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We introduce a new iterative scheme to approximate a common fixed point for a finite family of
generalized asymptotically quasinonexpansive mappings. Several strong and weak convergence
theorems of the proposed iteration in Banach spaces are established. The main results obtianed in
this paper generalize and refine many known results in the current literature.

1. Introduction

Let C be a convex subset of a Banach space X, and let {Ti : i = 1, 2, . . . , k} be a family of
self-mappings of C. Suppose that αin ∈ [0, 1], for all n = 1, 2, 3, . . . and i = 1, 2, . . . , k.

For x1 ∈ C, let {xn} be the sequence generated by the following algorithm:

xn+1 = (1 − αkn)xn + αknT
n
k y(k−1)n,

y(k−1)n =
(
1 − α(k−1)n

)
xn + α(k−1)nTn

k−1y(k−2)n,

y(k−2)n =
(
1 − α(k−2)n

)
xn + α(k−2)nTn

k−2y(k−3)n,

...

y2n = (1 − α2n)xn + α2nT
n
2 y1n,

y1n = (1 − α1n)xn + α1nT
n
1 y0n,

(1.1)
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where y0n = xn for all n. The iterative process (1.1) for a finite family of mappings introduced
by Khan et al. [1], and the iterative process is the generalized form of the modified Mann
(one-step) iterative process by Schu [2], the modified Ishikawa (two-step) iterative process
by Tan and Xu [3], and the three-step iterative process by Xu and Noor [4].

Common fixed points of nonlinear mappings play an important role in solving
systems of equations and inequalities. Many researchers [1, 5–19] are interested in studying
approximation method for finding common fixed points of nonlinear mapping. Also,
approximation methods for finding fixed points for nonexpansive mappings can be seen in
[12–16, 20, 21].

In 2003, Sun [17] studied an implicit iterative scheme initiated by Xu and Ori [22] for a
finite family of asymptotically quasinonexpansive mappings. Shahzand and Udomene [18],
in 2006, proved some convergence theorems for the modified Ishikawa iterative process of
two asymptotically quasinonexpence mappings to a common fixed point. Nammanee et al.
[23] introduced a three-step iteration scheme for asymptotically nonexpansive mappings
and proved weak and strong convergence theorems of that iteration scheme under some
control conditions. In 2007, Fukhar-ud-din and Khan [24] studied a new three-step iteration
scheme for approximating a common fixed point of asymptotically nonexpansive mappings
in uniformly convex Banach spaces. Shahzad and Zegeye [19] introduced a new concept
of generalized asymptotially nonexpansive mappings and proved some strong convergence
theorems for fixed points of finite family of this class. Recently, Khan et al. [1] introduced the
iterative sequence (1.1) for a finite family of asymptotically quasinonexpansive mappings in
Banach spaces.

Motivated by Khan et al. [1], we introduce a new iterative scheme for finding a
common fixed point of a finite family of generalized asymptotically quasinonexpansive
mappings as follows:

For x1 ∈ C, let {xn} be the sequence generated by

xn+1 = (1 − αkn)y(k−1)n + αknT
n
k y(k−1)n,

y(k−1)n =
(
1 − α(k−1)n

)
y(k−2)n + α(k−1)nTn

k−1y(k−2)n,

y(k−2)n =
(
1 − α(k−2)n

)
y(k−3)n + α(k−2)nTn

k−2y(k−3)n,

...

y2n = (1 − α2n)y1n + α2nT
n
2 y1n,

y1n = (1 − α1n)y0n + α1nT
n
1 y0n,

(1.2)

where y0n = xn for all n.
The aim of this paper is to obtain strong and weak convergence results for the iterative

process (1.2) of a finite family of generalized asymptotically quasinonexpansive mappings in
Banach spaces.

2. Preliminaries

In this section, we give some definitions and lemmas used in the main results.
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Let C be a nonempty subset of a real Banach space X, and let T be a self-mapping of
C. The fixed point set of T is denoted by F(T) = {x ∈ C : Tx = x}.

Then let T is called

(i) nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C;

(ii) quasinonexpansive if F(T)/= ∅ and ‖Tx − p‖ ≤ ‖x − p‖, for all x ∈ C and p ∈ F(T);

(iii) asymptotically nonexpansive if there exists a sequence {rn} in [0,∞)with limn→∞ rn =
0 and ‖Tnx − Tny‖ ≤ (1 + rn)‖x − y‖, for all x, y ∈ C and n = 1, 2, 3, . . .;

(iv) asymptotically quasinonexpansive if F(T)/= ∅ and there exists a sequence {rn} in [0,∞)
with limn→∞rn = 0 and ‖Tnx − p‖ ≤ (1 + rn)‖x − p‖, for all x ∈ C, p ∈ F(T) and
n = 1, 2, 3, . . .;

