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The purpose of this paper is to solve the minimization problem of finding x∗ such that x∗ =
argminx∈Γ‖x‖2, where Γ stands for the intersection set of the solution set of the equilibrium
problem and the fixed points set of a nonexpansive mapping. We first present two new composite
algorithms (one implicit and one explicit). Further, we prove that the proposed composite
algorithms converge strongly to x∗.

1. Introduction

In the present paper, our main purpose is to solve the minimization problem of finding x∗

such that

x∗ = arg min
x∈Γ

‖x‖2, (1.1)

where Γ stands for the intersection set of the solution set of the equilibrium problem and
the fixed points set of a nonexpansive mapping. This problem is motivated by the following
least-squares solution to the constrained linear inverse problem:

Bx = b,

x ∈ C,
(1.2)
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where C is a nonempty closed convex subset of a real Hilbert space H, B is a bounded linear
operator from H to another real Hilbert space H1 and b is a given point in H1. The least-
squares solution to (1.2) is the least-norm minimizer of the minimization problem

min
x∈C

‖Bx − b‖2. (1.3)

Let Sb denote the solution set of (1.2) (or equivalently (1.3)). It is known that Sb is nonempty
if and only if PB(C)(b) ∈ B(C). In this case, Sb has a unique element with minimum norm
(equivalently, (1.2) has a unique least-squares solution); that is, there exists a unique point
x† ∈ Sb satisfying

∥
∥
∥x†

∥
∥
∥ = min{‖x‖ : x ∈ Sb}. (1.4)

The so-called C-constrained pseudoinverse of B is then defined as the operator B†
C with

domain and values given by

D
(

B†
C

)

=
{

b ∈ H : PB(C)(b) ∈ B(C)
}

, B†
C(b) = x†, b ∈ D

(

B†
C

)

, (1.5)

where x† ∈ Sb is the unique solution to (1.4).
Note that the optimality condition for the minimization (1.3) is the variational

inequality (VI)

x̂ ∈ C, 〈B∗(Bx̂ − b), x − x̂〉 ≥ 0, x ∈ C, (1.6)

where B∗ is the adjoint of B.
If b ∈ D(B†

C), then (1.3) is consistent and its solution set Sb coincides with the solution
set of VI (1.6). On the other hand, VI (1.6) can be rewritten as

x̂ ∈ C, 〈(x̂ − λB∗(Bx̂ − b)) − x̂, x − x̂〉 ≤ 0, x ∈ C, (1.7)

where λ > 0 is any positive scalar. In the terminology of projections, (1.7) is equivalent to the
fixed point equation

x̂ = PC(x̂ − λB∗(Bx̂ − b)). (1.8)

It is not hard to find that for 0 < λ < 2/‖B‖2, the mapping x 	→ PC(x − λB∗(Bx − b))
is nonexpansive. Therefore, finding the least-squares solution of the constrained linear
inverse problem is equivalent to finding the minimum-norm fixed point of the nonexpansive
mapping x 	→ PC(x − λB∗(Bx − b)).

Based on the above facts, it is an interesting topic of finding the minimum norm fixed
point of the nonexpansive mappings. In this paper, we will consider a general problem. We
will focus on to solve the minimization problem (1.1). At this point, we first recall some
definitions on the fixed point problem and the equilibrium problem as follows.
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Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that a
mapping A : C → H is called α-inverse strongly monotone if there exists a positive real
number α such that 〈Ax − Ay, x − y〉 ≥ α‖Ax −Ay‖2, for all x, y ∈ C. It is clear that any α-
inverse strongly monotone mapping is monotone and 1/α-Lipschitz continuous. Let f : C →
H be a ρ-contraction; that is, there exists a constant ρ ∈ [0, 1) such that ‖f(x)−f(y)‖ ≤ ρ‖x−y‖
for all x, y ∈ C. A mapping S : C → C is said to be nonexpansive if ‖Sx − Sy‖ ≤ ‖x − y‖, for
all x, y ∈ C. Denote the set of fixed points of S by Fix(S).

Let A : C → H be a nonlinear mapping and F : C × C → R be a bifunction. The
equilibrium problem is to find z ∈ C such that

F
(

z, y
)

+
〈

Az, y − z
〉 ≥ 0, ∀y ∈ C. (1.9)

The solution set of (1.9) is denoted by EP. If A = 0, then (1.9) reduces to the following
equilibrium problem of finding z ∈ C such that

F
(

z, y
) ≥ 0, ∀y ∈ C. (1.10)

If F = 0, then (1.9) reduces to the variational inequality problem of finding z ∈ C such that

〈Az, y − z〉 ≥ 0, ∀y ∈ C. (1.11)

We note that the problem (1.9) is very general in the sense that it includes, as special
cases, optimization problems, variational inequalities, minimax problems, Nash equilibrium
problem in noncooperative games and others, see, for example, [1–4].

