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The purpose of this paper is to introduce a new hybrid projection method for finding a common
element of the set of common fixed points of two relatively quasi-nonexpansive mappings, the
set of the variational inequality for an α-inverse-strongly monotone, and the set of solutions of
the generalized equilibrium problem in the framework of a real Banach space. We obtain a strong
convergence theorem for the sequences generated by this process in a 2-uniformly convex and
uniformly smooth Banach space. Base on this result, we also get some new and interesting results.
The results in this paper generalize, extend, and unify some well-known strong convergence
results in the literature.

1. Introduction

Let E be a real Banach space, E∗ the dual space of E. A Banach space E is said to be
strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E, with ‖x‖ = ‖y‖ = 1 and x /=y. Let
U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then a Banach space E is said to be smooth if
the limit

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(1.1)

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ U. Let E be a Banach space. The modulus of convexity of E is the function



2 Abstract and Applied Analysis

δ : [0, 2] → [0, 1] defined by

δ(ε) = inf
{

1 −
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥
: x, y ∈ E, ‖x‖ =

∥
∥y

∥
∥ = 1,

∥
∥x − y

∥
∥ ≥ ε

}

. (1.2)

A Banach space E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be a
fixed real number with p ≥ 2. A Banach space E is said to be p-uniformly convex if there exists
a constant c > 0 such that δ(ε) ≥ cεp for all ε ∈ [0, 2]; see [1, 2] for more details. Observe
that every p-uniform convex is uniformly convex. One should note that no Banach space is
p-uniform convex for 1 < p < 2. It is well known that a Hilbert space is 2-uniformly convex,
uniformly smooth. For each p > 1, the generalized duality mapping Jp : E → 2E

∗
is defined by

Jp(x) =
{

x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1
}

(1.3)

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping. If E is a Hilbert
space, then J = I, where I is the identity mapping. It is also known that if E is uniformly
smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.

Let E be a real Banach space with norm ‖ · ‖ and E∗ denotes the dual space of E.
Consider the functional defined by

φ
(

x, y
)

= ‖x‖2 − 2
〈

x, Jy
〉

+
∥
∥y

∥
∥
2 ∀x, y ∈ E. (1.4)

Observe that, in a Hilbert space H, (1.4) reduces to φ(x, y) = ‖x − y‖2, x, y ∈ H. The
generalized projection ΠC : E → C is a map that assigns to an arbitrary point x ∈ E, the
minimum point of the functional φ(x, y), that is, ΠCx = x, where x is the solution to the
minimization problem

φ(x, x) = inf
y∈C

φ
(

y, x
)

; (1.5)

existence and uniqueness of the mapping ΠC follow from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J (see, e.g., [3–7]). In Hilbert spaces,ΠC = PC.
It is obvious from the definition of function φ that

(∥
∥y

∥
∥ − ‖x‖)2 ≤ φ

(

y, x
) ≤ (∥

∥y
∥
∥ + ‖x‖)2, ∀x, y ∈ E. (1.6)

Remark 1.1. If E is a reflexive, strictly convex, and smooth Banach space, then for x, y ∈ E,
φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From
(2.13), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J,
one has Jx = Jy. Therefore, we have x = y; see [5, 7] for more details.

Next, we give some examples which are closed relatively quasi-nonexpansive (see
[8]).

Example 1.2. LetΠC be the generalized projection from a smooth, strictly convex and reflexive
Banach space E onto a nonempty closed and convex subset C of E. Then, ΠC is a closed
relatively quasi-nonexpansive mapping from E onto C with F(ΠC) = C.
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Let E be a real Banach space and let C be a nonempty closed and convex subset of E,
and A : C → E∗ be a mapping. The classical variational inequality problem for a mapping A is
to find x∗ ∈ C such that

〈

Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1.7)

The set of solutions of (1.4) is denoted by VI(A,C). Recall that A is called

(i) monotone if

〈

Ax −Ay, x − y
〉 ≥ 0, ∀x, y ∈ C, (1.8)

(ii) an α-inverse-strongly monotone if there exists a constant α > 0 such that

〈

Ax −Ay, x − y
〉 ≥ α

∥
∥x − y

∥
∥
2
, ∀x, y ∈ C. (1.9)

Such a problem is connected with the convex minimization problem, the complementary
problem, and the problem of finding a point x∗ ∈ E satisfying Ax∗ = 0.

Let f be a bifunction from C × C to R, where R denotes the set of real numbers. The
equilibrium problem (for short, EP) is to find x∗ ∈ C such that

f
(

x∗, y
) ≥ 0, ∀y ∈ C. (1.10)

The set of solutions of (1.10) is denoted by EP(f). Given a mapping T : C → E∗, let
f(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then x∗ ∈ EP(f) if and only if 〈Tx∗, y − x∗〉 ≥ 0 for all
y ∈ C; that is, x∗ is a solution of the variational inequality. Numerous problems in physics,
optimization, and economics reduce to find a solution of (1.10). Some methods have been
proposed to solve the equilibrium problem; see, for instance, [9–11].

Let C be a closed convex subset of E; a mapping T : C → C is said to be nonexpansive
if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.11)

A point x ∈ C is a fixed point of T provided that Tx = x. Denote by F(T) the set of
fixed points of T ; that is, F(T) = {x ∈ C : Tx = x}. Recall that a point p in C is said to be an
asymptotic fixed point of T [12] ifC contains a sequence {xn}which converges weakly to p such
that limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed points of T will be denoted by F̂(T).
A mapping T from C into itself is said to be relatively nonexpansive [13–15] if F̂(T) = F(T)
and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T). The asymptotic behavior of a relatively
nonexpansive mapping was studied in [16–18]. T is said to be φ-nonexpansive, if φ(Tx, Ty) ≤
φ(x, y) for x, y ∈ C. T is said to be relatively quasi-nonexpansive if F(T)/= ∅ and φ(p, Tx) ≤
φ(p, x) for x ∈ C and p ∈ F(T). A mapping T in a Banach space E is closed if xn → x and
Txn → y, then Tx = y.
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Remark 1.3. The class of relatively quasi-nonexpansive mappings is more general than the
class of relatively nonexpansive mappings [16–19] which requires the strong restriction
F(T) = F̂(T).

