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We prove the Hyers-Ulam stability of the polynomial equation anx
n + an−1xn−1 + · · · + a1x + a0 = 0.

We give an affirmative answer to a problem posed by Li and Hua (2009).

1. Introduction and Preliminaries

A classical question in the theory of functional equations is that “when is it true that a
function which approximately satisfies a functional equation E must be somehow close to
an exact solution of E′′

. Such a problem was formulated by Ulam [1] in 1940 and solved in
the next year for the Cauchy functional equation by Hyers [2]. It gave rise to the stability
theory for functional equations. The result of Hyers was generalized by Rassias [3]. The topic
of the Hyers-Ulam stability of functional equations and its applications has been studied by
a number of mathematicians; see [3–40] and references therein.

Recently, Li and Hua [41] discussed and proved the Hyers-Ulam stability of the
polynomial equation

xn + αx + β = 0, (1.1)

where x ∈ [−1, 1] and proved the following.

Theorem 1.1. If |α| > n, |β| < |α| − 1, and y ∈ [−1, 1] satisfy the inequality

∣
∣yn + αy + β

∣
∣ ≤ ε, (1.2)
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then there exists a solution v ∈ [−1, 1] of (1.1) such that
∣
∣y − v

∣
∣ ≤ Kε, (1.3)

where K > 0 is constant.

They also asked an open problem whether the real polynomial equation

anx
n + an−1xn−1 + · · · + a1x + a0 = 0 (1.4)

has the Hyers-Ulam stability for the case that this real polynomial equation has some
solutions in [a, b]. The aim of this paper is to give a positive answer to this problem. First
of all, we give the definition of the Hyers-Ulam stability.

Definition 1.2. One says that (1.4) has the Hyers-Ulam stability if there exists a constantK > 0
with the following property:

for every ε > 0, y ∈ [−1, 1], if
∣
∣
∣any

n + an−1yn−1 + · · · + a1y + a0

∣
∣
∣ ≤ ε (1.5)

then there exists some z ∈ [−1, 1] satisfying

anz
n + an−1zn−1 + · · · + a1z + a0 = 0 (1.6)

such that |y − z| ≤ Kε. One calls such K a Hyers-Ulam stability constant for (1.4). For the
complex polynomial equation, [−1, 1] is replaced by closed unit disc

D = {z ∈ C; |z| ≤ 1}. (1.7)

2. Main Results

The aim of this work is to investigate the Hyers-Ulam stability for (1.4).

Theorem 2.1. If

|a0| < |a1| − (|a2| + |a3| + · · · + |an|), (2.1)

|a1| > 2|a2| + 3|a3| + · · · + (n − 1)|an−1| + n|an|, (2.2)

then there exists an exact solution v ∈ [−1, 1] of (1.4).

Proof. If we set

g(x) =
1
a1

(

−a0 − a2x
2 − a3x

3 − · · · − an−1xn−1 − anx
n
)

, (2.3)
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for x ∈ [−1, 1], then we have

∣
∣g(x)

∣
∣ =

1
|a1|

∣
∣
∣−a0 − a2x

2 − · · · − an−1xn−1 − anx
n
∣
∣
∣

≤ 1
|a1|(|a0| + |a2| + · · · + |an−1| + |an|)

≤ 1

(2.4)

by (2.1).
LetX = [−1, 1] and d(x, y) = |x−y|. Then (X, d) is a complete metric space and g maps

X to X. Now, we will show that g is a contraction from X to X. For any x, y ∈ X,we have

d
(

g(x), g
(

y
))

=
∣
∣
∣
∣

1
a1

(

−a0 − a2x
2 − · · · − anx

n
)

− 1
a1

(−a0 − · · · − any
n)
∣
∣
∣
∣

≤ 1
|a1|

∣
∣x − y

∣
∣

{

|a2|
∣
∣x + y

∣
∣ + · · · + |an|

∣
∣
∣xn−1 + · · · + yn−1

∣
∣
∣

}

≤ 1
|a1|

∣
∣x − y

∣
∣{2|a2| + 3|a3| + · · · + (n − 1)|an−1| + n|an|}.

(2.5)

For x, y ∈ [−1, 1], x /=y, from (2.2), we obtain

d
(

g(x), g
(

y
)) ≤ λd

(

x, y
)

. (2.6)

Here

λ =
2|a2| + 3|a3| + · · · + (n − 1)|an−1| + n|an|

|a1| < 1. (2.7)

Thus g is a contraction fromX toX. By the Banach contraction mapping theorem, there exists
a unique v ∈ X such that

g(v) = v. (2.8)

Hence (1.4) has a solution on [−1, 1].