(v) generalized quasinonexpansive if F(T)/= ∅ and there exists a sequence {sn} in [0,∞)
with sn → 0 as n → ∞ such that ‖Tnx − p‖ ≤ ‖x − p‖ + sn, for all x ∈ C, p ∈ F(T)
and n = 1, 2, 3, . . .;

(vi) generalized asymptotically quasinonexpansive [19] if F(T)/= ∅ and there exist two
sequences {rn} and {sn} in [0,∞) with rn → 0 and sn → 0 as n → ∞ such that
‖Tnx − p‖ ≤ (1 + rn)‖x − p‖ + sn, for all x ∈ C, p ∈ F(T) and n = 1, 2, 3, . . .;

(vii) uniformly L-Lipschitzian if there exists constant L > 0 such that ‖Tnx − Tny‖ ≤
L‖x − y‖, for all x, y ∈ C and n = 1, 2, 3, . . .;

(viii) (L−γ) uniform Lipschitz if there are constants L > 0 and γ > 0 such that ‖Tnx−Tny‖ ≤
L‖x − y‖γ , for all x, y ∈ C and n = 1, 2, 3, . . ..

(ix) semicompact if for a sequence {xn} in C with limn→∞‖xn − Txn‖ = 0, there exists a
subsequence {xni} of {xn} such that xni → p ∈ C.

From the definition of these mappings, it can be seen that

(i) a quasinonexpansive mapping is generalized quasinonexpansive;

(ii) an asymptotically quasinonexpansive mapping is generalized asymptotically quasinonex-
pansive;

(iii) a generalized quasinonexpansive mapping is generalized asymptotically quasinonexpan-
sive;

(iv) a uniformly L-Lipschitzian mapping is (L − 1) uniform Lipschitz.

The map T : C → X is said to be demiclosed at 0 if for each sequence {xn} in C
converging weakly to x ∈ C and T(xn) converging strongly to 0, we get Tx = 0.

A Banach space X is said to have Opial’s property if for each sequence {xn} converging
weakly to x ∈ C and x /=y, we have the condition

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥∥xn − y
∥∥. (2.1)

Condition (A′′). Let C be a subset of a normed space X. A family of self-mappings {Ti : i =
1, 2, . . . , k} of C is said to have Condition (A′′) if there exists a nondecreasing function f :
[0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that ‖x − Tix‖ ≥ f(d(x, F))
for some 1 ≤ i ≤ k and for all x ∈ C where d(x, F) = inf{‖x − p‖ : p ∈ F =

⋂k
i=1 F(Ti)}.
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The condition (A′′) defined above by the authors is the generalization of the condition
(A) [25] when k = 1 and condition (A′) [26] for k = 2.

The following lemmas are needed for proving our main results.

Lemma 2.1 (cf. [17, Lemma 2.2]). Let the sequences {an}, {δn} and {cn} of real numbers satisfy:

an+1 ≤ (1 + δn)an + cn, where an ≥ 0, δn ≥ 0, cn ≥ 0 ∀n = 1, 2, 3, . . . (2.2)

and
∑∞

n=1, δn < ∞,
∑∞

n=1, cn < ∞.

(i) limn→∞an exists;

(ii) if lim infn→∞an = 0, then limn→∞an = 0.

Lemma 2.2 (see [2, Lemma 1.3]). Let X be a uniformly convex Banach space. Assume that 0 < b ≤
tn ≤ c < 1, n = 1, 2, 3, . . . . Let the sequences {xn} and {yn} in X be such that lim supn→∞‖xn‖ ≤ a,
lim supn→∞‖yn‖ ≤ a and limn→∞‖tnxn+(1−tn)yn‖ = a, where a ≥ 0. Then limn→∞‖xn−yn‖ = 0.

3. Convergence in Banach Spaces

The aim of this section is to establish the strong convergence of the iterative scheme (1.2)
to converge to a common fixed point of a finite family of asymptotically quasinonexpansive
mappings in a Banach space under some appropriate conditions.

Lemma 3.1. Let C be a nonempty closed convex subset of a real Banach space X, and {Ti : i =
1, 2, . . . , k} be a finite family of generalized asymtotically quasinonexpansive self-mappings of C, that
is, ‖Tn

i x − pi‖ ≤ (1 + rin)‖x − pi‖ + sin, for all x ∈ C with the sequence {rin}, {sin} ⊂ [0,∞) and
pi ∈ F(Ti), i = 1, 2, . . . , k. Suppose that F =

⋂k
i=1 F(Ti)/= ∅, x1 ∈ C, and the iterative sequence {xn} is

defined by (1.2). Let rn = max1≤i≤k{rin} and sn = max1≤i≤k{sin} Then for p ∈ F, we get the following:

