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We modify the iterative method introduced by Kim and Xu (2006) for a countable family of
Lipschitzian mappings by the hybrid method of Takahashi et al. (2008). Our results include recent
ones concerning asymptotically nonexpansive mappings due to Plubtieng and Ungchittrakool
(2007) and Zegeye and Shahzad (2008, 2010) as special cases.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert spaceH . A mapping T : C → C
is said to be Lipschitzian if there exists a positive constant L such that

‖Tx − Ty‖ ≤ L‖x − y‖ ∀x, y ∈ C. (1.1)

In this case, T is also said to be L-Lipschitzian. Clearly, if T is L1-Lipschitzian and L1 < L2,
then T is L2-Lipschitzian. Throughout the paper, we assume that every Lipschitzian mapping
is L-Lipschitzian with L ≥ 1. If L = 1, then T is known as a nonexpansive mapping. We
denote by F(T) the set of fixed points of T . If C is nonempty bounded closed convex and
T is a nonexpansive of C into itself, then F(T)/=� (see [1]). There are many methods for
approximating fixed points of a nonexpansive mapping. In 1953, Mann [2] introduced the
iteration as follows: a sequence {xn} defined by

xn+1 = αnxn + (1 − αn)Txn, (1.2)
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where the initial guess element x1 ∈ C is arbitrary and {αn} is a real sequence in [0, 1].
Mann iteration has been extensively investigated for nonexpansive mappings. One of the
fundamental convergence results is proved by Reich [3]. In an infinite-dimensional Hilbert
space,Mann iteration can conclude only weak convergence [4]. Attempts tomodify theMann
iteration method (1.2) so that strong convergence is guaranteed have recently been made.
Nakajo and Takahashi [5] proposed the following modification of Mann iteration method
(1.2):

x1 = x ∈ C is arbitrary,

yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖

}
,

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Qnx, n = 1, 2, 3, . . . ,

(1.3)

where PK denotes the metric projection from H onto a closed convex subset K of H . They
prove that if the sequence {αn} bounded above fromone, then {xn} defined by (1.3) converges
strongly to PF(T)x. Takahashi et al. [6] modified (1.3) so-called the shrinking projection method
for a countable family of nonexpansive mappings {Tn}∞n=1 as follows:

x1 = x ∈ H,

C1 = C,

yn = αnxn + (1 − αn)Tnxn,

Cn+1 =
{
z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖

}
,

xn+1 = PCn+1x, n = 1, 2, 3, . . . ,

(1.4)

and prove that if the sequence {αn} bounded above from one, then {xn} defined by (1.4)
converges strongly to P∩∞

n=1F(Tn)x.
Recently, the present authors [7] extended (1.3) to obtain a strong convergence

theorem for common fixed points of a countable family of Ln-Lipschitzian mappings {Tn}∞n=1
by

x1 = x ∈ C is arbitrary,

yn = αnxn + (1 − αn)Tnxn,

Cn =
{
z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn

}
,

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Qnx, n = 1, 2, 3, . . . ,

(1.5)
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where θn = (1 − αn)(L2
n − 1)(diamC)2 → 0 as n → ∞ and prove that {xn} defined by (1.5)

converges strongly to P∩∞
n=1F(Tn)x.

In this paper, we establish strong convergence theorems for finding common fixed
points of a countable family of Lipschitzian mappings in a real Hilbert space. Moreover, we
also apply our results for asymptotically nonexpansive mappings.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Then,

‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2
〈
x − y, y

〉
, (2.1)

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2 , (2.2)

for all x, y ∈ H and λ ∈ [0, 1]. For any n points x1, x2, . . . , xn in H , the following generalized
identity holds:

∥
∥∥∥
∥

n∑

i=1

λixi

∥
∥∥∥
∥

2

=
n∑

i=1

λi‖xi‖2 −
∑

i<j

λiλj‖xi − xj‖2, (2.3)

where λi ∈ [0, 1] and
∑n

i=1 λi = 1.
We write xn → x (xn ⇀ x, resp.) if {xn} converges strongly (weakly, resp.) to x. It is

also known thatH satisfies:

(1) the Opial’s condition [8] that is, for any sequence {xn} with xn ⇀ x,

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ (2.4)

holds for every y ∈ H with y /=x

(2) the Kadec-Klee property [9, 10]; that is, for any sequence {xn} with xn ⇀ x and
‖xn‖ → ‖x‖ together imply xn → x.

