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The mixed viscosity approximation is proposed for finding fixed points of nonexpansive
mappings, and the strong convergence of the scheme to a fixed point of the nonexpansive mapping
is proved in a real Banach space with uniformly Gâteaux differentiable norm. The theorem about
Halpern type approximation for nonexpansive mappings is shown also. Our theorems extend and
improve the correspondingly results shown recently.

1. Introduction and Preliminaries

Let E be a real Banach space with norm ‖ · ‖, E∗ denote the dual space of E, and 〈·, ·〉 denote
the generalized duality pairing. Let J : E → 2E

∗
denote the normalized duality mapping

defined by

J(x) =
{
f∗ ∈ X∗ :

〈
x, f∗〉 =

∥∥f∗∥∥‖x‖,∥∥f∗∥∥ = ‖x‖}, ∀x ∈ E. (1.1)

It is well known that the following results: ∀x, y ∈ E, ∀j(x + y) ∈ J(x + y), ∀j(x) ∈ J(x),

‖x‖2 + 2
〈
y, j(x)

〉 ≤ ∥∥x + y
∥∥2 ≤ ‖x‖2 + 〈

y, j
(
x + y

)〉
. (1.2)
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Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of Banach space E, the norm of E is said
to be Gâteaux differentiable if the limit

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(1.3)

exists for each x, y ∈ U. Such an E is called a smooth Banach space. The norm of Banach space
E is said to be uniformly Gâteaux differentiable if for each y ∈ U, the limit limt→ 0((‖x + ty‖ −
‖x‖)/t) is attained uniformly for x ∈ U. A Banach space E is said to be strictly convex if

‖x‖ =
∥
∥y

∥
∥ = 1, x /=y implies

∥
∥x + y

∥
∥

2
< 1, (1.4)

to be uniformly convex if for all ε ∈ [0, 2], ∃δε > 0 such that

‖x‖ =
∥∥y

∥∥ = 1,
∥∥x − y

∥∥ ≥ ε implies

∥∥x + y
∥∥

2
< 1 − δε. (1.5)

It is well known that (see [1, 2]): (1) if E has a uniformly Gâteaux differentiable norm,
then J is norm-to-weak∗ continuous on bounded set of E. (2) If a Banach space E admits
a sequentially continuous duality mapping J from weak topology to weak star topology,
then the duality mapping J is single-valued. (3) Each uniformly convex Banach space E is
reflexive and strictly convex and has fixed point property for nonexpansive self-mappings;
every uniformly smooth Banach space E is a reflexive Banach space with a uniformly Gâteaux
differentiable norm and has fixed point property for nonexpansive self-mappings.

Let C be a nonempty closed convex subset of a Banach space E. If D is a nonempty
subset of C, then a mapping P : C → D is said to be a retraction if Px = x for all x ∈ D.
A mapping P : C → D is said to be a sunny if P(Px + t(x − Px)) = Px, ∀x ∈ C where
t > 0. A subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny
nonexpansive retraction of C ontoD. For more details, see [2]. Note that every closed convex
subset of a Hilbert space is a nonexpansive retract. In the sequel, we always take P to denote
the sunny nonexpansive retraction of E onto C.

Let T : C → C be a nonexpansive mapping; for a sequence {αn} ⊂ (0, 1) and a fixed
contractive mapping f : C → C, the sequence {xn}, iteratively defined in C by

xn+1 = αnf(xn) + (1 − αn)Txn, n = 0, 1, 2, . . . , (1.6)

is said to be viscosity approximation. If f(xn) = y0 for a given y0 ∈ C, it is called Halpern
approximation which was first introduced by Halpern [3] in 1967. Under the following
assumption:

(i) lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞,

(ii)
∞∑

n=0
|αn+1 − αn| < ∞

(
or lim

n→∞
αn+1

αn
= 1

)
,

(1.7)
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Xu [4] proved the strong convergence of {xn} to a fixed point of T in Hilbert spaces and in
uniformly smooth Banach spaces in 2004. In [3], Halpern pointed out that the condition (i)
is necessary for the convergence of the Halpern approximation to a fixed point of T . At the
same time, he put forth the following open problem: is the condition (i) a sufficient condition
for the convergence of the Halpern approximation to a fixed point of T? which was put forward by
Reich in [5] also. In order to answer the open question, many authors have done extensively
some works; see [6–11] and the references therein. In [7–9], the strong convergence of the
Halpern approximation depends on the convergence of the path xt = ty0+(1−t)Txt(t ∈ (0, 1)).
In [6], Song got rid of the dependence on the convergence of the path xt, and proved the
convergence of the Halpern approximation under the assumptions for {αn} and T as follows:

(iii)
∞∑

n=0

αn = ∞,
∞∑

n=0
|αn+1 − αn| < ∞

(
or lim

n→∞
αn+1

αn
= 1

)
,

(iv) Kmin

⋂
F(T)/= ∅,

(1.8)

where Kmin = {z ∈ C : Un‖xn − z‖2 = infy∈CUn‖xn − y‖2} and Un is a Banach limit.
Recently, many authors have studied extensively the problem of approximating a fixed point
of nonexpansive nonself-mappings T : C → E in a Banach space, by using the Halpern type
iteration (see [12–16]) and the viscosity type iteration (see [17–23]).

In this work, on one hand, we will prove the strong convergence of the mixed viscosity
iterative scheme, which is introduced as follows: for any chosen x0 ∈ C,

yn = (1 − θn)xn + θnTxn,

xn+1 = αnf(xn) + (1 − αn)
[(
1 − βn

)
xn + βnTyn

])
, ∀n ≥ 0,

(1.9)

where f : C → C is a fixed contractive mapping, {αn}, {βn}, and {θn} are the real number
sequences in (0, 1), to a fixed point of the nonexpansive mapping T : C → C in a real Banach
space with uniformly Gâteaux differentiable norm under the following conditions:

lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞,

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

lim
n→∞

θn = 0,

(C1)

(iv)′ K̃min

⋂
F(T)/= ∅, (1.10)

where K̃min = {z ∈ K : Un‖xn − z‖2 = infy∈CUn‖xn − y‖2}, Un is a Banach limit, and {xn} is
defined by (1.9). On the other hand, we will show that the condition (iv)′ is not necessary for
proving the strong convergence of the mixed viscosity iterative scheme. As the applications,
we will show some results about mixed viscosity type approximation and Halpern type
approximation for nonexpansive nonself-mappings also. Our theorems complement and
generalize the corresponding results in [8, 9, 16, 24–26].

Now, we recall the following lemmas for proving our theorems firstly.
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Lemma 1.1 (see [27]). Let {xn} and {yn} be bounded sequences in a Banach space E, {tn} ⊂ [0, 1]
a sequence satisfying

0 < lim inf
n→∞

tn ≤ lim sup
n→∞

tn < 1. (1.11)

Suppose that xn+1 = tnyn + (1 − tn)xn, for all n = 0, 1, 2, . . ., and

lim sup
n→∞

(∥∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖

) ≤ 0. (1.12)

Then limn→∞‖xn − yn‖ = 0.

Lemma 1.2 (see [28]). Let {an}, {bn} and, {cn} be sequences of nonnegative real numbers such that
an+1 ≤ (1 − αn)an + αnbn + cn, ∀n ≥ 0. If {αn} ⊂ [0, 1],

∞∑

n=1

αn = ∞, lim sup
n→∞

bn ≤ 0,
∞∑

n=1

cn < ∞, (1.13)

then limn→∞an = 0.

2. Main Results

In this section, the mixed viscosity iterations for a contractive self-mapping f for
approximating to a fixed point of nonexpansive mapping T : C → C are studied in a real
Banach space.

Theorem 2.1. Let C be a nonempty closed convex subset of a real Banach space E. Let T : C → C
be a nonexpansive mapping with F(T) = {x ∈ C : Tx = x}/= ∅ and f : C → C a fixed contractive
mapping with the contractive coefficient k ∈ (0, 1). If the sequences {αn}, {βn}, and {θn} in (0, 1)
satisfy (C1) and for any x0 ∈ C, the sequence {xn} is defined as follows:

yn = (1 − θn)xn + θnTxn,

xn+1 = αnf(xn) + (1 − αn)
[(
1 − βn

)
xn + βnTyn

])
, ∀n ≥ 0;

(2.1)

then we obtain the following:

(1) {xn} is bounded;

(2) limn→∞‖xn+1 − xn‖ = 0 and limn→∞‖xn − Txn‖ = 0.
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Proof. First we show that {xn} is bounded. Now let z ∈ F(T), then

∥
∥yn − z

∥
∥ = ‖(1 − θn)(xn − z) + θn(Txn − Tz)‖ ≤ ‖xn − z‖;