In Hilbert spaces H, Iiduka et al. [20] proved that the sequence {xn} defined by: x1 =
x ∈ C and

xn+1 = PC(xn − λnAxn), (1.12)

where PC is themetric projection ofH ontoC, and {λn} is a sequence of positive real numbers,
and converges weakly to some element of VI(A,C).

It is well know that if C is a nonempty closed and convex subset of a Hilbert space H
and PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact
actually characterizes Hilbert spaces and consequently, it is not available in more general
Banach spaces. In this connection, Alber [4] recently introduced a generalized projection
mapping ΠC in a Banach space E which is an analogue of the metric projection in Hilbert
spaces.

In 2008, Iiduka and Takahashi [21] introduced the following iterative scheme for
finding a solution of the variational inequality problem for inverse-strongly monotoneA in a
2-uniformly convex and uniformly smooth Banach space E: x1 = x ∈ C and

xn+1 = ΠCJ
−1(Jxn − λnAxn) (1.13)

for every n = 1, 2, 3, . . . ,whereΠC is the generalized metric projection from E onto C, J is the
dualitymapping from E into E∗, and {λn} is a sequence of positive real numbers. They proved
that the sequence {xn} generated by (1.13) converges weakly to some element of VI(A,C).

Matsushita and Takahashi [22] introduced the following iteration: a sequence {xn}
defined by

xn+1 = ΠCJ
−1(αnJxn + (1 − αn)JTxn), (1.14)

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in [0, 1], T is a
relatively nonexpansive mapping, and ΠC denotes the generalized projection from E onto a
closed convex subset C of E. They proved that the sequence {xn} converges weakly to a fixed
point of T .
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In 2005, Matsushita and Takahashi [19] proposed the following hybrid iteration
method (it is also called the CQ method) with generalized projection for relatively
nonexpansive mapping T in a Banach space E:

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{

z ∈ C : φ
(

z, yn

) ≤ φ(z, xn)
}

,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 =
∏

Cn∩Qn

x0.

(1.15)

They proved that {xn} converges strongly to ΠF(T)x0, where ΠF(T) is the generalized
projection from C onto F(T).

Recently, Takahashi and Zembayashi [23] proposed the following modification of
iteration (1.15) for a relatively nonexpansive mapping:

x0 = x ∈ C,

yn = J−1(αnJxn + (1 − αn)JSxn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Hn =
{

z ∈ C : φ(z, un) ≤ φ(z, xn)
}

,

Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},

xn+1 =
∏

Hn∩Wn

x,

(1.16)

where J is the duality mapping on E. Then, {xn} converges strongly to ΠF(S)∩EP(f)x, where
ΠF(S)∩EP(f) is the generalized projection of E onto F(S) ∩ EP(f). Also, Takahashi and
Zembayashi [24] proved the following iteration for a relatively nonexpansive mapping:

yn = J−1(αnJxn + (1 − αn)JSxn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 =
∏

Cn+1

x,

(1.17)
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where J is the duality mapping on E. Then, {xn} converges strongly to ΠF(S)∩EP(f)x, where
ΠF(S)∩EP(f) is the generalized projection of E onto F(S) ∩ EP(f). Qin and Su [25] proved the
following iteration for relatively nonexpansive mappings T in a Banach space E:

x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTzn),

zn = J−1
(

βnJxn +
(

1 − βn
)

JTxn

)

,

Cn =
{

v ∈ C : φ
(

v, yn

) ≤ αnφ(v, xn) + (1 − αn)φ(v, zn)
}

,

Qn = {v ∈ C : 〈Jx0 − Jxn, xn − v〉 ≥ 0},

xn+1 =
∏

Cn∩Qn

x0,

(1.18)

the sequence {xn} generated by (1.18) converges strongly to ΠF(T)x0.
In 2009, Wei et al. [26] proved the following iteration for two relatively nonexpansive

mappings in a Banach space E:

x0 ∈ C,

Jzn = αnJxn + (1 − αn)JTxn,

Jun =
(

βnJxn +
(

1 − βn
)

JSzn
)

,

Hn =
{

v ∈ C : φ(v, un) ≤ βnφ(v, xn) +
(

1 − βn
)

φ(v, zn) ≤ φ(v, xn)
}

,

Wn = {z ∈ C : 〈z − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = QHn∩Wnx0;

(1.19)

if {αn} and {βn} are sequences in [0, 1) such that αn ≤ 1 − δ1 and βn ≤ 1 − δ2 for some
δ1, δ2 ∈ (0, 1), then {xn} generated by (1.19) converges strongly to a pointQF(T)∩F(S)x0,where
the mapping QC of E onto C is the generalized projection. Very recently, Cholamjiak [27]
proved the following iteration:

zn = ΠCJ
−1(Jxn − λnAxn),

yn = J−1
(

αnJxn + βnJTxn + γnJSzn
)

,

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 =
∏

Cn+1

x0,

(1.20)

where J is the duality mapping on E. Assume that αn, βn, and γn are sequences in [0, 1]. Then
{xn} converges strongly to q = ΠFx0, where F := F(T) ∩ F(S) ∩ EP(f) ∩ VI(A,C).
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Motivated and inspired by Iiduka and Takahashi [21], Takahashi and Zembayashi [23,
24], Wei et al. [26], Cholamjiak [27], and Kumam and Wattanawitoon [28], we introduce
a new hybrid projection iterative scheme which is difference from the algorithm (1.20) of
Cholamjiak in [27, Theorem 3.1] for two relatively quasi-nonexpansive mappings in a Banach
space. For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, define a sequence {xn} as
follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(

βnJxn +
(

1 − βn
)

JTwn

)

,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)
}

,

xn+1 =
∏

Cn+1

x0, ∀n ≥ 1,

(1.21)

where J is the duality mapping on E. Then, we prove that under certain appropriate
conditions on the parameters, the sequences {xn} and {un} generated by (1.21) converge
strongly to ΠF(S)∩F(T)∩EP(f)∩VI(A,C).