Let C be a nonempty closed convex subset of H . Then, for any x ∈ H , there exists a unique
nearest point in C, denoted by PCx, such that

‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C. (2.5)

Such a mapping PC is called the metric projection of H onto C. We know that PC is
nonexpansive. Furthermore, for x ∈ H and z ∈ C,

z = PCx iff
〈
x − z, z − y

〉
≥ 0, ∀y ∈ C. (2.6)

To deal with a family of mappings, the following conditions are introduced: let C be a subset
of a Banach space, let {Tn} and T be families of mappings of C with

⋂∞
n=1 F(Tn) = F(T)/=�,

where F(T) is the set of all common fixed points of all mappings in T. {Tn} is said to satisfy
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(a) the AKTT-condition [11] if for each bounded subset B of C,

∞∑

n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞, (2.7)

(b) the NST-condition (I) with T [12] if for each bounded sequence {zn} in C,

lim
n→∞

‖zn − Tnzn‖ = 0 implies lim
n→∞

‖zn − Tzn‖ = 0 ∀T ∈ T, (2.8)

(c) the NST-condition (II) [12] if for each bounded sequence {zn} in C,

lim
n→∞

‖zn+1 − Tnzn‖ = 0 implies lim
n→∞

‖zn − Tmzn‖ = 0 ∀m ∈ �, (2.9)

(d) NST∗-condition with T [13] if for each bounded sequence {zn} in C,

lim
n→∞

‖zn − Tnzn‖ = 0, lim
n→∞

‖zn − zn+1‖ = 0, (2.10)

imply limn→∞‖zn − Tzn‖ = 0 for all T ∈ T.

In particular, if T = {T}, then we simply say that {Tn} satisfies the NST-condition (I) with T
(NST∗-condition with T , resp.) rather than NST-condition (I) with {T} (NST∗-condition with
{T}, resp.).

Remark 2.1. It follows directly from the definitions above that

(i) if {Tn} satisfies the NST-condition (I)with T, then {Tn} satisfies the NST∗-condition
with T

(ii) if {Tn} satisfies the NST-condition (II), then {Tn} satisfies the NST∗-condition with
{Tn}.

Lemma 2.2 (see [11, Lemma 3.2]). Let C be a nonempty closed subset of a Banach space, and let
{Tn} be a family of mappings of C into itself which satisfies the AKTT-condition, then the mapping
T : C → C defined by

Tx = lim
n→∞

Tnx ∀x ∈ C (2.11)

satisfies

lim
n→∞

sup{‖Tz − Tnz‖ : z ∈ B} = 0, (2.12)

for each bounded subset B of C.

From now on, we will write ({Tn}, T) satisfies AKTT-condition if {Tn} satisfies AKTT-
condition and T is defined by (2.11).



Abstract and Applied Analysis 5

Lemma 2.3 (see [13, Lemma 2.6]). Let C be a nonempty closed subset of a Banach space. Suppose
that ({Tn}, T) satisfies AKTT-condition and F(T) =

⋂∞
n=1 F(Tn)/=�. Then, {Tn} satisfies the NST-

condition (I) with T . Consequently, {Tn} satisfies the NST∗-condition with T .

Remark 2.4. There are families of mappings {Tn} and T such that

(1) {Tn} satisfies the NST∗-condition with T, and

(2) {Tn} fails the NST-condition (I) with T and the NST-condition (II).

The following example shows that the NST∗-condition with T is strictly weaker than
NST-condition (I) with T and the NST-condition (II).

Example 2.5 (see [13, Example 2.9]). LetH := �2 and C := [0, 1]× [0, 1]. Define T1, T2 : C → C
as follows:

T1
(
x, y

)
=
(
x, 1 − y

)
, T2

(
x, y

)
=
(
1 − x, y

)
, (2.13)

for all (x, y) ∈ C. Hence, T1 and T2 are nonexpansive mappings with

F(T1) ∩ F(T2) =
(
[0, 1] ×

{
1
2

})
∩
({

1
2

}
× [0, 1]

)
=
{(

1
2
,
1
2

)}

/=�. (2.14)

Let Tn = Tn−1( mod 2)+1. Then, {Tn} satisfies NST∗-condition but it fails NST-condition (I) with
T and the NST-condition (II).