(i) ‖xn − Tn
i xn‖ ≤ (2 + rn)‖xn − p‖ + sn, for all i = 1, 2, . . . , k;

(ii) ‖y(i−1)n − Tn
i y(i−1)n‖ ≤ (2 + rn)‖y(i−1)n − p‖ + sn, for all i = 1, 2, . . . , k;

(iii) ‖ykn − p‖ ≤ (1 + rn)
k‖xn − p‖ + sn

∑k
i=1(1 + rn)

k−i;

(iv) ‖xn+1 − p‖ ≤ (1 + rn)
k‖xn − p‖ + sn

∑k
i=1(1 + rn)

(k−i);

(v) ‖xn+1 − p‖ ≤ (1 + δn)‖xn − p‖ + cn, for all n ∈ N,

where cn = sn
∑k

i=1(1 + rn)
(k−i) and δn =

(
k
1

)
rn +

(
k
2

)
r2n + · · · + (

k
k

)
rkn .

(vi) If
∑∞

n=1 rn < ∞ and
∑∞

n=1 sn < ∞, then limn→∞‖xn − p‖ exists.

Proof. Let p ∈ F.

(i) For i = 1, 2, 3, . . . , k, we have

∥∥xn − Tn
i xn

∥∥ ≤ ∥∥xn − p
∥∥ +

∥∥Tn
i xn − p

∥∥

≤ ∥∥xn − p
∥∥ + (1 + rn)

∥∥xn − p
∥∥ + sin,

≤ (2 + rn)
∥∥xn − p

∥∥ + sn.

(3.1)
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(ii) Similarly to part (i), we have

∥
∥y(i−1)n − Tn

i y(i−1)n
∥
∥ ≤ (2 + rn)

∥
∥y(i−1)n − p

∥
∥ + sn, ∀i = 1, 2, . . . , k. (3.2)

(iii) By part (i) and 0 ≤ αin ≤ 1, we have

∥
∥y1n − p

∥
∥ =

∥
∥(1 − α1n)

(
xn − p

)
+ α1n

(
Tn
1 xn − p

)∥∥

≤ (1 − α1n)
∥
∥xn − p

∥
∥ + α1n

∥
∥Tn

1 xn − p
∥
∥

≤ (1 − α1n)
∥
∥xn − p

∥
∥ + α1n(1 + r1n)

∥
∥xn − p

∥
∥ + α1ns1n

≤ (1 + rn)
∥
∥xn − p

∥
∥ + sn,

∥
∥y2n − p

∥
∥ =

∥
∥(1 − α2n)

(
y1n − p

)
+ α2n

(
Tn
2 y1n − p

)∥∥

≤ (1 − α2n)
∥
∥y1n − p

∥
∥ + α2n

∥
∥Tn

2 y1n − p
∥
∥

≤ (1 − α2n)
∥∥y1n − p

∥∥ + α2n(1 + r2n)
∥∥y1n − p

∥∥ + α2ns2n

≤ (1 + rn)
∥∥y1n − p

∥∥ + sn

≤ (1 + rn)(1 + rn)
∥∥xn − p

∥∥ + sn(1 + rn) + sn

≤ (1 + rn)2
∥∥xn − p

∥∥ + sn((1 + rn) + 1),
∥∥y3n − p

∥∥ =
∥∥(1 − α3n)

(
y2n − p

)
+ α3n

(
Tn
3 y2n − p

)∥∥

≤ (1 − α3n)
∥∥y2n − p

∥∥ + α3n
∥∥Tn

3 y2n − p
∥∥

≤ (1 − α3n)
∥∥y2n − p

∥∥ + α3n(1 + r3n)
∥∥y2n − p

∥∥ + α3ns3n

≤ (1 + rn)
∥∥y2n − p

∥∥ + sn

≤ (1 + rn)3
∥∥xn − p

∥∥ + sn
(
(1 + rn)2 + (1 + rn) + 1

)
,

...

∥∥ykn − p
∥∥ ≤ (1 + rn)k

∥∥xn − p
∥∥ + sn

k∑

i=1

(1 + rn)(k−i).

(3.3)

(iv) By part (ii) and part (iii), we get

∥∥xn+1 − p
∥∥ =

∥∥(1 − αkn)
(
y(k−1)n − p

)
+ αkn

(
Tn
k y(k−1)n − p

)∥∥

≤ (1 − αkn)
∥∥y(k−1)n − p

∥∥ + αkn

∥∥Tn
k y(k−1)n − p

∥∥

≤ (1 − αkn)
∥∥y(k−1)n − p

∥∥ + αkn(1 + rn)
∥∥y(k−1)n − p

∥∥ + αknskn

≤ (1 + rn)
∥∥y(k−1)n − p

∥∥ + sn

≤ (1 + rn)(1 + rn)k−1
∥∥xn − p

∥∥ + (1 + rn)sn
k−1∑

i=1

(1 + rn)(k−1−i) + sn

= (1 + rn)k
∥∥xn − p

∥∥ + sn
k∑

i=1

(1 + rn)(k−i).