‖xn+1 − z‖ =
∥
∥αnf(xn) + (1 − αn)

[(
1 − βn

)
xn + βnTyn

] − z
∥
∥,

≤ αn

∥
∥(f(xn) − f(z)

)
+
(
f(z) − z

)∥∥

+ (1 − αn)
∥
∥(1 − βn

)
(xn − z) + βn

(
Tyn − z

)∥∥

≤ αnk‖xn − z‖ + αn

∥
∥f(z) − z

∥
∥ + (1 − αn)βn

∥
∥Tyn − Tz

∥
∥

+ (1 − αn)
(
1 − βn

)‖xn − z‖

≤ αnk‖xn − z‖ + αn

∥∥f(z) − z
∥∥ + (1 − αn)βn

∥∥yn − z
∥∥

+ (1 − αn)
(
1 − βn

)‖xn − z‖

≤ αn

∥∥f(z) − z
∥∥ + (1 − αn(1 − k))‖xn − z‖

≤ max
{

1
1 − k

∥∥f(z) − z
∥∥, ‖xn − z‖

}

≤ max
{

1
1 − k

∥∥f(z) − z
∥∥, ‖x0 − z‖

}
.

(2.2)

Therefore, {xn} is bounded, so are {Txn}, {yn}, {Tyn}, and {f(xn)}. Next, we show that

limn→∞‖xn+1 − xn‖ = 0. (2.3)

For all n ≥ 0, let

xn+1 = γnxn +
(
1 − γn

)
un, (2.4)

where γn = (1 − αn)(1 − βn) ∈ (0, 1), then

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1. (2.5)
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Note that

un+1 − un =
xn+2 − γn+1xn+1

1 − γn+1
− xn+1 − γnxn

1 − γn

=
αn+1f(xn+1) + (1 − αn+1)

[(
1 − βn+1

)
xn+1 + βn+1Tyn+1

] − γn+1xn+1

1 − γn+1

− αnf(xn) + (1 − αn)
[(
1 − βn

)
xn + βnTyn

] − γnxn

1 − γn

=
αn+1

1 − γn+1

(
f(xn+1) + Tyn+1

) − αn

1 − γn

(
f(xn) + Tyn

) − (
Tyn+1 − Tyn

)
,

(2.6)

∥
∥Tyn+1 − Tyn

∥
∥ ≤ ∥

∥yn+1 − yn

∥
∥ ≤ ‖xn+1 − xn‖ + θn+1‖xn+1 − Txn+1‖ + θn‖xn − Txn‖. (2.7)

Hence, we have that

‖un+1 − un‖ ≤ αn+1

1 − γn+1

∥∥f(xn+1) + Tyn+1
∥∥ +

αn

1 − γn

∥∥f(xn) + Tyn

∥∥

+ ‖xn+1 − xn‖ + θn+1‖xn+1 − Txn+1‖ + θn‖xn − Txn‖.
(2.8)

Then it follows from the boundedness of {xn}, {Txn}, {Tyn}, and {f(xn)}, and (C1) that

lim supn→∞(‖un+1 − un‖ − ‖xn+1 − xn‖) ≤ 0. (2.9)

It follow from (2.9) and Lemma 1.1 that

limn→∞‖xn − un‖ = 0, (2.10)

limn→∞‖xn+1 − xn‖ = 0. (2.11)

Since

xn+1 − xn = αn

(
f(xn) − xn

)
+ (1 − αn)βn

(
Tyn − xn

)
,

xn − yn = θn(xn − Txn),
(2.12)

(1 − αn)βn
∥∥Tyn − xn

∥∥ ≤ ‖xn+1 − xn‖ + αn

∥∥f(xn) − xn

∥∥, (2.13)

from (C1), (2.11) and, the boundedness of {xn}, {Txn}, and {f(xn)}, we have

limn→∞
∥∥xn − Tyn

∥∥ = 0, limn→∞
∥∥xn − yn

∥∥ = 0. (2.14)
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From

‖xn+1 − Txn‖ ≤ ∥
∥Tyn − Txn

∥
∥ +

∥
∥xn − Tyn

∥
∥ + ‖xn+1 − xn‖

≤ ∥
∥yn − xn

∥
∥ +

∥
∥xn − Tyn

∥
∥ + ‖xn+1 − xn‖,

(2.15)

we obtain

limn→∞‖xn+1 − Txn‖ = 0. (2.16)

Therefore, limn→∞‖xn − Txn‖ = 0. This completes the proof.