As an application of Rouche’s theorem, we prove the following theorem for complex
polynomial equation

anz
n + an−1zn−1 + · · · + a1z + a0 = 0, (2.9)

which is much better than the above result. In fact, we prove the following theorem.
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Theorem 2.2. If

|a0| < |a1| − (|a2| + |a3| + · · · + |an|), (2.10)

then there exists an exact solution in open unit disc for (2.9).

Proof. If we set

g(z) =
1
a1

(

−a0 − a2z
2 − a3z

3 − · · · − an−1zn−1 − anz
n
)

, (2.11)

then we have

∣
∣g(z)

∣
∣ =

1
|a1|

∣
∣
∣−a0 − a2z

2 − · · · − an−1zn−1 − anz
n
∣
∣
∣

≤ 1
|a1| (|a0| + |a2| + · · · + |an−1| + |an|), for |z| ≤ 1

< 1

(2.12)

by (2.10).
Since |g(z)| < 1 for |z| = 1, then |g(z)| < | −z| = 1 and by Rouche’s theorem, we observe

that g(z) − z has exactly one zero in |z| < 1 which implies that g has a unique fixed point in
|z| < 1.

Theorem 2.3. If the conditions of Theorem 2.1 hold and y ∈ [−1, 1] satisfies the inequality

∣
∣
∣any

n + an−1yn−1 + · · · + a1y + a0

∣
∣
∣ ≤ ε, (2.13)

then (1.4) has the Hyers-Ulam stability.

Proof. Let ε > 0 and y ∈ [−1, 1] such that

∣
∣
∣any

n + an−1yn−1 + · · · + a1y + a0

∣
∣
∣ ≤ ε. (2.14)

We will show that there exists a constant K independent of ε and v such that

∣
∣y − v

∣
∣ ≤ Kε (2.15)

for some v ∈ [−1, 1] satisfying (1.4).
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Let us introduce the abbreviation K = 1/|a1|(1 − λ). Then

∣
∣y − v

∣
∣ =

∣
∣y − g

(

y
)

+ g
(

y
) − g(v)

∣
∣ ≤ ∣

∣y − g
(

y
)∣
∣ +

∣
∣g
(

y
) − g(v)

∣
∣

≤
∣
∣
∣
∣
y − 1

a1

(

−a0 − a2y
2 − · · · − any

n
)
∣
∣
∣
∣
+ λ

∣
∣y − v

∣
∣

=
1
|a1|

∣
∣
∣any

n + an−1yn−1 + · · · + a1y + a0

∣
∣
∣ + λ

∣
∣y − v

∣
∣.

(2.16)

Thus, we have

∣
∣y − v

∣
∣ ≤ 1

|a1|(1 − λ)

∣
∣
∣any

n + an−1yn−1 + · · · + a1y + a0

∣
∣
∣

≤ Kε

(2.17)

by (2.13) and so the result follows.

Corollary 2.4. In Theorem 2.2, if there exists y ∈ D satisfying the inequality (2.13), then (2.9) has
the Hyers-Ulam stability.

Remark 2.5. For an = 1, ai = 0, for 2 ≤ i ≤ n − 1, combining Theorems 2.1 and 2.3 gives
Theorem 1.1.

Remark 2.6. By the similar way, one can easily prove the Hyers-Ulam stability of (1.4) on any
finite interval [a, b].

Remark 2.7. Let f be any complex function such that f is analytic in

Δ = {z ∈ C : |z|〈R,R〉0}. (2.18)

It is an interesting open problem whether f has the Hyers-Ulam stability for the case that f
has some zeros in Δ.

We note that there is an error in the proof of Theorem 2.2 of [41], when Li and Hua
stated that if (X, d) is a complete metric linear space then metric d is invariant, more precisely

d
(

x, y
)

= d
(

x − y, 0
)

(2.19)

for all x, y ∈ X. We give a counterexample for this case. Suppose that X = R, and we define
metric d on X as follows:

d
(

x, y
)

=
∣
∣x + [x] − (

y +
[

y
])∣
∣, (2.20)
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for all x, y ∈ X(X, d) is a complete metric linear space, and d is not an invariant metric on X,
that is, there are x, y ∈ X such that

d
(

x, y
)

/=d
(

x − y, 0
)

. (2.21)
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