Lemma 2.6. Let C be a nonempty closed convex subset of a real Hilbert space H . Let {Tn} and {Sn}
be two families of tn-Lipschitzian and sn-Lipschitzian mappings ofC into itself, respectively. Let {Un}
be a family of mappings of C into itself defined by

Un = Tn
(
βnI +

(
1 − βn

)
Sn

)
∀n ∈ �, (2.15)

where {βn} is a sequence in [a, b] for some a, b ∈ (0, 1) and I is an identity mapping. Assume that
{tn} and {sn} are two sequences such that tn → 1 and sn → 1. Then, the following statements hold.

(i) {Un} is a family of Ln-Lipschitzian mappings of C into itself, where Ln = (βnt2n + (1 −
βn)t2ns

2
n)

1/2 and Ln → 1.

(ii) Suppose that T1 and T2 are families of mappings of C into itself such that F(T1) =⋂∞
n=1 F(Tn), F(T2) =

⋂∞
n=1 F(Sn) and F(T1) ∩ F(T2)/=�. If {Tn} and {Sn} satisfy the

NST∗-condition withT1 andT2, respectively, then {Un} satisfies the NST∗-condition with
T1 ∪ T2 and

∞⋂

n=1

F(Un) = F(T1) ∩ F(T2). (2.16)
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Proof. (i) We first observe that

‖Unx −Uny‖2 ≤ t2n‖βn
(
x − y

)
+
(
1 − βn

)(
Snx − Sny

)
‖2

≤ t2n

(
βn‖x − y‖2 +

(
1 − βn

)
‖Snx − Sny‖2

)

≤ βnt
2
n‖x − y‖2 +

(
1 − βn

)
t2ns

2
n‖x − y‖2

= L2
n‖x − y‖2,

(2.17)

for all x, y ∈ C. That is, Un is Ln-Lipschitzian. Since tn → 1 and sn → 1, it follows that
Ln → 1.

(ii) Let {zn} be a bounded sequence inC such that limn→∞‖zn−Unzn‖ = limn→∞‖zn+1−
zn‖ = 0. Let p ∈ F(T1) ∩ F(T2), and let M = sup{‖zn −Unzn‖, ‖zn − p‖ : n ∈ �}. Then

‖zn − p‖2 ≤
(
‖zn −Unzn‖ + ‖Unzn − p‖

)2

= ‖zn −Unzn‖2 + 2‖zn −Unzn‖
∥∥Unzn − p

∥∥ + ‖Unzn − p‖2

≤ 3M‖zn −Unzn‖ + ‖Tn
(
βnzn +

(
1 − βn

)
Snzn

)
− Tnp‖2

≤ 3M‖zn −Unzn‖ + t2n‖βn
(
zn − p

)
+
(
1 − βn

)(
Snzn − p

)
‖2

= 3M‖zn −Unzn‖ + βnt
2
n‖zn − p‖2 +

(
1 − βn

)
t2n‖Snzn − p‖2

− βn
(
1 − βn

)
t2n‖zn − Snzn‖2

≤ 3M‖zn −Unzn‖ + βnt
2
n‖zn − p‖2 +

(
1 − βn

)
t2ns

2
n‖zn − p‖2

− a(1 − b)‖zn − Snzn‖2

= 3M‖zn −Unzn‖ + L2
n‖zn − p‖2 − a(1 − b)‖zn − Snzn‖2,

(2.18)

for all n ∈ �. In particular,

a(1 − b)‖zn − Snzn‖2 ≤ 3M‖zn −Unzn‖ +
(
L2
n − 1

)
‖zn − p‖2. (2.19)

So, we get

lim
n→∞

‖zn − Snzn‖ = 0. (2.20)

Since {Sn} satisfies the NST∗-condition with T2, we have

lim
n→∞

‖zn − Szn‖ = 0 ∀S ∈ T2. (2.21)
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Since

‖zn − Tnzn‖ ≤ ‖zn −Unzn‖ + ‖Unzn − Tnzn‖

≤ ‖zn −Unzn‖ +
(
1 − βn

)
tn‖zn − Snzn‖,

(2.22)

it follows that

lim
n→∞

‖zn − Tnzn‖ = 0. (2.23)

Since {Tn} satisfies the NST∗-condition with T1, we have

lim
n→∞

‖zn − Tzn‖ = 0 ∀T ∈ T1. (2.24)

It is easy to see that F(T1) ∩ F(T2) ⊂
⋂∞

n=1 F(Un). To see the reverse inclusion, let z ∈⋂∞
n=1 F(Un) follow the first part of the proof above but now let zn ≡ z. Then, z ∈ F(T1) ∩

F(T2) = F(T1 ∪ T2). Hence, {Un} satisfies the NST∗-condition with T1 ∪ T2.