Proposition 2.2 (see [18]). Let C be a nonempty closed convex subset of a real Banach space E
which has uniformly Gâteaux differentiable norm. Suppose that {xn} is a bounded sequence of E
such that limn→∞‖xn+1 − xn‖ = 0 and Un is a Banach limit. If z ∈ C such that Un‖xn − z‖2 =
infy∈CUn‖xn − y‖2, then

lim sup
n→∞

〈
y − z, j(xn − z)

〉 ≤ 0, ∀y ∈ C. (2.17)

Let {xn} be defined by (2.1) and αn ∈ (0, 1), it follows from Theorem 2.1 that {xn} is
bounded. Let

ϕ
(
y
)
= Un‖xn − y‖2 ∀y ∈ C, (2.18)

then ϕ(y) is convex and continuous. If E is reflexive, there exists z ∈ C such that ϕ(z) =
infy∈Cϕ(y) (see [2], Theorem 1.3.11). Let

K̃min =
{
z ∈ C : ϕ(z) = infy∈Cϕ

(
y
)}

, (2.19)

then K̃min /= ∅ is a closed convex subset in a reflexive Banach space E.

Theorem 2.3. LetC be a nonempty closed convex subset of a real Banach space E which has uniformly
Gâteaux differentiable norm. Suppose that T : C → C is a nonexpansive mapping with F(T)/= ∅, f is
a fixed contractive mapping with the contractive coefficient k ∈ (0, 1), and the sequences {αn}, {βn}
and {θn} in (0, 1) satisfy (C1). If K̃min

⋂
F(T)/= ∅, then the sequence {xn} defined by (2.1) converges

strongly to a fixed point of T as n → ∞.
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Proof. Take z ∈ K̃min
⋂
F(T). It follows from Theorem 2.1 that {xn} is bounded and

limn→∞‖xn+1 − xn‖ = 0. For f(z) ∈ C, by Proposition 2.2, we have that

lim supn→∞
〈
f(z) − z, j(xn − z)

〉 ≤ 0. (2.20)

Next, we show that limn→∞xn = z. Since

xn+1 −
(
αnf(xn) + (1 − αn)z

)
= (xn+1 − z) − αn

(
f(xn) − z

)
,

∥
∥xn+1 −

(
αnf(xn) + (1 − αn)z

)∥∥ ≤ ∥
∥(1 − αn)

[(
1 − βn

)
xn + βnTyn

] − (1 − αn)z
∥
∥

=
∥
∥(1 − αn)

[(
1 − βn

)
(xn − z) + βn

(
Tyn − Tz

)]∥∥

≤ (1 − αn)‖xn − z‖,

(2.21)

then

‖xn+1 − z‖2 = 〈
xn+1 −

(
αnf(xn) + (1 − αn)z

)
, j(xn+1 − z)

〉

+ αn

〈
f(xn) − z, j(xn+1 − z)

〉

≤ ∥∥xn+1 −
(
αnf(xn) + (1 − αn)z

)∥∥‖xn+1 − z‖
+ αn

(〈
f(xn) − f(z), j(xn+1 − z)

〉
+
〈
f(z) − z, j(xn+1 − z)

〉)

≤ 1
2
(1 − αn)

(
‖xn − z‖2 + ‖xn+1 − z‖2

)
+
1
2
αn

(∥∥f(xn) − f(z)
∥∥2 + ‖xn+1 − z‖2

)

+ αn

〈
f(z) − z, j(xn+1 − z)

〉

≤ 1
2

(
1 − αn

(
1 − k2

))
‖xn − z‖2 + 1

2
‖xn+1 − z‖2 + αn

〈
f(z) − z, j(xn+1 − z)

〉
.

(2.22)

Hence,

‖xn+1 − z‖2 ≤
(
1 − αn

(
1 − k2

))
‖xn − z‖2 + 2αn

〈
f(z) − z, j(xn+1 − z)

〉
. (2.23)

Let an = ‖xn − z‖2 and bn = (2/(1 − k2))〈y − z, j(xn+1 − z)〉; it follows from Lemma 1.2 that
{xn} converges strongly to z ∈ C. This completes the proof.

Proposition 2.4. Let E be a real reflexive Banach space with uniformly Gâteaux differentiable norm,
C a nonempty closed convex subset of E, T : C → C a nonexpansive mapping with F(T)/= ∅, and
{xn} defined by (2.1). Then K̃min

⋂
F(T)/= ∅.