(3.4)
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(v) Put δn =
(
k
1

)
rn +

(
k
2

)
r2n + · · ·+ (

k
k

)
rkn and cn = sn

∑k
i=1(1+ rn)

(k−i). Then (v) is directly
obtained by (iv).

(vi) By (v), we have ‖xn+1 − p‖ ≤ (1 + δn)‖xn − p‖ + cn for all n ∈ N, where cn =
sn

∑k
i=1(1 + rn)

(k−i) and δn =
(
k
1

)
rn +

(
k
2

)
r2n + · · · + (

k
k

)
rkn . From Σ∞

n=1rn < ∞ and
Σ∞
n=1sn < ∞, it follows that Σ∞

n=1δn < ∞ and Σ∞
n=1cn < ∞. By Lemma 2.1, we get

limn→∞‖xn − p‖ exists.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Banach space X, and {Ti : i =
1, 2, . . . , k} be a finite family of generalized asymtotically quasinonexpansive self-mappings of C, that
is, ‖Tn

i x − pi‖ ≤ (1 + rin)‖x − pi‖ + sin, for all x ∈ C and pi ∈ F(Ti), i = 1, 2, . . . , k. Suppose
that F =

⋂k
i=1 F(Ti)/= ∅ is closed, x1 ∈ C and the iterative sequence {xn} is defined by (1.2).

Assume that
∑∞

n=1 rn < ∞ and
∑∞

n=1 sn < ∞, where rn = max1≤i≤k{rin} and sn = max1≤i≤k{sin}.
Then {xn} converges strongly to a common fixed point of the family of mappings if and only if
lim infn→∞d(xn, F) = 0, where d(x, F) = infp∈F‖x − p‖.

Proof. The necessity is obvious and then we prove only the sufficiency. Let p ∈ F. Since 1+ t ≤
et for t ≥ 0, we obtain (1 + t)k ≤ ekt, for k = 1, 2, . . . . Thus by Lemma 3.1(iv) and (v), for
positive integers m and n, we have

∥∥xn+m − p
∥∥ ≤ (

1 + r(n+m−1)
)k∥∥x(n+m−1) − p

∥∥ + c(n+m−1)

≤ exp
{
kr(n+m−1)

}∥∥x(n+m−1) − p
∥∥ + c(n+m−1)

≤ · · · ≤ exp

{

k
n+m−1∑

i=n

ri

}
∥∥xn − p

∥∥ +
n+m−1∑

i=n

ci

≤ exp

{

k
∞∑

i=1

ri

}
∥∥xn − p

∥∥ +
∞∑

i=n

ci

= M
∥∥xn − p

∥∥ +
∞∑

i=n

ci,

(3.5)

where M = exp{k∑∞
i=1 ri}.

By Lemma 3.1(v), we have

∥∥xn+1 − p
∥∥ ≤ (1 + δn)

∥∥xn − p
∥∥ + cn, ∀p ∈ F, (3.6)

where δn =
(
k
1

)
rn +

(
k
2

)
r2n + · · · + (

k
k

)
rkn and cn = sn

∑k
i=1(1 + rn)

(k−i).
It follows that

d(xn+1, F) ≤ (1 + δn)d(xn, F). (3.7)

From the given condition lim infn→∞d(xn, F) = 0 and Lemma 2.1, we get

lim
n→∞

d(xn, F) = 0. (3.8)
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Next, we show that {xn} is a Cauchy sequence in C. By (3.8) and
∑∞

n=1 cn < ∞, we get
that for any ε > 0, there exists a positive integer n0 such that, for all n ≥ n0,

d(xn, F) <
ε

3M
,

∞∑

n=n0

cn <
ε

3
. (3.9)

From d(xn, F) < ε/3M, there exists p0 ∈ F such that

∥
∥xn0 − p0

∥
∥ <

ε

3M
. (3.10)

For any positive integer m, by (3.5), (3.9), and (3.10), we have

‖xn0+m − xn0‖ ≤ ∥∥xn0+m − p0
∥∥ +

∥∥xn0 − p0
∥∥

≤ M
∥∥xn0 − p0

∥∥ +
∞∑

i=n0

ci +
∥∥xn0 − p0

∥∥

< M
ε

3M
+
ε

3
+M

ε

3M
= ε.

(3.11)

Thus, {xn} is a Cauchy sequence in X. Since X is complete, xn → q ∈ X. Actually, q ∈ C
because {xn} ⊂ C and C is a closed subset ofX. Next we show that q ∈ F. Since F =

⋂k
i=1 F(Ti)

is closed, by the continuity of d(x, F) with d(xn, F) → 0 and xn → q as n → ∞, we get
d(q, F) = 0 and then q ∈ F. Therefore, the proof is complete.