Lemma 2.7. Let C be a nonempty closed convex subset of a real Hilbert space H . Let {Tni}∞n=1 be
families of Lni-Lipschitzian mappings of C into itself for i = 1, 2, . . . , r, respectively. Let {Tn} be a
family of mappings of C into itself defined by

Tn =
r∑

i=1

βniTni ∀n ∈ �, (2.25)

where {βni}∞n=1 are sequences in [a, b] for some a, b ∈ (0, 1) satisfying
∑r

i=1 βni = 1 for all n ∈ �.
Assume that {Lni}∞n=1 are sequences such that Lni → 1 as n → ∞ for all i = 1, 2, . . . , r. Then, the
following statements hold.

(i) {Tn} is a family of Ln-Lipschitzian mappings of C into itself, where Ln = (
∑r

i=1 βniL
2
ni)

1/2

and Ln → 1.

(ii) Suppose that Ti are families of mappings of C into itself such that F(Ti) =
⋂∞

n=1 F(Tni)
for i = 1, 2, . . . , r and

⋂r
i=1 F(Ti)/=�. If {Tni} satisfies the NST∗-condition with Ti for all

i = 1, 2, . . . , r, then {Tn} satisfies the NST∗-condition with
⋃r

i=1 Ti and

∞⋂

n=1

F(Tn) =
r⋂

i=1

F(Ti). (2.26)
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Proof. (i) From (2.3), we have

‖Tnx − Tny‖2 =
∥∥
∥∥∥

r∑

i=1

βni(Tnix − Tniy)

∥∥
∥∥∥

2

≤
r∑

i=1

βni‖Tnix − Tniy‖2

≤
(

r∑

i=1

βniL
2
ni

)

‖x − y‖2

= L2
n‖x − y‖2,

(2.27)

for all x, y ∈ C. That is, Tn is Ln-Lipschitzian. Since Lni → 1 for i = 1, 2, . . . , r and
∑r

i=1 βni = 1,
it follows that Ln → 1.

(ii) Let {zn} be a bounded sequence inC such that limn→∞‖zn−Tnzn‖ = limn→∞‖zn+1−
zn‖ = 0. Let p ∈

⋂r
i=1 F(Ti), and let M = sup{‖zn − Tnzn‖, ‖zn − p‖ : n ∈ �}; it follows from

(2.3) that

‖zn − p‖2 ≤
(
‖zn − Tnzn‖ + ‖Tnzn − p‖

)2

= ‖zn − Tnzn‖2 + 2‖zn − Tnzn‖
∥∥Tnzn − p

∥∥ + ‖Tnzn − p‖2

≤ 3M‖zn − Tnzn‖ +
∥
∥∥∥
∥

r∑

i=1

βni(Tnizn − p)

∥
∥∥∥
∥

2

= 3M‖zn − Tnzn‖ +
r∑

i=1

βni‖Tnizn − p‖2 −
∑

i<j

βniβnj‖Tnizn − Tnjzn‖2

≤ 3M‖zn − Tnzn‖ +
r∑

i=1

βniL
2
ni‖zn − p‖2 − a2

∑

i<j

‖Tnizn − Tnjzn‖2

= 3M‖zn − Tnzn‖ + L2
n‖zn − p‖2 − a2

∑

i<j

‖Tnizn − Tnjzn‖2.

(2.28)

So, by (i), we get

lim
n→∞

‖Tnizn − Tnjzn‖ = 0 ∀i, j ∈ {1, 2, . . . , r}. (2.29)
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For each k = 1, 2, . . . , r, we have

‖zn − Tnkzn‖ ≤ ‖zn − Tnzn‖ + ‖Tnzn − Tnkzn‖

= ‖zn − Tnzn‖ +
∥∥∥
∥∥

r∑

i=1

βni(Tnizn − Tnkzn)

∥∥∥
∥∥

≤ ‖zn − Tnzn‖ +
r∑

i=1

βni‖Tnizn − Tnkzn‖ −→ 0.

(2.30)

Since each family {Tnk}∞n=1 satisfies the NST∗-condition with Tk,

lim
n→∞

‖zn − Tzn‖ = 0 ∀T ∈
r⋃

i=1

Ti. (2.31)

It is easy to see that
⋂r

i=1 F(Ti) ⊂
⋂∞

n=1 F(Tn). To see the reverse inclusion, let z ∈
⋂∞

n=1 F(Tn).
Follow the first part of the proof above but now let zn ≡ z. Then, z ∈

⋂r
i=1 F(Ti) = F(∪r

i=1Ti).
Hence, {Tn} satisfies the NST∗-condition with

⋃r
i=1 Ti.