Proof. From the reflexivity of E and the definition of K̃min, it follows that K̃min is a nonempty
closed convex subset of E. By Theorem 2.1, we know that limn→∞‖xn+1 − Txn‖ = 0.
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Claim that T(K̃min) ⊂ K̃min. Indeed, for any x ∈ K̃min, we have

ϕ(Tx) = Un‖xn − Tx‖2 = Un‖xn+1 − Tx‖2

≤ Un(‖xn+1 − Txn‖ + ‖Txn − Tx‖)2 ≤ Un‖xn − x‖2 = ϕ(x).
(2.24)

Therefore, Tx ∈ K̃min and T(K̃min) ⊂ K̃min.
Since F(T)/= ∅, there exists unique u ∈ K̃min such that ‖z − u‖ = infx∈K̃min

‖z − x‖, for all
z ∈ F(T). By Tz = z and Tu ∈ K̃min, we have

‖z − Tu‖ = ‖Tz − Tu‖ ≤ ‖z − u‖. (2.25)

Hence u = Tu by the uniqueness of u ∈ K̃min. Thus K̃min
⋂
F(T)/= ∅.

By the above results, we can obtain the following theorem.

Theorem 2.5. Let E be a real reflexive Banach space with uniformly Gâteaux differentiable norm, C
a nonempty closed convex subset of E, T : C → C a nonexpansive mapping with F(T)/= ∅, and f a
fixed contractive mapping with the contractive coefficient k ∈ (0, 1). If the sequences {αn}, {βn}, and
{θn} in (0, 1) satisfy (C1), then the sequence {xn} defined by (2.1) converges strongly to a fixed point
of T .

Remark 2.6. Theorem 2.5 shakes off the assumption limn→∞‖Tyn−yn‖ = 0 in [26] and extends
Theorem 1 in [24] shown in uniformly smooth Banach spaces.

Theorem 2.7. Let E be a real strictly convex Banach space E with uniformly Gâteaux differentiable
norm and C a nonempty closed convex subset of E which is a sunny nonexpansive retract of E. Let
T : C → E be a nonexpansive nonself-mapping with F(T) = {x ∈ C : Tx = x}/= ∅ and f : C → C a
fixed contractive mapping with the contractive coefficient k ∈ (0, 1). Suppose that the sequences {αn},
{βn}, and {θn} in (0, 1) satisfy (C1), C is a sunny nonexpansive retract of E, and the sequence {xn}
is defined as follows:

for any x0 ∈ C,

yn = (1 − θn)xn + θnPTxn,

xn+1 = αnf(xn) + (1 − αn)
[(
1 − βn

)
xn + βnPTyn

])
, ∀n ≥ 0;

(2.26)

If {z ∈ C : Un‖xn − z‖2 = infy∈CUn‖xn − y‖2}⋂F(T)/= ∅, then the sequence {xn} converges
strongly to a fixed point of T as n → ∞.

Proof. It follows from [12, Lemmas 3.1 and 3.3] that F(T) = F(PT), and then F(PT)/= ∅. By
replacing T by PT in Theorem 2.3, we can show that the conclusion holds.
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Theorem 2.8. Let E be a real reflexive and strictly convex Banach space with uniformly Gâteaux
differentiable norm, C a nonempty closed convex subset of a real Banach space E which is a sunny
nonexpansive retract of E, T : C → E a nonexpansive nonself-mapping with F(T)/= ∅, and f a fixed
contractive mapping with the contractive coefficient k ∈ (0, 1). If the sequences {αn}, {βn} and {θn} in
(0, 1) satisfy (C1), then the sequence {xn} defined by (2.26) converges strongly to a fixed point of T .

Proof. It follows from [12, Lemmas 3.1 and 3.3] that F(T) = F(PT), and then F(PT)/= ∅. By
replacing T by PT in Theorem 2.5, we can show that the conclusion holds.

Corollary 2.9. Let E be a real uniformly convex Banach space with uniformly Gâteaux differentiable
norm, C, T , f , {αn}, and {βn} as Theorem 2.8. Then the sequence {xn} defined by (2.1) converges
strongly to a fixed point of T .

