+1

= F(t, x) − F(t, αn) −
[
fx(t, αn) + gx

(
t, βn

) −K
]
(αn+1 − αn)

= fx(t, ξ)(x − αn) + gx
(
t, η

)
(x − αn) +K(x − αn)

+
[
fx(t, αn) + gx

(
t, βn

) −K
]
(αn − αn+1),

(4.18)

where αn ≤ ξ, η ≤ x.Now using the nondecreasing property of fx and nonincreasing property
of gx, we get

cDqpn+1 ≤
[
fx(t, x) + gx(t, αn) +K

]
pn +

[
fx(t, αn) + gx

(
t, βn

) −K
](
pn+1 − pn

)

=
[
fx(t, x) − fx(t, αn)

]
pn +

[
gx(t, αn) − gx

(
t, βn

)]
pn + 2Kpn

+
[
fx(t, αn) + gx

(
t, βn

) −K
]
pn+1

≤ L1p
2
n + L2

(
pn + rn

)
pn + 2Kpn +

[
fx(t, αn) + gx

(
t, βn

) −K
]
pn+1

≤
(
L1 +

3
2
L2

)
p2n +

1
2
L2r

2
n + 2Kpn +

[
fx(t, αn) + gx

(
t, βn

) −K
]
pn+1.

(4.19)
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Thus, we have

cDqpn+1 ≤
(
L1 +

3
2
L2

)∣
∣pn

∣
∣2
0 +

1
2
L2|rn|20 + 2K

∣
∣pn

∣
∣
0 +K∗pn+1, (4.20)

where |pn|0 = maxt∈J |pn(t)|, |rn|0 = maxt∈J |rn(t)|, |fx(t, αn)| ≤ K1, |gx(t, βn)| ≤ K2, and K∗ =
K1 +K2 −K.

Then, we obtain

cDqpn+1 ≤
((

L1 +
3
2
L2

)∣
∣pn

∣
∣2
0 +

1
2
L2|rn|20 + 2K

∣
∣pn

∣
∣
0

)∫ t

t0

(t − s)q−1Eq,q(K∗(t − s))ds, (4.21)

where Eq,q is the Mittag-Leffler function.
Let W = (1/q)(T − t0)

qEq,q(K∗(T − t0)
q); then,

cDqpn+1 ≤ U1
∣∣pn

∣∣2
0 +U2|rn|20 +U3

∣∣pn
∣∣
0, (4.22)

where U1 = (L1 + (3/2)L2)W, U2 = (1/2)L2W, and U3 = 2kW.
Thus, we reach the desired result

max
[t0,T]

|x − αn+1| ≤ U1 max
[t0,T]

|x − αn|2 +U2 max
[t0,T]

∣∣βn − x
∣∣2 +U3 max

[t0,T]
|x − αn| (4.23)

which shows the semiquadratic convergence.
Similarly, using suitable computation, we arrive at

max
[t0,T]

∣∣βn+1 − x
∣∣ ≤ V1 max

[t0,T]
|x − αn|2 + V2 max

[t0,T]

∣∣βn − x
∣∣2 + V3 max

[t0,T]

∣∣βn − x
∣∣, (4.24)

where V1 = (1/2)L1W, and V2 = ((3/2)L1 + L2)W, and V3 = 2kW.

Remark 4.2. Let f(t, x)+g(t, x) = 0; then, we have the monotone method, and the convergence
is linear.

Remark 4.3. Let g(t, x) + h(t, x) = 0; then, Theorem 4.1 reduces to Theorem 3.1 of [4], and the
convergence is quadratic.

Remark 4.4. Let f(t, x) + h(t, x) = 0 and g(t, x) be concave; then, Theorem 4.1 reduces to
Theorem 4.1 of [4], and the convergence is quadratic.