Lemma 2.8. Let C be a nonempty closed convex subset of a real Hilbert space H , and let {Tn} be
a family of Ln-Lipschitzian mappings of C into itself with Ln → 1 and

⋂∞
n=1 F(Tn)/=�. If {Tn}

satisfies the NST∗-condition withT, whereT is a family of mappings of C into itself such that F(T) =⋂∞
n=1 F(Tn), then F(T) is closed and convex.

Proof. It follows from the continuity of Tn that F(Tn) is closed and so is F(T) =
⋂∞

n=1 F(Tn).
Now, we prove that F(T) is convex. To this end, let x, y ∈ F(T). Put z = tx + (1 − t)y, where
t ∈ (0, 1). From (2.2), we have

‖z − Tnz‖2 = t‖x − Tnz‖2 + (1 − t)‖y − Tnz‖2 − t(1 − t)‖x − y‖2

≤ tL2
n‖x − z‖2 + (1 − t)L2

n‖y − z‖2 − t(1 − t)‖x − y‖2

= t(1 − t)
(
L2
n − 1

)
‖x − y‖2.

(2.32)

So, we get

lim
n→∞

‖z − Tnz‖ = 0. (2.33)

Since {Tn} satisfies the NST∗-condition with T, we have ‖z − Tz‖ = 0 for all T ∈ T. Then,
z ∈ F(T) and so F(T) is convex.

Remark 2.9. The conclusions of Lemmas 2.6, 2.7, and 2.8 remain true if we replace a Hilbert
spacewith a uniformly convex Banach space. Recall a Banach spaceX is uniformly convex if for
any ε > 0, there exists δ > 0 such that ‖x‖ = ‖y‖ = 1 and ‖x−y‖ ≥ ε imply ‖(x+y)/2‖ ≤ 1−δ.
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3. Main Results

In this section, using the method introduced by Takahashi et al. [6], we obtain a strong
convergence theorem for a countable family of Lipschitzian mappings.

Recall that a mapping T : C → C is closed (demiclosed, resp.) at y if whenever {xn} is a
sequence in C satisfying xn → x (xn ⇀ x, resp.) and Txn → y, then x ∈ C and Tx = y.

Theorem 3.1. Let C be a nonempty bounded closed convex subset of a real Hilbert spaceH . Let {Tn}
be a family of Ln-Lipschitzian mappings of C into itself with a common fixed point. Assume that {αn}
is a sequence in [0, b] for some b ∈ (0, 1). For x1 = x ∈ H and C1 = C, one defines a sequence {xn}
of C as follows:

yn = αnxn + (1 − αn)Tnxn,

Cn+1 =
{
z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn

}
,

xn+1 = PCn+1x, n = 1, 2, 3, . . . ,

(3.1)

where

θn = (1 − αn)
(
L2
n − 1

)
(diamC)2 −→ 0 as n −→ ∞. (3.2)

Suppose that T is a family of mappings of C into itself such that F(T) =
⋂∞

n=1 F(Tn) and I − T is
closed at 0 for all T ∈ T. If {Tn} satisfies the NST∗-condition with T, then {xn} converges strongly to
PF(T)x.

Proof. By Lemma 2.8, we have F(T) is closed and convex. We now prove thatCn is closed and
convex for each n ∈ � by induction. It is obvious that C1 = C is closed and convex. Assume
that Ck is closed and convex for some k ∈ �. For z ∈ Ck, we know that

‖yk − z‖2 ≤ ‖xk − z‖2 + θk (3.3)

is equivalent to

2〈xk − yk, z〉 ≤ ‖xk‖2 − ‖yk‖2 + θk. (3.4)

It follows that Ck+1 is closed and convex. Next, we show that

F(T) ⊂ Cn ∀n ∈ �. (3.5)
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It is clear that F(T) ⊂ C1 = C. Suppose that F(T) ⊂ Ck for some k ∈ �. Then, for p ∈ F(T),

‖yk − p‖2 = ‖αkxk + (1 − αn)Tkxk − p‖2

≤ αk‖xk − p‖2 + (1 − αk)‖Tkxk − p‖2

≤ αk‖xk − p‖2 + (1 − αk)L2
k‖xk − p‖2

= ‖xk − p‖2 + (1 − αk)
(
L2
k − 1

)
‖xk − p‖2

≤ ‖xk − p‖2 + θk,

(3.6)

we have p ∈ Ck+1. Therefore, we obtain (3.5). Now, the sequence {xn} is well defined. As
xn = PCnx,