3. Some Applications

In this section, we introduce the following Halpern type approximation: for the given x0, u0 ∈
C, the sequence {xn} is defined by

yn = (1 − θn)xn + θnTxn,

xn+1 = αnu0 + (1 − αn)
[(
1 − βn

)
xn + βnTyn

])
, ∀n ≥ 0,

(3.1)

and show some results about Halpern type approximation for nonexpansive mappings,
which generalize and improve some known conclusions.

Define Cmin = {z ∈ C : ϕ(z) = infy∈Cϕ(y)}, where ϕ(y) = Un‖xn − y‖2 for all y ∈ C and
{xn} is defined by (3.1).

Theorem 3.1. LetC be a nonempty closed convex subset of a real Banach space E which has uniformly
Gâteaux differentiable norm. Suppose that T : C → C is a nonexpansive mapping with F(T)/= ∅, f is
a fixed contractive mapping with the contractive coefficient k ∈ (0, 1), and the sequences {αn}, {βn},
and {θn} in (0, 1) satisfy (C1). If Cmin

⋂
F(T)/= ∅, then the sequence {xn} defined by (3.1) converges

strongly to a fixed point of T as n → ∞.

Proof. First we show that {xn} is bounded. Now let z ∈ F(T), then

∥∥yn − z
∥∥ = ‖(1 − θn)(xn − z) + θn(Txn − Tz)‖ ≤ ‖xn − z‖,

‖xn+1 − z‖ =
∥∥(αnu0 + (1 − αn)

[(
1 − βn

)
xn + βnTyn

]) − z
∥∥

≤ αn‖u0 − z‖ + (1 − αn)
∥∥(1 − βn

)
(xn − z) + βn

(
Tyn − z

)∥∥

≤ αn‖u0 − z‖ + (1 − αn)βn
∥∥Tyn − Tz

∥∥ + (1 − αn)
(
1 − βn

)‖xn − z‖
≤ αn‖u0 − z‖ + (1 − αn)‖xn − z‖
≤ max{‖u0 − z‖, ‖x0 − z‖}.

(3.2)

Therefore, {xn} is bounded. Then Cmin is well defined.
In the proofs of Theorems 2.1 and 2.3, take f(x) = u0 for all x ∈ C; we can show

similarly that the conclusion holds.
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Remark 3.2. If θn = 0 for all n = 0, 1, 2, . . . , Theorem 3.1 weakens the condition of {βn} of
Theorem 4.1 in [6].

Theorem 3.3. Let C be a nonempty closed convex subset of a real reflexive Banach space E which
has uniformly Gâteaux differentiable norm. Suppose that T : C → C is a nonexpansive mapping
with F(T)/= ∅ and the sequences {αn}, {βn}, and {θn} in (0, 1) satisfy (C1). Then the sequence {xn}
defined by (3.1) converges strongly to a fixed point of T as n → ∞.

Proof. Take f(x) = u0 for all x ∈ C in Theorem 2.5; it is easy to show that the conclusion
holds.

Remark 3.4. If θn = 0 for all n = 0, 1, 2, . . . , Theorem 3.3 gets rid of the dependence on the
implicit anchor-like continuous path zt = ty + (1 − t)Tzt in Suzuki’s Theorem 3 in [9] and
Theorem 3.1 of C. E. Chidume and C. O. Chidume [8]. It also complements and generalizes
[25, Theorem 1], which is proved in uniformly smooth Banach spaces.

Theorem 3.5. Let C be a nonempty closed convex subset of a real reflexive and strictly convex Banach
space E which has uniformly Gâteaux differentiable norm. Suppose that C is a sunny nonexpansive
retract of E, T : C → E is a nonexpansive nonself-mapping with F(T)/= ∅, f is a fixed contractive
mapping with the contractive coefficient k ∈ (0, 1), the sequences {αn}, {βn}, and {θn} in (0, 1) satisfy
(C1), and the sequence {xn} is defined as follows,

for the given x0, u0 ∈ C,

yn = (1 − θn)xn + θnPTxn,

xn+1 = αnu0 + (1 − αn)
[(
1 − βn

)
xn + βnPTyn

])
, ∀n ≥ 0.

(3.3)

Then the sequence {xn} converges strongly to a fixed point of T as n → ∞.

Remark 3.6. If θn = 0 for all n = 0, 1, 2, . . . , Theorem 3.3 improves and generalizes Theorem 3.2
in [16]: it gets rid of the restriction of δ ∈ (0, 1) and dependence on the implicit anchor-like
continuous path zt = ty + (1 − t)PTzt.
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