Since any asymptotically quasinonexpansive mapping is generalized asymptotically
quasinonexpansive, the next corollary is obtained immediately from Theorem 3.2.

Corollary 3.3 (see [5, Theorem 3.2]). Let C be a nonempty closed convex subset of a real Banach
spaceX, and {Ti : i = 1, 2, . . . , k} be a finite family of asymptotically quasinonexpansive self-mappings
of C, that is, ‖Tn

i x − pi‖ ≤ (1 + rin)‖x − pi‖, for all x ∈ C and pi ∈ F(Ti), i = 1, 2, . . . , k. x1 ∈ C and
the iterative sequence {xn} be defined by (1.2). Then {xn} converges strongly to a common fixed point
of the family of mappings if and only if lim infn→∞d(xn, F) = 0, where d(x, F) = infp∈F‖x − p‖.

4. Convergence in Uniformly Convex Banach Spaces

In this section, strong and weak convergence results for the iterative process (1.2) on uni-
formly convex Banach spaces are proved without using the condition lim infn→∞d(xn, F) = 0
appearing in Section 3.

Theorem 4.1. Let C be a nonempty closed convex subset of an uniformly convex real Banach space
X. Let {Ti : i = 1, 2, . . . , k} be a finite family of uniformly (L − γi) Lipschitzian and generalized
asymptotically quasinonexpansive self-mappings of C, that is, ‖Tn

i x−Tn
i y‖ ≤ L‖x − y‖γi and ‖Tn

i x−
pi‖ ≤ (1 + rin)‖x − pi‖ + sin, for all x, y ∈ C and pi ∈ F(Ti), i = 1, 2, . . . , k. Suppose that {Ti : i =
1, 2, . . . , k} satisfies condition (A′′) and F =

⋂k
i=1 F(Ti)/= ∅. Let x1 ∈ C and the iterative sequence

{xn} be defined by (1.2) with {αin}ni=1 ⊂ [a, b], where 0 < a < b < 1. Assume that
∑∞

n=1 rn < ∞,
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∑∞
n=1 sn < ∞ where rn = max1≤i≤k{rin} and sn = max1≤i≤k{sin}. Then {xn} converges strongly to a

common fixed point of the family of mappings.

Proof. Let p ∈ F. By Lemma 3.1(vi), we get that limn→∞‖xn − p‖ exists. Then there is a real
number c ≥ 0 such that

lim
n→∞

∥
∥xn − p

∥
∥ = c. (4.1)

By Lemma 3.1(iii), we have

∥
∥ykn − p

∥
∥ ≤ (1 + rn)k

∥
∥xn − p

∥
∥ + sn

k∑

i=1

(1 + rn)(k−i), ∀p ∈ F. (4.2)

By taking lim sup on both sides of the above inequality, we get

lim sup
n→∞

∥∥yin − p
∥∥ ≤ c, for i = 1, 2, . . . , k − 1. (4.3)

Since ‖Tn
i y(i−1)n − p‖ ≤ (1 + rn)‖y(i−1)n − p‖ + sn and (4.3), we obtain

lim sup
n→∞

∥∥Tn
i y(i−1)n − p

∥∥ ≤ c, for i = 1, 2, . . . , k. (4.4)

Since limn→∞‖xn+1 − p‖ = c, we have

lim
n→∞

∥∥(1 − αkn)
(
y(k−1)n − p

)
+ αkn

(
Tn
k y(k−1)n − p

)∥∥ = c. (4.5)

Using (4.1), (4.4), and Lemma 2.2, we conclude that

lim
n→∞

∥∥y(k−1)n − Tn
k y(k−1)n

∥∥ = 0. (4.6)

We assume that

lim
n→∞

∥∥∥y(j−1)n − Tn
j y(j−1)n

∥∥∥ = 0, for some 2 ≤ j ≤ k. (4.7)

It follows from (4.5) and (4.7) that

c ≤ lim inf
n→∞

∥∥y(j−1)n − p
∥∥, for 2 ≤ j ≤ k. (4.8)

By Lemma 3.1(iv), (1.2), and (4.8), we get

lim
n→∞

∥∥∥
(
1 − α(j−1)n

)(
y(j−2)n − p

)
+ α(j−1)n

(
Tn
j−1y(j−2)n − p

)∥∥∥ = lim
n→∞

∥∥y(j−1)n − p
∥∥ = c. (4.9)
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Using (4.3), (4.4) and Lemma 2.2, we conclude that

lim
n→∞

∥
∥
∥y(j−2)n − Tn

j−1y(j−2)n
∥
∥
∥ = 0. (4.10)