‖xn − x‖ ≤ ‖z − x‖ ∀z ∈ Cn, ∀ n ∈ �. (3.7)

In particular, since F(T) ⊂ Cn,

‖xn − x‖ ≤ ‖p − x‖ ∀p ∈ F(T), ∀n ∈ �. (3.8)

On the other hand, from xn = PCnx and xn+1 ∈ Cn+1 ⊂ Cn, we have

‖xn − x‖ ≤ ‖xn+1 − x‖ ∀n ∈ �. (3.9)

Therefore, {‖xn − x‖} is nondecreasing and bounded. So,

lim
n→∞

‖xn − x‖ exists. (3.10)

Noticing again that xn = PCnx and for any positive integer k, xn+k ∈ Cn+k−1 ⊂ Cn, we have

〈xn − xn+k, x − xn〉 ≥ 0. (3.11)

It follows from (2.1) that

‖xn+k − xn‖2 = ‖(xn+k − x) − (xn − x)‖2

= ‖xn+k − x‖2 − ‖xn − x‖2 − 2〈xn+k − xn, xn − x〉

≤ ‖xn+k − x‖2 − ‖xn − x‖2.

(3.12)

It then follows from the existence of limn→∞‖xn − x‖2 that {xn} is a Cauchy sequence.
Moreover,

lim
n→∞

‖xn+1 − xn‖ = 0. (3.13)
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We now assume that xn → w for some w ∈ C. Now, since xn+1 ∈ Cn+1 and Cn+1 ⊂ Cn,
‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θn which implies that

‖yn − xn+1‖ ≤ ‖xn − xn+1‖ +
√
θn −→ 0. (3.14)

From αn ≤ b < 1, we get

‖xn − Tnxn‖ =
1

1 − αn
‖yn − xn‖

≤ 1
1 − b

(
‖yn − xn+1‖ + ‖xn − xn+1‖

)
−→ 0.

(3.15)

Since {Tn} satisfies the NST∗-condition with T, we have

lim
n→∞

‖xn − Txn‖ = 0 ∀T ∈ T. (3.16)

Since I − T is closed at 0 for all T ∈ T, we have (I − T)w = 0. This implies that w ∈ F(T).
Furthermore, by (3.8),

‖w − x‖ = lim
n→∞

‖xn − x‖ ≤ ‖p − x‖ ∀p ∈ F(T). (3.17)

Hence, w = PF(T)x. This completes the proof.

Lemma 3.2 (see [9, Theorem 10.4]). Let C be a nonempty closed convex subset of a real Hilbert
space, and let T : C → C be a nonexpansive mapping. Then, I − T is demiclosed at 0.

It is not difficult to see from the proof of Theorem 3.1 that the boundedness of C can
be discarded if {Tn} is a family of nonexpansive mappings. So, we immediately obtain the
following theorem.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H . Let {Tn} and
T be two families of nonexpansive mappings of C into itself such that

⋂∞
n=1 F(Tn) = F(T)/=� and

suppose that {Tn} satisfies the NST∗-condition with T. Assume that {αn} is a sequence in [0, b] for
some b ∈ (0, 1). Then, the sequence {xn} in C defined by (1.4) converges strongly to PF(T)x.

Remark 3.4. Theorem 3.3 includes [6, Theorem 3.3] as a special case since the NST-condition
(I) with T implies the NST∗-condition with T.

Theorem 3.5. Let C be a nonempty bounded closed convex subset of a real Hilbert spaceH . Let {Tn}
be a family of Ln-Lipschitzian mappings of C into itself with a common fixed point. Suppose that T
is a family of mappings from C into itself such that F(T) =

⋂∞
n=1 F(Tn) and I − T is demiclosed at

0 for all T ∈ T. Assume that {αn} is a sequence in [0, b] for some b ∈ (0, 1). If {Tn} satisfies the
NST∗-condition with T, then the sequence {xn} in C defined by (1.5) converges strongly to PF(T)x.