We next briefly review some historic approaches which relate to the fixed point
problems and the equilibrium problems.

In 2005, Combettes and Hirstoaga [5] introduced an iterative algorithm of finding
the best approximation to the initial data and proved a strong convergence theorem.
In 2007, by using the viscosity approximation method, S. Takahashi and W. Takahashi
[6] introduced another iterative scheme for finding a common element of the set of
solutions of the equilibrium problem and the set of fixed point points of a nonexpansive
mapping. Subsequently, algorithms constructed for solving the equilibrium problems and
fixed point problems have further developed by some authors. In particular, Ceng and Yao
[7] introduced an iterative scheme for finding a common element of the set of solutions of
the mixed equilibrium problem (1.9) and the set of common fixed points of finitely many
nonexpansive mappings. Maingé and Moudafi [8] introduced an iterative algorithm for
equilibrium problems and fixed point problems. Yao et al. [9] considered an iterative scheme
for finding a common element of the set of solutions of the equilibrium problem and the set
of common fixed points of an infinite nonexpansive mappings. Noor et al. [10] introduced
an iterative method for solving fixed point problems and variational inequality problems.
Their results extend and improve many results in the literature. Some works related to the
equilibrium problem, fixed point problems, and the variational inequality problem in[1–45]
and the references therein.

However, we note that all constructed algorithms in [2, 4, 6–10, 14, 15, 21, 23–40] do
not work to find the minimum-norm solution of the corresponding fixed point problems and
the equilibrium problems. It is our main purpose in this paper that we devote to construct
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some algorithms for finding the minimum-norm solution of the fixed point problems and the
equilibrium problems. We first suggest two new composite algorithms (one implicit and one
explicit) for solving the above minimization problem. Further, we prove that the proposed
composite algorithms converge strongly to the minimum norm element x∗.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Throughout this paper,
we assume that a bifunction F : C × C → R satisfies the following conditions:

(H1) F(x, x) = 0, for all x ∈ C;

(H2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(H3) for each x, y, z ∈ C, limt↓0F(tz + (1 − t)x, y) ≤ F(x, y);

(H4) for each x ∈ C, y 	→ F(x, y) is convex and lower semicontinuous.

The metric (or nearest point) projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈ C the unique point PCx ∈ C satisfying the property

‖x − PCx‖ = inf
y∈C

∥
∥x − y

∥
∥ =: d(x,C). (2.1)

It is well known that PC is a nonexpansive mapping and satisfies

〈x − y, PCx − PCy〉 ≥ ∥
∥PCx − PCy

∥
∥
2
, ∀x, y ∈ H. (2.2)

We need the following lemmas for proving our main results.

Lemma 2.1 (see [5]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : C × C → R be a bifunction which satisfies conditions (H1)–(H4). Let r > 0 and x ∈ C. Then,
there exists z ∈ C such that

F
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C. (2.3)

Further, if Tr(x) = {z ∈ C : F(z, y) + (1/r)〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, then the following hold:

(i) Tr is single-valued and Tr is firmly nonexpansive, that is, for any x, y ∈ H, ‖Trx − Try‖2 ≤
〈Trx − Try, x − y〉;

(ii) EP is closed and convex and EP = Fix(Tr).

Lemma 2.2 (see [17]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let the
mapping A : C → H be α-inverse strongly monotone and r > 0 be a constant. Then, one has

∥
∥(I − rA)x − (I − rA)y

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + r(r − 2α)

∥
∥Ax −Ay

∥
∥
2
, ∀x, y ∈ C. (2.4)

In particular, if 0 ≤ r ≤ 2α, then I − rA is nonexpansive.
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Lemma 2.3 (see [28]). Let C be a closed convex subset of a real Hilbert space H and let S : C → C
be a nonexpansive mapping. Then, the mapping I − S is demiclosed, that is, if {xn} is a sequence in C
such that xn → x∗ weakly and (I − S)xn → y strongly, then (I − S)x∗ = y.

Lemma 2.4 (see [22]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(

1 − γn
)

an + δnγn, (2.5)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(1)

∑∞
n=1 γn = ∞;

(2) lim supn→∞δn ≤ 0 or
∑∞

n=1 |δnγn| < ∞.

Then limn→∞an = 0.

3. Main Results

In this section we will introduce two algorithms for finding the minimum norm element x∗

of Γ := EP ∩ Fix(S). Namely, we want to find the unique point x∗ which solves the following
minimization problem:

x∗ = arg min
x∈Γ

‖x‖2. (3.1)

Let S : C → C be a nonexpansive mapping and A : C → H be an α-inverse strongly
monotone mapping. Let F : C×C → R be a bifunction which satisfies conditions (H1)–(H4).
Let r and μ be two constants such that r ∈ (0, 2α) and μ ∈ (0, 1). In order to find a solution of
the minimization problem (3.1), we construct the following implicit algorithm

xt = μPC[(1 − t)Sxt] +
(

1 − μ
)

Tr(xt − rAxt), ∀t ∈ (0, 1), (3.2)

where Tr is defined as Lemma 2.1. We will show that the net {xt} defined by (3.2) converges
to a solution of the minimization problem (3.1). As matter of fact, in this paper, we will study
the following general algorithm.