Therefore, by mathematical induction, we obtain

lim
n→∞

∥
∥y(i−1)n − Tn

i y(i−1)n
∥
∥ = 0, for i = 1, 2, . . . , k. (4.11)

From (1.2), we have

∥
∥yin − y(i−1)n

∥
∥ = αin

∥
∥Tn

i y(i−1)n − y(j−1)n
∥
∥, for i = 1, 2, . . . , k − 1. (4.12)

By (4.11), we obtain that

∥∥yin − y(i−1)n
∥∥ −→ 0 as n −→ ∞, for i = 1, 2, . . . , k − 1. (4.13)

From

∥∥xn − yin

∥∥ ≤ ∥∥xn − y1n
∥∥ +

∥∥y1n − y2n
∥∥ + · · · + ∥∥y(i−1)n − yin

∥∥, (4.14)

for i = 1, 2, . . . , k − 1, it follows by (4.13) that

∥∥xn − yin

∥∥ −→ 0 as n −→ ∞, for i = 1, 2, . . . , k − 1. (4.15)

From (4.11), when i = 1, we get limn→∞‖xn − Tn
1 xn‖ = 0. For 2 ≤ i ≤ k, we have

∥∥xn − Tn
i xn

∥∥ ≤ ∥∥xn − y(i−1)n
∥∥ +

∥∥y(i−1)n − Tn
i y(i−1)n

∥∥ +
∥∥Tn

i y(i−1)n − Tn
i xn

∥∥

≤ ∥∥xn − y(i−1)n
∥∥ +

∥∥y(i−1)n − Tn
i y(i−1)n

∥∥ + L
∥∥y(i−1)n − xn

∥∥γi .
(4.16)

From (4.11) and (4.15), we conclude that

lim
n→∞

γin = 0, for i = 1, 2, . . . , k, (4.17)

where γin = ‖xn − Tn
i xn‖. From (1.2), we have

‖xn+1 − xn‖ ≤ (1 − αkn)
∥∥y(k−1)n − xn

∥∥ + αkn

∥∥Tn
k y(k−1)n − xn

∥∥

≤ (1 − αkn)
∥∥y(k−1)n − xn

∥∥ + αkn

(∥∥Tn
k y(k−1)n − y(k−1)n

∥∥ +
∥∥y(k−1)n − xn

∥∥)

=
∥∥y(k−1)n − xn

∥∥ + αkn

∥∥Tn
k y(k−1)n − y(k−1)n

∥∥.

(4.18)
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From (4.11) and (4.15),

lim
n→∞

‖xn+1 − xn‖ = 0. (4.19)

For i = 1, 2, . . . , k, we have

‖xn+1 − Tixn+1‖ ≤
∥
∥
∥xn+1 − Tn+1

i xn+1

∥
∥
∥ +

∥
∥
∥Tixn+1 − Tn+1

i xn+1

∥
∥
∥

≤ γi(n+1) + L
∥
∥xn+1 − Tn

i xn+1
∥
∥γi

≤ γi(n+1) + L
(‖xn+1 − xn‖ +

∥
∥xn − Tn

i xn

∥
∥ +

∥
∥Tn

i xn − Tn
i xn+1

∥
∥)γi

≤ γi(n+1) + L
(‖xn+1 − xn‖ + γin + L‖xn − xn+1‖γi

)γi .

(4.20)

Using (4.17) and (4.19), we obtain

lim
n→∞

‖xn+1 − Tixn+1‖ = 0, for i = 1, 2, . . . , k. (4.21)

Therefore, by using condition (A′′), there exists a nondecreasing function f : [0,∞) → [0,∞)
with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

lim
n→∞

f(d(xn, F)) ≤ lim
n→∞

∥∥xn − Tjxn

∥∥ = 0, (4.22)

for some 1 ≤ j ≤ k, that is

lim
n→∞

d(xn, F) = 0. (4.23)

By Theorem 3.2, we conclude that {xn} converges strongly to a point p ∈ F.

Lemma 4.2. Let C be a nonempty closed convex subset of an uniformly convex real Banach space
X, and {Ti : i = 1, 2, . . . , k} be a family of (L − γi) uniform Lipschitz and generalized asymtotically
quasinonexpansive self-mappings of C, that is, ‖Tn

i x − Tn
i y‖ ≤ L‖x − y‖γi and ‖Tn

i x − pi‖ ≤ (1 +
rin)‖x−pi‖+ sin, for all x, y ∈ C and pi ∈ F(Ti), i = 1, 2, . . . , k. Suppose that F =

⋂k
i=1 F(Ti)/= ∅. Let

x1 ∈ C and the iterative sequence {xn} be defined by (1.2)with {αin}ni=1 ⊂ [a, b], where 0 < a < b < 1.
Assume that

∑∞
n=1 rn < ∞,

∑∞
n=1 sn < ∞ where rn = max1≤i≤k{rin} and sn = max1≤i≤k{sin}. Then,

(i) limn→∞‖xn − Tn
i y(i−1)n‖ = 0, for all i = 1, 2, , . . . , k;

(ii) limn→∞‖xn − Tixn‖ = 0, for all i = 1, 2, , . . . , k.