Proof. The proof is analogous to the proof of [7, Theorem 10] and Theorem 3.1, so it is omitted.
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4. Deduced Results

Let C be a subset of a real Hilbert space H . A mapping T : C → C is said to be an
asymptotically nonexpansive if there exists a sequence {kn} of real numbers such that kn ∈
[1,∞), kn → 1, and

‖Tnx − Tny‖ ≤ kn‖x − y‖ ∀x, y ∈ C, n ∈ �. (4.1)

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [14]
as an important generalization of the class of nonexpansive mappings. They proved that if C
is nonempty bounded closed convex and T is an asymptotically nonexpansive self-mapping
of C, then T has a fixed point.

In this section, we use the NST∗-condition to obtain recent results proved by Kim and
Xu [15], Plubtieng and Ungchittrakool [16], and Zegeye and Shahzad [17, 18]. We start with
the following auxiliary result.

Lemma 4.1. Let C be a nonempty closed convex subset of a Hilbert space H , and let T be an
asymptotically nonexpansive mappings of C into itself with a sequence {kn} in [1,∞) satisfying
kn → 1 and F(T)/=�. Then, {Tn} is a family of kn-Lipschitzian mappings of C into itself and
satisfies the NST∗-condition with T .

Proof. We note that {Tn} is a family of kn-Lipschitzian mappings of C into itself. Let {zn} be a
bounded sequence in C such that

lim
n→∞

‖zn − Tnzn‖ = 0, lim
n→∞

‖zn+1 − zn‖ = 0. (4.2)

Since

‖zn+1 − Tzn+1‖ ≤ ‖zn+1 − Tn+1zn+1‖ + ‖Tn+1zn+1 − Tzn+1‖

≤ ‖zn+1 − Tn+1zn+1‖ + k1‖Tnzn+1 − zn+1‖

≤ ‖zn+1 − Tn+1zn+1‖ + k1(‖Tnzn+1 − Tnzn‖ + ‖Tnzn − zn‖ + ‖zn+1 − zn‖)

≤ ‖zn+1 − Tn+1zn+1‖ + k1(kn + 1)‖zn+1 − zn‖ + k1‖Tnzn − zn‖,

(4.3)

it follows that

lim
n→∞

‖zn − Tzn‖ = 0. (4.4)

It is easy to see that F(T) ⊂
⋂∞

n=1 F(T
n). To see the reverse inclusion, let z ∈

⋂∞
n=1 F(T

n)
following from the first part of the proof above, but now let zn ≡ z. Then, z ∈

⋂∞
n=1 F(T

n), and
hence

⋂∞
n=1 F(T

n) ⊂ F(T). This implies that {Tn} satisfies the NST∗-condition with T .

Lemma 4.2 (see [19]). Let C be a nonempty bounded closed convex subset of a Hilbert spaceH , and
let T be an asymptotically nonexpansive mappings of C into itself. Then, I − T is demiclosed at 0.
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Using Theorem 3.1 and Lemmas 2.6 and 4.1, we have the following result.

Theorem 4.3. Let C be a nonempty bounded closed convex subset of a real Hilbert space H , and let
S, T be two asymptotically nonexpansive mappings of C into itself with sequences {sn} and {tn},
respectively, and F(S)∩F(T)/=�. Assume that {αn} is a sequence in [0, b] and {βn} is a sequence in
[a, b] for some a, b ∈ (0, 1). For x1 = x ∈ H and C1 = C, one defines a sequence {xn} of C as follows:

zn = βnxn +
(
1 − βn

)
Snxn,

yn = αnxn + (1 − αn)Tnzn,

Cn+1 =
{
z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn

}
,

xn+1 = PCn+1x, n = 1, 2, 3, . . . ,

(4.5)

where

θn = (1 − αn)
((

t2n − 1
)
+
(
1 − βn

)
t2n

(
s2n − 1

))
(diamC)2 −→ 0 as n −→ ∞. (4.6)

Then, {xn} converges strongly to PF(S)∩F(T)x.

Using Theorem 3.5 and Lemmas 2.6 and 4.1, we have the following result.

Theorem 4.4 (see [16, Theorem 3.1]). Let C be a nonempty bounded closed convex subset of a real
Hilbert space H , and let S, T be two asymptotically nonexpansive mappings of C into itself with
sequences {sn} and {tn}, respectively, and F(S)∩F(T)/=�. Assume that {αn} is a sequence in [0, b]
and {βn} is a sequence in [a, b] for some a, b ∈ (0, 1). For x1 = x ∈ C, one defines a sequence {xn} of
C as follows:

zn = βnxn +
(
1 − βn

)
Snxn,

yn = αnxn + (1 − αn)Tnzn,

Cn =
{
z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn

}
,

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Qnx, n = 1, 2, 3, . . . ,

(4.7)

where

θn = (1 − αn)
((

t2n − 1
)
+
(
1 − βn

)
t2n

(
s2n − 1

))
(diamC)2 −→ 0 as n −→ ∞. (4.8)

Then, {xn} converges strongly to PF(S)∩F(T)x.
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Using Theorem 3.1 and Lemmas 2.7 and 4.1, we have the following result.