The results presented in this paper improve and extend the corresponding results
announced by Iiduka and Takahashi [21], Wei et al. [26], Kumam and Wattanawitoon [28],
and many other authors in the literature.

2. Preliminaries

We also need the following lemmas for the proof of our main results.

Lemma 2.1 (Beauzamy [29] and Xu [30]). If E is a 2-uniformly convex Banach space, then, for all
x, y ∈ E we have

∥
∥x − y

∥
∥ ≤ 2

c2
∥
∥Jx − Jy

∥
∥, (2.1)

where J is the normalized duality mapping of E and 0 < c ≤ 1.

The best constant 1/c in the Lemma is called the p-uniformly convex constant of E.

Lemma 2.2 (Beauzamy [29] and Zǎlinescu [31]). If E is a p-uniformly convex Banach space and
p is a given real number with p ≥ 2, then for all x, y ∈ E, Jx ∈ Jp(x), and Jy ∈ Jp(y),

〈

x − y, Jx − Jy
〉 ≥ cp

2p−2p

∥
∥x − y

∥
∥
p
, (2.2)

where Jp is the generalized duality mapping of E and 1/c is the p-uniformly convexity constant of E.
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Lemma 2.3 (Kamimura and Takahashi [6]). Let E be a uniformly convex and smooth Banach space
and let {xn} and {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded,
then ‖xn − yn‖ → 0.

Lemma 2.4 (Alber [4]). Let C be a nonempty closed and convex subset of a smooth Banach space E
and x ∈ E. Then, x0 = ΠCx if and only if

〈

x0 − y, Jx − Jx0
〉 ≥ 0, ∀y ∈ C. (2.3)

Lemma 2.5 (Alber [4]). Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty closed and convex subset of E, and let x ∈ E. Then

φ
(

y,ΠCx
)

+ φ(ΠCx, x) ≤ φ
(

y, x
)

, ∀y ∈ C. (2.4)

Lemma 2.6 (Qin et al. [8]). Let E be a uniformly convex and smooth Banach space, let C be a closed
and convex subset of E, and let T be a closed relatively quasi-nonexpansive mapping from C into itself.
Then F(T) is a closed and convex subset of C.

For solving the equilibrium problem for a bifunction f : C×C → R, let us assume that
f satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

f
(

tz + (1 − t)x, y
) ≤ f

(

x, y
)

; (2.5)

(A4) for each x ∈ C, y �→ f(x, y) is convex and lower semi-continuous.

Lemma 2.7 (Blum and Oettli [9]). Let C be a closed and convex subset of a smooth, strictly convex
and reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let
r > 0 and x ∈ E. Then, there exists z ∈ C such that

f
(

z, y
)

+
1
r

〈

y − z, Jz − Jx
〉 ≥ 0, ∀y ∈ C. (2.6)

Lemma 2.8 (Combettes and Hirstoaga [10]). Let C be a closed and convex subset of a uniformly
smooth, strictly convex and reflexive Banach space E and let f be a bifunction from C × C to R

satisfying (A1)–(A4). For r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Trx =
{

z ∈ C : f
(

z, y
)

+
1
r

〈

y − z, Jz − Jx
〉 ≥ 0, ∀y ∈ C

}

, (2.7)
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for all x ∈ C. Then the following holds:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, for all x, y ∈ E,

〈

Trx − Try, JTrx − JTry
〉 ≤ 〈

Trx − Try, Jx − Jy
〉

; (2.8)

(3) F(Tr) = EP(f);

(4) EP(f) is closed and convex.

Lemma 2.9 (Takahashi and Zembayashi [24]). Let C be a closed and convex subset of a smooth,
strictly convex, and reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A1)–
(A4), and let r > 0. Then, for x ∈ E and q ∈ F(Tr),

φ
(

q, Trx
)

+ φ(Trx, x) ≤ φ
(

q, x
)

. (2.9)

Let E be a reflexive, strictly convex, and smooth Banach space and J the duality
mapping from E into E∗. Then J−1 is also single value, one-to-one, surjective, and it is the
duality mapping from E∗ into E. We make use of the following mapping V studied in Alber
[4]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2 (2.10)

for all x ∈ E and x∗ ∈ E∗, that is, V (x, x∗) = φ(x, J−1(x∗)).

Lemma 2.10 (Alber [4]). Let E be a reflexive, strictly convex, and smooth Banach space and let V
be as in (2.10) . Then

V (x, x∗) + 2
〈

J−1(x∗) − x, y∗
〉

≤ V
(

x, x∗ + y∗) (2.11)

for all x ∈ E and x∗, y∗ ∈ E∗.

Let A be an inverse-strongly monotone of C into E∗ which is said to be hemicontinuous
if for all x, y ∈ C, the mapping F of [0, 1] into E∗, defined by F(t) = A(tx + (1 − t)y), is
continuous with respect to the weak∗ topology of E∗. We define by NC(v)the normal cone for
C at a point v ∈ C; that is,

NC(v) =
{

x∗ ∈ E∗ :
〈

v − y, x∗〉 ≥ 0, ∀y ∈ C
}

. (2.12)

Theorem 2.11 (Rockafellar [32]). Let C be a nonempty, closed and convex subset of a Banach space
E, and A a monotone, hemicontinuous mapping of C into E∗. Let T ⊂ E × E∗ be a mapping defined as
follows:

Tv =

⎧

⎨

⎩

Av +NC(v), v ∈ C;

∅, otherwise.
(2.13)

Then T is maximal monotone and T−10 = VI(A,C).
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3. Main Results

In this section, we establish a new hybrid iterative scheme for finding a common element of
the set of solutions of an equilibrium problems, the common fixed point set of two relatively
quasi-nonexpansive mappings, and the solution set of variational inequalities for α-inverse
strongly monotone in a 2-uniformly convex and uniformly smooth Banach space.