Proof. (i) Let p ∈ F. By Lemma 3.1(vi), we obtain that limn→∞‖xn − p‖ exists and we then
suppose that

lim
n→∞

∥∥xn − p
∥∥ = c. (4.24)



Abstract and Applied Analysis 11

By (4.24) and Lemma 3.1(iii), we have

lim sup
n→∞

∥
∥yin − p

∥
∥ ≤ c, for i = 1, 2, . . . , k − 1. (4.25)

By (1.2), we have

∥
∥xn+1 − p

∥
∥ ≤ (1 − αkn)

∥
∥y(k−1)n − p

∥
∥ + αkn

∥
∥Tn

k y(k−1)n − p
∥
∥

≤ (1 − αkn)
∥
∥y(k−1)n − p

∥
∥ + αkn(1 + rn)

∥
∥y(k−1)n − p

∥
∥ + αknskn

≤ (1 + rn)
∥
∥y(k−1)n − p

∥
∥ + sn

= (1 + rn)
∥
∥(1 − α(k−1)n

)(
y(k−2)n − p

)
+ α(k−1)n

(
Tn
k−1y(k−2)n − p

)∥∥ + sn

≤ (1 + rn)
[(
1 − α(k−1)n

)∥∥y(k−2)n − p
∥∥ + α(k−1)n

∥∥Tn
k−1y(k−2)n − p

∥∥] + sn

≤ (1 + rn)
[(
1 − α(k−1)n

)∥∥y(k−2)n − p
∥∥ + α(k−1)n(1 + rn)

∥∥y(k−2)n − p
∥∥ + α(k−1)nsn

]
+ sn

≤ (1 + rn)2
∥∥y(k−2)n − p

∥∥ + sn(1 + rn) + sn

...

≤ (1 + rn)k−i
∥∥yin − p

∥∥ + sn
k−1∑

i=1

(1 + rn)k−i,

(4.26)

for i = 1, 2, . . . , k − 1. It follows that

c ≤ lim inf
n→∞

∥∥yin − p
∥∥, for i = 1, 2, . . . , k − 1. (4.27)

From (4.25) and (4.27), we obtain

lim
n→∞

∥∥yin − p
∥∥ = c, for i = 1, 2, . . . , k − 1, (4.28)

and then

lim
n→∞

∥∥(1 − αin)
(
y(i−1)n − p

)
+ αin

(
Tn
i y(i−1)n − p

)∥∥ = c, (4.29)

for i = 1, 2, . . . , k − 1.
Since ‖Tn

i y(i−1)n − p‖ ≤ (1 + rn)‖y(i−1)n − p‖ + sn, for i = 1, 2, . . . , k − 1, we have

lim sup
n→∞

∥∥Tn
i y(i−1)n − p

∥∥ ≤ c, for i = 1, 2, . . . , k − 1. (4.30)
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From (4.25), (4.29), (4.30) and Lemma 2.2, we obtain

lim
n→∞

∥
∥Tn

i y(i−1)n − y(i−1)n
∥
∥ = 0, for i = 1, 2, . . . , k − 1. (4.31)

Now we want to show that (4.31) is also true for i = k.
Since ‖Tn

k
y(k−1)n − p‖ ≤ (1 + rn)‖y(k−1)n − p‖ + sn, limn→∞rn = 0 and limn→∞sn = 0, it

follows by (4.28),

lim sup
n→∞

∥
∥Tn

k y(k−1)n − p
∥
∥ ≤ c. (4.32)

We also have

lim
n→∞

∥∥(1 − αkn)
(
y(k−1)n − p

)
+ αkn

(
Tn
k y(k−1)n − p

)∥∥ = lim
n→∞

∥∥xn+1 − p
∥∥ = c. (4.33)

Hence, by (4.25), (4.32), and Lemma 2.2, we obtain

lim
n→∞

∥∥y(k−1)n − Tn
k y(k−1)n

∥∥ = 0. (4.34)

Then, (4.31) and (4.34) give us

lim
n→∞

∥∥Tn
i y(i−1)n − y(i−1)n

∥∥ = 0, for i = 1, 2, . . . , k. (4.35)