Remark 4.5. Let h(t, x) = 0; then, Theorem 4.1 reduces to the theorem in [5].
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5. An Example

The following example illustrates how the main result of the theorem may be applied for the
nonlinear fractional differential equation order q = 1/2 and t0 = 0.

Example 5.1. Let us consider the following nonlinear fractional-order initial value problem
with Caputo’s derivative order q = 1/2:

cD1/2x(t) =
√

t

π
x2 − 3

√
t

π
x +

√
t

π
(1 + x), x(0) = 0, 0 ≤ t ≤ 10, (5.1)

where f(t, x) =
√
t/πx2, g(t, x) = −3

√
t/πx, h(t, x) =

√
t/π(1 + x) and f, g, h ∈ C([0, 10] ×

R,R).
Let α0(t) = (1/2)(1 − 1/

√
1 + t), α0(0) = 0 and β0(t) = 2(1 − 1/

√
1 + t), β0(0) = 0 for

0 ≤ t ≤ 10 be lower and upper solutions of the fractional-order differential equation with
Caputo’s derivative order q = 1/2, respectively. Then, α0(t) and β0(t) satisfy the inequalities
in assumption (i) as

cD1/2α0 ≤
√

t

π
α2
0 − 3

√
t

π
α0 +

√
t

π
(1 + α0), α0(0) ≤ 0 for 0 ≤ t ≤ 10,

cD1/2β0 ≥
√

t

π
β20 − 3

√
t

π
β0 +

√
t

π

(
1 + β0

)
, β0(0) ≥ 0 for 0 ≤ t ≤ 10.

(5.2)

On the other hand, fx(t, x) = 2
√
t/πx, gx(t, x) = −3

√
t/π exist, and fx(t, x) is

nondecreasing and gx(t, x) is nonincreasing in x for each t in assumption (ii). Also, it can
be shown that these three functions f, g, and h hold in the correspondence inequality in
assumptions (ii) and (iii) with the nonnegative constants L1 ≥ 2

√
10/π , L2 ≥ 0, and

K ≥
√
10/π.
Therefore, we can construct the monotone sequences {αk+1} and {βk+1} whose

elements are solutions of linear fractional-order differential equations with Caputo’s
derivatives order q = 1/2 of (5.3) and (5.4), respectively, as

cD1/2αk+1 =
√

t

π
α2
k − 3

√
t

π
αk +

√
t

π
(1 + αk) +

⎡

⎣2
√

t

π
αk − 3

√
t

π
−
√

10
π

⎤

⎦(αk+1 − αk),

αk+1(0) = 0 for K =

√
10
π
, 0 ≤ t ≤ 10,

(5.3)

cD1/2βk+1 =
√

t

π
β2k − 3

√
t

π
βk +

√
t

π

(
1 + βk

)
+

⎡

⎣2
√

t

π
αk − 3

√
t

π
−
√

10
π

⎤

⎦
(
βk+1 − βk

)
,

βk+1(0) = 0 for K =

√
10
π
, 0 ≤ t ≤ 10.

(5.4)
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Since the right-hand sides of the equations satisfy a Lipschitz condition, it is obvious that
unique solutions exist such that, for all k = n,

α0 ≤ α1 ≤ · · · ≤ αk ≤ αk+1 ≤ βk+1 ≤ βk ≤ · · · ≤ β1 ≤ β0 on J = [0, 10]. (5.5)

Employing the standard techniques [2], sequences {αk} and {βk} converge uniformly
and monotonically to the unique solution x(t) = 1 − 1/

√
1 + t of cD1/2x(t) =

√
t/πx2 −

3
√
t/πx +

√
t/π(1 + x), x(0) = 0, since using the fact that F satisfies a Lipschitz condition

that is Fx is bounded on the sector

[
α0, β0

]
=
[
x :

1
2

(
1 − 1√

1 + t

)
≤ x ≤ 2

(
1 − 1√

1 + t

)]
for 0 ≤ t ≤ 10. (5.6)

Moreover, the convergence is semiquadratic.
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