Theorem 3.1. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let A be
an α-inverse-strongly monotone mapping of C into E∗ satisfying ‖Ay‖ ≤ ‖Ay −Au‖, for all y ∈ C
and u ∈ VI(A,C)/= ∅. Let T, S : C → C be closed relatively quasi-nonexpansive mappings such that
Ω := F(T) ∩ F(S) ∩ EP(f) ∩VI(A,C)/= ∅. For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C,
we define the sequence {xn} as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(

βnJxn +
(

1 − βn
)

JTwn

)

,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)
}

,

xn+1 =
∏

Cn+1

x0, ∀n ≥ 1,

(3.1)

where J is the duality mapping on E, {αn} and {βn} are sequences in [0, 1] such that αn ≤ 1 − δ1
and βn ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1), {rn} ⊆ (0, 2α) and {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. Then {xn} converges
strongly to p ∈ Ω, where p = ΠΩx0.

Proof. We have several steps to prove this theorem as follows:

Step 1. We show that Cn+1 is closed and convex.
Clearly C1 = C is closed and convex. Suppose that Cn is closed and convex for each

n ∈ N. Since for any z ∈ Cn, we know that

φ(z, un) ≤ φ(z, xn) (3.2)

is equivalent to

2〈z, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2. (3.3)

So, Cn+1 is closed and convex. Then, by induction, Cn is closed and convex for all n ≥ 1.



Abstract and Applied Analysis 11

Step 2. We show that {xn} is well defined.
Put un = Trnyn for all n ≥ 0. On the other hand, from Lemma 2.8 one has Trn is relatively

quasi-nonexpansivemappings andΩ ⊂ C1 = C. SupposingΩ ⊂ Ck for k ∈ N, by the convexity
of ‖ · ‖2, for each q ∈ Ω ⊂ Ck, we have

φ
(

q, uk

)

= φ
(

q, Trkyk

)

≤ φ
(

q, yk

)

= φ
(

q, J−1(αkJxk + (1 − αk)JSzk)
)

=
∥
∥q

∥
∥
2 − 2

〈

q, αkJxk + (1 − αk)JSzk
〉

+ ‖αkJxk + (1 − αk)JSzk‖2

≤ ∥
∥q

∥
∥
2 − 2αk〈q, Jxk〉 − 2(1 − αk)

〈

q, JSzk
〉

+ αk‖xk‖2 + (1 − αk)‖Szk‖2

= αkφ
(

q, xk

)

+ (1 − αk)φ
(

q, Szk
)

≤ αkφ
(

q, xk

)

+ (1 − αk)φ
(

q, zk
)

,

(3.4)

and so

φ
(

q, zk
)

= φ
(

q, J−1
(

βkJxk +
(

1 − βk
)

JTwk

))

=
∥
∥q

∥
∥
2 − 2〈q, βkJxk +

(

1 − βk
)

JTwk〉 +
∥
∥βkJxk + (1 − βk)JTwk

∥
∥
2

≤ ∥
∥q

∥
∥
2 − 2βk

〈

q, Jxk

〉 − 2
(

1 − βk
)〈

q, JTwk

〉

+ βk‖Jxk‖2 +
(

1 − βk
)‖JTwk‖2

= βkφ
(

q, xk

)

+
(

1 − βk
)

φ
(

q, Twk

)

≤ βkφ
(

q, xk

)

+
(

1 − βk
)

φ
(

q,wk

)

.

(3.5)

For all q ∈ Ω, we know from Lemma 2.10, that

φ
(

q,wk

)

= φ
(

q,ΠCJ
−1(Jxk − λkAxk)

)

≤ φ
(

q, J−1(Jxk − λkAxk)
)

= V
(

q, Jxk − λkAxk

)

≤ V
(

q, (Jxk − λkAxk) + λkAxk

) − 2
〈

J−1(Jxk − λkAxk) − q, λkAxk

〉

= V
(

q, Jxk

) − 2λk
〈

J−1(Jxk − λkAxk) − q,Axk

〉

= φ
(

q, xk

) − 2λk〈xk − q,Axk〉 + 2
〈

J−1(Jxk − λkAxk) − xk,−λkAxk

〉

.

(3.6)
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Since q ∈ VI(A,C) and from A being an α-inverse-strongly monotone, we get

−2λk〈xk − q,Axk〉 = −2λk
〈

xk − q,Axk −Aq
〉 − 2λk

〈

xk − q,Aq
〉

≤ −2λk
〈

xk − q,Axk −Aq
〉

= −2αλk
∥
∥Axk −Aq

∥
∥
2
.

(3.7)

From Lemma 2.1 and A being an α-inverse-strongly monotone, we obtain

2
〈

J−1(Jxk − λkAxk) − xk,−λkAxk

〉

= 2
〈

J−1(Jxk − λkAxk) − J−1(Jxk),−λkAxk

〉

≤ 2
∥
∥
∥J−1(Jxk − λkAxk) − J−1(Jxk)

∥
∥
∥‖λkAxk‖

≤ 4
c2

∥
∥
∥JJ−1(Jxk − λkAxk) − JJ−1(Jxk)

∥
∥
∥‖λkAxk‖

=
4
c2
‖Jxk − λkAxk − Jxk‖‖λkAxk‖

=
4
c2
‖λkAxk‖2

=
4
c2
λ2k‖Axk‖2

≤ 4
c2
λ2k

∥
∥Axk −Aq

∥
∥
2
.