Theorem 4.5. LetC be a nonempty bounded closed convex subset of a real Hilbert spaceH . Let {Ti}ri=1
be a finite family of asymptotically nonexpansive mappings of C into itself with sequences {kni} for
i = 1, 2, . . . , r, respectively, and suppose that

⋂r
i=1 F(Ti)/=�. Assume that {αni}∞n=1 are sequences in

[0, 1) such that αn0 ≤ b < 1, αni ≥ a > 0 for some a, b ∈ (0, 1) and
∑r

i=0 αni = 1 for all n ∈ �. For
x1 = x ∈ H and C1 = C, one defines a sequence {xn} of C as follows:

yn = αn0xn + αn1T
n
1 xn + αn2T

n
2 xn + · · · + αnrT

n
r xn,

Cn+1 =
{
z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn

}
,

xn+1 = PCn+1x, n = 1, 2, 3, . . . ,

(4.9)

where

θn =
(
αn1

(
k2
n1 − 1

)
+ αn2

(
k2
n2 − 1

)
+ · · · + αnr

(
k2
nr − 1

))
(diamC)2 −→ 0 as n −→ ∞.

(4.10)

Then, {xn} converges strongly to P∩r
i=1F(Ti)x.

Using Theorem 3.5 and Lemmas 2.7 and 4.1, we have the following two results which
were proved by Zegeye and Shahzad [17, 18].

Theorem 4.6. Let C be a nonempty bounded closed convex subset of a real Hilbert space H . Let
{Ti}ri=1 be a finite family of asymptotically nonexpansive mappings of C with sequences {kni} for
i = 1, 2, . . . , r, respectively, and suppose that

⋂r
i=1 F(Ti)/=�. Assume that {αni}∞n=1 are sequences in

[0, 1) such that αn0 ≤ b < 1, αni ≥ a > 0 for some a, b ∈ (0, 1) and
∑r

i=0 αni = 1 for all n ∈ �. For
x1 = x ∈ C, one defines a sequence {xn} of C as follows:

yn = αn0xn + αn1T
n
1 xn + αn2T

n
2 xn + · · · + αnrT

n
r xn,

Cn =
{
z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn

}
,

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Qnx, n = 1, 2, 3, . . . ,

(4.11)

where

θn =
(
αn1

(
k2
n1 − 1

)
+ αn2

(
k2
n2 − 1

)
+ · · · + αnr

(
k2
nr − 1

))
(diamC)2 −→ 0 as n −→ ∞.

(4.12)

Then, {xn} converges strongly to P∩r
i=1F(Ti)x.
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Theorem 4.7. Let C be a nonempty bounded closed convex subset of a real Hilbert space H . Let
�i = {Ti(t) : t ∈ �

+ , i = 1, 2, . . . , r} be a finite family of asymptotically nonexpansive semigroups
such that F =

⋂r
i=1 F(�i)/=�. Assume that {αni}∞n=1 are sequences in [0, 1) such that

αn0 ≤ b < 1, αni ≥ a > 0, (4.13)

for some a, b ∈ (0, 1) and
∑r

i=0 αni = 1 for all n ∈ �. Let {tni, i = 1, 2, . . . , r} be finite positive and
divergent real sequences. For x1 = x ∈ C, one defines a sequence {xn} of C as follows:

yn = αn0xn + αn1
1
tn1

∫ tn1

0
T1(u)xndu + αn2

1
tn2

∫ tn2

0
T2(u)xndu

+ · · · + αnr
1
tnr

∫ tnr

0
Tr(u)xndu,

Cn =
{
z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn

}
,

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Qnx, n = 1, 2, 3, . . . ,

(4.14)

where

θn =
(
αn1

(
L2
u1 − 1

)
+ αn2

(
L2
u2 − 1

)
+ · · · + αnr

(
L2
ur − 1

))
(diamC)2 −→ 0 as n −→ ∞, (4.15)

with Lui = (1/tni)
∫ tni
0 LTi

i du. Then {xn} converges strongly to PFx.
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