From

∥∥xn − Tn
i y(i−1)n

∥∥ ≤ ∥∥xn − y(i−1)n
∥∥ +

∥∥y(i−1)n − Tn
i y(i−1)n

∥∥, (4.36)

it implies by (4.15) and (4.35) that

lim
n→∞

∥∥xn − Tn
i y(i−1)n

∥∥ = 0, (4.37)

for i = 1, 2, 3, . . . , k.
(ii) From part (i), for i = 1, we have

lim
n→∞

∥∥Tn
1 xn − xn

∥∥ = 0. (4.38)

For i = 2, 3, 4, . . . , k, we get

∥∥Tn
i xn − xn

∥∥ ≤ ∥∥Tn
i xn − Tn

i y(i−1)n
∥∥ +

∥∥Tn
i y(i−1)n − xn

∥∥

≤ L
∥∥xn − y(i−1)n

∥∥γi +
∥∥Tn

i y(i−1)n − xn

∥∥.
(4.39)
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By part (i) and (4.15),

lim
n→∞

∥
∥Tn

i xn − xn

∥
∥ = 0, for i = 1, 2, . . . , k. (4.40)

For 1 ≤ i ≤ k, we obtain

‖xn − Tixn‖ ≤ ‖xn − xn+1‖ +
∥
∥
∥xn+1 − Tn+1

i xn+1

∥
∥
∥

+
∥
∥
∥Tn+1

i xn+1 − Tn+1
i xn

∥
∥
∥ +

∥
∥
∥Tn+1

i xn − Tixn

∥
∥
∥

≤ ‖xn − xn+1‖ +
∥
∥
∥xn+1 − Tn+1

i xn+1

∥
∥
∥

+ L‖xn+1 − xn‖γi + L
∥
∥Tn

i xn − xn

∥
∥γi .

(4.41)

From (4.19) and (4.40), we then have

lim
n→∞

‖xn − Tixn‖ = 0, for i = 1, 2, . . . , k. (4.42)

Theorem 4.3. Under the hypotheses of Lemma 4.2, assume that Tm
j is semicompact for some positive

integers m and 1 ≤ j ≤ k. Then {xn} converges strongly to a common fixed point of the family
{Ti : i = 1, 2, . . . , k}.

Proof. Suppose that Tm
j is semicompact for some positive integers m ≥ 1 and 1 ≤ j ≤ k. We

have

∥∥∥Tm
j xn − xn

∥∥∥ ≤
∥∥∥Tm

j xn − Tm−1
j xn

∥∥∥ +
∥∥∥Tm−1

j xn − Tm−2
j xn

∥∥∥

+ · · · +
∥∥∥T2

j xn − Tjxn

∥∥∥ +
∥∥Tjxn − xn

∥∥

≤ (m − 1)L
∥∥Tjxn − xn

∥∥γj +
∥∥Tjxn − xn

∥∥.

(4.43)

Then, by Lemma 4.2(ii), we get ‖Tm
j xn − xn‖ → 0 as n → ∞. Since {xn} is bounded and Tm

j

is semicompact, there exists a subsequence {xnl} of {xn} such that xnl → q ∈ C as l → ∞.
By continuity of Ti and Lemma 4.2(ii), we obtain

∥∥q − Tjq
∥∥ = lim

l→∞

∥∥xnl − Tj xnl

∥∥ = 0, ∀j = 1, 2, . . . , k. (4.44)

Therefore, q ∈ F and then Theorem 3.2 implies that {xn} converges strongly to a common
fixed point q of the family {Ti : i = 1, 2, . . . , k}.

We note that in practical Theorem 4.3 is very useful in the case that one of Ti, i =
1, 2, 3, . . . , k, is semicompact.

Theorem 4.4. Let C be a nonempty closed convex subset of an uniformly convex real Banach spaceX
satisfying the Opial property, and {Ti : i = 1, 2, . . . , k} be a family of (L − γi) uniform Lipschitz and
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generalized asymtotically quasinonexpansive self-mappings of C, that is, ‖Tn
i x − Tn

i y‖ ≤ L‖x − y‖γi
and ‖Tn

i x−pi‖ ≤ (1+rin)‖x−pi‖+sin, for all x, y ∈ C and pi ∈ F(Ti), i = 1, 2, . . . , k. Suppose that F =
⋂k

i=1 F(Ti)/= ∅. Let x1 ∈ C and the iterative sequence {xn} be defined by (1.2) with {αin}ni=1 ⊂ [a, b],
where 0 < a < b < 1. Assume that

∑∞
n=1 rn < ∞, where rn = max1≤i≤k{rin}. If I − Ti, i = 1, 2, . . . , k,

is demiclosed at 0, then {xn} converges weakly to a common fixed point of the family of mappings.

Proof. Let p ∈ F. By Lemma 3.1(v), we get limn→∞‖xn − p‖ exists. Then we follow the proof
of Theorem 3.2 by Khan et al. [1] until we can conclude that {xn} converges weakly to a
common fixed point p ∈ F.
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