(3.8)

Substituting (3.7) and (3.8) into (3.6), we have

φ
(

q,wk

) ≤ φ
(

q, xk

) − 2αλk
∥
∥Axk −Aq

∥
∥
2 +

4
c2
λ2k

∥
∥Axk −Aq

∥
∥
2

= φ
(

q, xk

)

+ 2λk
(

2
c2
λk − α

)
∥
∥Axk −Aq

∥
∥
2

≤ φ
(

q, xk

)

.

(3.9)

Replacing (3.9) into (3.5), we get

φ
(

q, zk
) ≤ φ

(

q, xk

)

. (3.10)

Substituting (3.10) into (3.4), we also have

φ
(

q, uk

) ≤ αkφ
(

q, xk

)

+ (1 − αk)φ
(

q, xk

)

,

= φ
(

q, xk

)

.
(3.11)

This shows that q ∈ Ck+1 and hence,Ω ⊂ Ck+1. Hence,Ω ⊂ Cn for all n ≥ 1. This implies
that the sequence {xn} is well defined.
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Step 3. We show that limn→∞φ(xn, x0) exists and {xn} is bounded.
From xn = ΠCnx0 and xn+1 = ΠCn+1x0,we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 1 , (3.12)

and from Lemma 2.5, we have

φ(xn, x0) = φ(ΠCn(x0), x0)

≤ φ
(

p, x0
) − φ

(

p, xn

)

≤ φ
(

p, x0
)

, ∀p ∈ Ω.

(3.13)

From (3.12) and (3.13), then {φ(xn, x0)} are nondecreasing and bounded. So, we obtain that
limn→∞φ(xn, x0) exists. In particular, by (1.6), the sequence {(‖xn‖− ‖x0‖)2} is bounded. This
implies that {xn} is also bounded.

Step 4. We show that {xn} is a Cauchy sequence in C.
Since xm = ΠCmx0 ∈ Cm ⊂ Cn, for m > n, by Lemma 2.5, we have

φ(xm, xn) = φ(xm,ΠCnx0)

≤ φ(xm, x0) − φ(ΠCnx0, x0)

= φ(xm, x0) − φ(xn, x0).

(3.14)

Taking m,n → ∞, we have φ(xm, xn) → 0. We have limn→∞φ(xn+1, x0) = 0. From
Lemma 2.3, we get limn→∞‖xn+1 − x0‖ = 0. Thus {xn} is a Cauchy sequence.

Step 5. We cliam that ‖Jun − Jxn‖ → 0, as n → ∞.
By the completeness of E, the closedness of C and {xn} is a Cauchy sequence (from

Step 4); we can assume that there exists p ∈ C such that {xn} → p as n → ∞.
By definition of ΠCnx0, we have

φ(xn+1, xn) = φ(xn+1,ΠCnx0)

≤ φ(xn+1, x0) − φ(ΠCnx0, x0)

= φ(xn+1, x0) − φ(xn, x0).

(3.15)

Since limn→∞φ(xn, x0) exists, we get

lim
n→∞

φ(xn+1, xn) = 0. (3.16)

It follow form Lemma 2.3, that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.17)
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Since xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn and from the definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ≥ 1 (3.18)

and so

lim
n→∞

φ(xn+1, un) = 0. (3.19)

Hence

lim
n→∞

‖xn+1 − un‖ = 0. (3.20)

By using the triangle inequality, we obtain

‖un − xn‖ = ‖un − xn+1 + xn+1 − xn‖
≤ ‖un − xn+1‖ + ‖xn+1 − xn‖.

(3.21)

By (3.17), (3.20), we get

lim
n→∞

‖un − xn‖ = 0. (3.22)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we have

lim
n→∞

‖Jun − Jxn‖ = 0. (3.23)

Step 6. Show that xn → p ∈ EP(f).
Applying (3.4) and (3.11), we get φ(p, yn) ≤ φ(p, xn). From Lemma 2.9 and un = Trnyn,

we observe that

φ
(

un, yn

)

= φ
(

Trnyn, yn

)

≤ φ
(

p, yn

) − φ
(

p, Trnyn

)

≤ φ
(

p, xn

) − φ
(

p, Trnyn

)

= φ
(

p, xn

) − φ
(

p, un

)

=
∥
∥p

∥
∥
2 − 2

〈

p, Jxn

〉

+ ‖xn‖2 −
(∥
∥p

∥
∥
2 − 2

〈

p, Jun

〉

+ ‖un‖2
)

= ‖xn‖2 − ‖un‖2 − 2
〈

p, Jxn − Jun

〉

≤ ‖xn − un‖(‖xn + un‖) + 2
∥
∥p

∥
∥‖Jxn − Jun‖.

(3.24)



Abstract and Applied Analysis 15

From (3.22), (3.23) and Lemma 2.3, we get

lim
n→∞

∥
∥un − yn

∥
∥ = 0. (3.25)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

∥
∥Jun − Jyn

∥
∥ = 0. (3.26)

From rn > 0, we have ‖Jun − Jyn‖/rn → 0 as n → ∞ and

f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C. (3.27)

By (A2), that

∥
∥y − un

∥
∥

∥
∥Jun − Jyn

∥
∥

rn
≥ 1

rn

〈

y − un, Jun − Jyn

〉

≥ −f(un, y
)

≥ f
(

y, un

)

, ∀y ∈ C

(3.28)

and un → p, we get f(y, p) ≤ 0 for all y ∈ C. For 0 < t < 1, define yt = ty + (1 − t)p. Then
yt ∈ C which implies that f(yt, p) ≤ 0. From (A1), we obtain that

0 = f
(

yt, yt

) ≤ tf
(

yt, y
)

+ (1 − t)f
(

yt, p
) ≤ tf

(

yt, y
)

. (3.29)

Thus f(yt, y) ≥ 0. From (A3), we have f(p, y) ≥ 0 for all y ∈ C. Hence p ∈ EP(f).

Step 7. We show that xn → p ∈ F(T) ∩ F(S).
From definition of Cn, we have

αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn) ⇐⇒ φ(z, zn) ≤ φ(z, xn). (3.30)

Since xn+1 = ΠCn+1x0 ∈ Cn+1, we have

φ(xn+1, zn) ≤ φ(xn+1, xn). (3.31)

It follows from (3.16) that

lim
n→∞

φ(xn+1, zn) = 0, (3.32)

again from Lemma 2.3, we get

lim
n→∞

‖xn+1 − zn‖ = 0. (3.33)
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By using the triangle inequality, we get

‖zn − xn‖ ≤ ‖zn − xn+1‖ + ‖xn+1 − xn‖. (3.34)

Again by (3.17) and (3.33), we also have

lim
n→∞

‖zn − xn‖ = 0. (3.35)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

‖Jzn − Jxn‖ = 0. (3.36)

Since

∥
∥yn − zn

∥
∥ ≤ ∥

∥yn − un

∥
∥ + ‖un − xn‖ + ‖xn − zn‖, (3.37)

from (3.22), (3.25), and (3.35), we have

lim
n→∞

∥
∥yn − zn

∥
∥ = 0. (3.38)

Since J is uniformly norm-to-norm continuous, we also have

lim
n→∞

∥
∥Jyn − Jzn

∥
∥ = 0. (3.39)

From (3.1), we get

∥
∥Jyn − Jzn

∥
∥ = ‖αn(Jxn − Jzn) + (1 − αn)(JSzn − Jzn)‖
= ‖(1 − αn)(JSzn − Jzn) − αn(Jzn − Jxn)‖
≥ (1 − αn)‖JSzn − Jzn‖ − αn‖Jzn − Jxn‖;

(3.40)

it follows that

(1 − αn)‖JSzn − Jzn‖ ≤ ∥
∥Jyn − Jzn

∥
∥ + αn‖Jzn − Jxn‖, (3.41)

and hence

‖JSzn − Jzn‖ ≤ 1
1 − αn

(∥
∥Jyn − Jzn

∥
∥ + αn‖Jzn − Jxn‖

)

. (3.42)
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Since αn ≤ 1 − δ1 for some δ1 ∈ (0, 1), (3.36), and (3.39), one has limn→∞‖JSzn − Jzn‖ = 0.
Since J−1 is uniformly norm-to-norm continuous, we get

lim
n→∞

‖Szn − zn‖ = 0. (3.43)

Since

‖Sxn − xn‖ ≤ ‖Sxn − Szn‖ + ‖Szn − zn‖ + ‖zn − xn‖
≤ ‖xn − zn‖ + ‖Szn − zn‖ + ‖zn − xn‖,

(3.44)

from (3.35) and (3.43), we obtain

lim
n→∞

‖Sxn − xn‖ = 0. (3.45)

Since S is closed and xn → p, we have p ∈ F(S).
On the other hand, we note that

φ
(

q, xn

) − φ
(

q, un

)

= ‖xn‖2 − ‖un‖2 − 2
〈

q, Jxn − Jun

〉

≤ ‖xn − un‖(‖xn + un‖) + 2
∥
∥q

∥
∥‖Jxn − Jun‖.

(3.46)

It follows from ‖xn − un‖ → 0 and ‖Jxn − Jun‖ → 0, that

φ
(

q, xn

) − φ
(

q, un

) −→ 0. (3.47)

Furthermore, from (3.4) and (3.5),

φ
(

q, un

) ≤ φ
(

q, yn

)

≤ αnφ
(

q, xn

)

+ (1 − αn)φ
(

q, zn
)

≤ αnφ
(

q, xn

)

+ (1 − αn)
[

βnφ
(

q, xn

)

+
(

1 − βn
)

φ
(

q,wn

)]

= αnφ
(

q, xn

)

+ (1 − αn)βnφ
(

q, xn

)

+ (1 − αn)
(

1 − βn
)

φ
(

q,wn

)

≤ αnφ
(

q, xn

)

+ (1 − αn)βnφ
(

q, xn

)

+ (1 − αn)
(

1 − βn
)

×
[

φ
(

q, xn

) − 2λn
(

α − 2
c2
λn

)
∥
∥Axn −Aq

∥
∥
2
]

= αnφ
(

q, xn

)

+ (1 − αn)βnφ
(

q, xn

)

+ (1 − αn)
(

1 − βn
)

φ
(

q, xn

)

− (1 − αn)
(

1 − βn
)

2λn
(

α − 2
c2
λn

)
∥
∥Axn −Aq

∥
∥
2

= φ
(

q, xn

) − (1 − αn)
(

1 − βn
)

2λn
(

α − 2
c2
λn

)
∥
∥Axn −Aq

∥
∥
2
,

(3.48)
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and hence

δ1δ22a
(

α − 2a
c2

)
∥
∥Axn −Aq

∥
∥
2 ≤ (1 − αn)

(

1 − βn
)

2λn
(

α − 2
c2
λn

)
∥
∥Axn −Aq

∥
∥
2

≤ φ
(

q, xn

) − φ
(

q, un

)

.

(3.49)

From (3.47) and (3.49), we have

∥
∥Axn −Aq

∥
∥ −→ 0. (3.50)

From Lemma 2.5, Lemma 2.10, and (3.8), we compute

φ(xn,wn) = φ
(

xn,ΠCJ
−1(Jxn − λnAxn)

)

≤ φ
(

xn, J
−1(Jxn − λnAxn)

)

= V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn) − 2
〈

J−1(Jxn − λnAxn) − xn, λnAxn

〉

= φ(xn, xn) + 2
〈

J−1(Jxn − λnAxn) − xn,−λnAxn

〉

= 2
〈

J−1(Jxn − λnAxn) − xn,−λnAxn

〉

≤ 4λ2n
c2

∥
∥Axn −Aq

∥
∥
2

≤ 4b2

c2
∥
∥Axn −Aq

∥
∥
2
.

(3.51)

Applying Lemmas 2.3 and (3.50), we obtain that

‖xn −wn‖ −→ 0. (3.52)

Again since J is uniformly norm-to-norm continuous on bounded set, we have

‖Jxn − Jwn‖ −→ 0. (3.53)

Since

‖zn −wn‖ ≤ ‖zn − xn‖ + ‖xn −wn‖, (3.54)

by (3.35) and (3.52), we have

lim
n→∞

‖zn −wn‖ = 0, (3.55)
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and hence

lim
n→∞

‖Jzn − Jwn‖ = 0. (3.56)

From (3.1)we obtain that

‖Jzn − Jwn‖ =
∥
∥βnJxn +

(

1 − βn
)

JTwn − Jwn

∥
∥

≥ (

1 − βn
)‖JTwn − Jwn‖ − βn‖Jwn − Jxn‖,

(3.57)

and hence

(

1 − βn
)‖JTwn − Jwn‖ ≤ ‖Jzn − Jwn‖ + βn‖Jwn − Jxn‖, (3.58)

so

‖JTwn − Jwn‖ ≤ 1
1 − βn

‖Jzn − Jwn‖ + βn‖Jwn − Jxn‖. (3.59)

By (3.53), (3.56) and condition βn ≤ 1 − δ2 for some δ2 ∈ (0, 1), we obtain

‖JTwn − Jwn‖ −→ 0. (3.60)

Since J−1 is uniformly norm-to-norm continuous on bounded set, we obtain

‖Twn −wn‖ −→ 0. (3.61)

Since xn → wn, then ‖Txn − xn‖ → 0. Thus by the closedness of T and xn → p, we get
p ∈ F(T). Hence p ∈ F(T) ∩ F(S).

Step 8. We show that xn → p ∈ VI(A,C).
Define T ⊂ E × E∗ by Theorem 2.11; T is maximal monotone and T−10 = VI(A,C). Let

(v,w) ∈ G(T). Since w ∈ Tv = Av +NC(v), we get w −Av ∈ NC(v).
From wn ∈ C, we have

〈v −wn,w −Av〉 ≥ 0. (3.62)

On the other hand, since wn = ΠCJ
−1(Jxn − λnAxn), then by Lemma 2.4, we have

〈v −wn, Jwn − (Jxn − λnAxn)〉 ≥ 0, (3.63)

and hence

〈

v −wn,
Jxn − Jwn

λn
−Axn

〉

≤ 0. (3.64)
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It follows from (3.62) and (3.64), that

〈v −wn,w〉 ≥ 〈v −wn,Av〉

≥ 〈v −wn,Av〉 +
〈

v −wn,
Jxn − Jwn

λn
−Axn

〉

= 〈v −wn,Av −Axn〉 +
〈

v −wn,
Jxn − Jwn

λn

〉

= 〈v −wn,Av −Awn〉 + 〈v −wn,Awn −Axn〉 +
〈

v −wn,
Jxn − Jwn

λn

〉

≥ −‖v −wn‖‖wn − xn‖
α

− ‖v −wn‖‖Jxn − Jwn‖
a

≥ −M
(‖wn − xn‖

α
+
‖Jxn − Jwn‖

a

)

.

(3.65)

Where M = supn≥1‖v −wn‖. Taking the limit as n → ∞ and (3.53), we obtain 〈v − p,w〉 ≥ 0.
By the maximality of T , we have p ∈ T−10; that is, p ∈ VI(A,C).

Step 9. We show that p = ΠΩx0.
From xn = ΠCnx0, we have 〈Jx0 − Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn. SinceΩ ⊂ Cn, we also have

〈

Jx0 − Jxn, xn − y
〉 ≥ 0, ∀y ∈ Ω. (3.66)

By taking limit n → ∞, we obtain that

〈Jx0 − Jp, p − y〉 ≥ 0, ∀y ∈ Ω. (3.67)

By Lemma 2.4, we can conclude that p = ΠΩx0 and xn → p as n → ∞. This completes the
proof.

Setting S ≡ T in Theorem 3.1., so, we obtain the following corollary.

Corollary 3.2. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let A be
an α-inverse-strongly monotone mapping of C into E∗ satisfying ‖Ay‖ ≤ ‖Ay −Au‖, for all y ∈ C
and u ∈ VI(A,C)/= ∅. Let T : C → C be closed relatively quasi-nonexpansive mappings such that
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Ω := F(T) ∩ EP(f) ∩ VI(A,C)/= ∅. For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, define
a sequence {xn} as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(

βnJxn +
(

1 − βn
)

JTwn

)

,

yn = J−1(αnJxn + (1 − αn)JTzn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)
}

,

xn+1 =
∏

Cn+1

x0, ∀n ≥ 1,

(3.68)

where J is the duality mapping on E. Assume that {αn} and {βn} are sequences in [0, 1] such that
αn ≤ 1 − δ1 and βn ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1), {rn} ⊆ (0, 2α), and {λn} ⊂ [a, b] for some a, b
with 0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. Then {xn} converges
strongly to p ∈ Ω, where p = ΠΩx0.

If A ≡ 0 in Theorem 3.1, then we obtain the following corollary.

Corollary 3.3. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction fromC×C to R satisfying (A1)–(A4). Let T, S : C → C
is closed relatively quasi-nonexpansive mappings such that Ω := F(T) ∩ F(S) ∩ EP(f)/= ∅. For an
initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, define a sequence {xn} as follows:

zn = J−1
(

βnJxn +
(

1 − βn
)

JTwn

)

,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)
}

,

xn+1 =
∏

Cn+1

x0, ∀n ≥ 1,

(3.69)

where J is the duality mapping on E. Assume that {αn} and {βn} are sequences in [0, 1] such that
αn ≤ 1−δ1 and βn ≤ 1−δ2, for some δ1, δ2 ∈ (0, 1) and {rn} ⊆ (0, 2α). Then {xn} converges strongly
to p ∈ Ω, where p = ΠΩx0.
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4. Application

4.1. Complementarity Problem

LetK be a nonempty, closed and convex cone E, A a mapping ofK into E∗. We define its polar
in E∗ to be the set

K∗ =
{

y∗ ∈ E∗ :
〈

x, y∗〉 ≥ 0, ∀x ∈ K
}

. (4.1)

Then the element u ∈ K is called a solution of the complementarity problem if

Au ∈ K∗, 〈u,Au〉 = 0. (4.2)

The set of solutions of the complementarity problem is denoted by C(K,A).

Theorem 4.1. LetK be a nonempty and closed convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from K × K to R satisfying (A1)–(A4) and let A be
an α-inverse-strongly monotone of E into E∗ satisfying ‖Ay‖ ≤ ‖Ay − Au‖, for all y ∈ K and
u ∈ C(K,A)/= ∅. Let T, S : K → K be closed relatively quasi-nonexpansive mappings and Ω :=
F(T) ∩ F(S) ∩ EP(f) ∩ C(K,A)/= ∅. For an initial point x0 ∈ E with x1 = ΠK1 and K1 = K, we
define the sequence {xn} as follows:

wn = ΠKJ
−1(Jxn − λnAxn),

zn = J−1
(

βnJxn +
(

1 − βn
)

JTwn

)

,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ K,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)
}

,

xn+1 =
∏

Cn+1

x0, ∀n ≥ 1,

(4.3)

where J is the duality mapping on E, {αn} and {βn} are sequences in [0, 1] such that αn ≤ 1 − δ1
and βn ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1), {rn} ⊆ (0, 2α), and {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. Then {xn} converges
strongly to p ∈ Ω, where p = ΠΩx0.

Proof. As in the proof of Takahashi in [7, Lemma 7.11], we get that VI(K,A) = C(K,A). So,
we obtain the result.

4.2. Approximation of a Zero of a Maximal Monotone Operator

Let B be a multivaluedmapping from E to E∗ with domainD(B) = {z ∈ E : Az/= ∅} and range
R(B) = ∪{Bz : z ∈ D(B)}.Amapping B is said to be amonotone operator if 〈x1−x2, y1−y2〉 ≥ 0
for each xi ∈ D(B) and yi ∈ Axi, i = 1, 2. A monotone operator B is said to be maximal if
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its graph G(B) = {(x, y) : y ∈ Ax} is not property contained in the graph of any other
monotone operator. We know that if B is a maximal monotone operator, then B−1(0) is closed
and convex. Let E be a reflexive, strictly convex, and smooth Banach space, and let B be a
monotone operator from E to E∗, we know that B is maximal if and only if R(J + rB) = E∗ for
all r > 0. Let Jr : E → D(B)be defined by Jr = (J + rB)−1Jand such a Jr is called the resolvent
of B . We know that Jr is a relatively nonexpansive (closed relatively quasi-nonexpansive for
example; see [8]), and B−1(0) = F(Jr) for all r > 0 (see [7, 33–35] for more details).

Theorem 4.2. Let C be a nonempty and closed convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let A
be α-inverse-strongly monotone of E into E∗ satisfying ‖Ay‖ ≤ ‖Ay − Au‖, for all y ∈ C and
u ∈ VI(A,C)/= ∅. Let B be a maximal monotone operator of E into E∗ and let Jr be a resolvent of B
and a closed mapping such that Ω := B−1(0) ∩ F(S) ∩ EP(f) ∩ VI(A,C)/= ∅. For an initial point
x0 ∈ E with x1 = ΠC1 and C1 = C, we define the sequence {xn} as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(

βnJxn +
(

1 − βn
)

JJrwn

)

,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)
}

,

xn+1 =
∏

Cn+1

x0, ∀n ≥ 1,

(4.4)

where J is the duality mapping on E, {αn} and {βn} are sequences in [0, 1] such that αn ≤ 1 − δ1
and βn ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1), {rn} ⊆ (0, 2α) and {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. Then {xn} converges
strongly to p ∈ Ω, where p = ΠΩx0.

Proof. Since Jr is a closed relatively nonexpansive mapping and B−10 = F(Jr). So, we obtain
the result.

Corollary 4.3. Let C be a nonempty and closed convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and let A
be α-inverse-strongly monotone of E into E∗ satisfying ‖Ay‖ ≤ ‖Ay − Au‖, for all y ∈ C and
u ∈ VI(A,C)/= ∅. Let B be a maximal monotone operator of E into E∗ and let Jr be a resolvent of B
and closed such that Ω := B−1(0) ∩ EP(f) ∩ VI(A,C)/= ∅. For an initial point x0 ∈ E with x1 = ΠC1

and C1 = C, we define the sequence {xn} as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(

βnJxn +
(

1 − βn
)

JJrwn

)

,

yn = J−1(αnJxn + (1 − αn)JJrzn),

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ αnφ(z, xn) + (1 − αn)φ(z, zn) ≤ φ(z, xn)
}

,

xn+1 =
∏

Cn+1

x0, ∀n ≥ 1,

(4.5)
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where J is the duality mapping on E, {αn} and {βn} are sequences in [0, 1] such that αn ≤ 1 − δ1
and βn ≤ 1 − δ2, for some δ1, δ2 ∈ (0, 1), {rn} ⊆ (0, 2α) and {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. Then {xn} converges
strongly to p ∈ Ω, where p = ΠΩx0.
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