Let f : C → H be a ρ-contraction. For each t ∈ (0, 1), we consider the following
mapping Wt given by

Wtx = μPC

[

tf(x) + (1 − t)Sxt

]

+
(

1 − μ
)

Tr(I − rA)xt, ∀x ∈ C. (3.3)

Since the mappings S, PC, Tr and I − rA are nonexpansive, then we can check easily that
‖Wtx−Wty‖ ≤ [1− (1−ρ)μt]‖x−y‖which implies thatWt is a contraction. Using the Banach
contraction principle, there exists a unique fixed point xt ofWt in C, that is,

xt = μPC

[

tf(xt) + (1 − t)Sxt

]

+
(

1 − μ
)

Tr(I − rA)xt, t ∈ (0, 1). (3.4)

In this point, we would like to point out that algorithm (3.4) includes algorithm (3.2)
as a special case due to the contraction f is a possible nonself-mapping.
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In the sequel, we assume

(1) C is a nonempty closed convex subset of a real Hilbert spaceH;

(2) S : C → C is a nonexpansive mapping, A : C → H is an α-inverse strongly
monotone mapping and f : C → H is a ρ-contraction;

(3) F : C × C → R is a bifunction which satisfies conditions (H1)–(H4);

(4) Γ/= ∅.

In order to prove our first main result, we need the following lemmas.

Lemma 3.1. The net {xt} generated by the implicit method (3.4) is bounded.

Proof. Set ut = Tr(xt − rAxt) and yt = tf(xt) + (1 − t)Sxt for all t ∈ (0, 1). Take z ∈ Γ. It is clear
that Sz = z = Tr(z − rAz). Since Tr is nonexpansive and A is α-inverse strongly monotone,
we have from Lemma 2.2 that

‖ut − z‖2 ≤ ‖xt − rAxt − (z − rAz)‖2

≤ ‖xt − z‖2 + r(r − 2α)‖Axt −Az‖2

≤ ‖xt − z‖2.

(3.5)

So, we have that

‖ut − z‖ ≤ ‖xt − z‖. (3.6)

It follows from (3.4) that

‖xt − z‖ =
∥
∥μPC

[

yt

]

+
(

1 − μ
)

ut − z
∥
∥

≤ μ
∥
∥PC

[

yt

] − z
∥
∥ +

(

1 − μ
)‖ut − z‖

≤ μ
(

t
∥
∥f(xt) − z

∥
∥ + (1 − t)‖Sxt − z‖) + (

1 − μ
)‖xt − z‖

≤ μ
(

tρ + 1 − t
)‖xt − z‖ + μt

∥
∥f(z) − z

∥
∥ +

(

1 − μ
)‖xt − z‖

=
[

1 − (

1 − ρ
)

μt
]‖xt − z‖ + tμ

∥
∥f(z) − z

∥
∥,

(3.7)

that is,

‖xt − z‖ ≤
∥
∥f(z) − z

∥
∥

1 − ρ
. (3.8)

So, {xt} is bounded. Hence {ut} and {f(xt)} are also bounded. This completes the proof.

According to Lemma 3.1, we can choose some appropriate constant M > 0 such that
M satisfies the following request.
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Lemma 3.2. The net {xt} generated by the implicit method (3.4) is relatively norm compact as t → 0.

Proof. From (3.4) and (3.5), we have

‖xt − z‖2 = ∥
∥μ(PC[yt] − z) + (1 − μ)(ut − z)

∥
∥
2

≤ μ
∥
∥PC[yt] − z

∥
∥
2 +

(

1 − μ
)‖ut − z‖2

≤ μ
∥
∥t(f(xt) − z) + (1 − t)(Sxt − z)

∥
∥
2 +

(

1 − μ
)‖ut − z‖2

≤ μ
[

t
∥
∥f(xt) − z

∥
∥
2 + (1 − t)‖Sxt − z‖2

]

+
(

1 − μ
)‖ut − z‖2

≤ μ
[

tM + (1 − t)‖xt − z‖2
]

+
(

1 − μ
)‖ut − z‖2.

(3.9)

It follows that

‖xt − z‖2 ≤ 1 − μ

1 − μ + μt
‖ut − z‖2 + μtM

1 − μ + μt

≤ ‖ut − z‖2 + tM

≤ ‖xt − z‖2 + r(r − 2α)‖Axt −Az‖2 + tM,

(3.10)

that is,

r(2α − r)‖Axt −Az‖2 ≤ tM −→ 0. (3.11)

Since r(2α − r) > 0, we derive

lim
t→ 0

‖Axt −Az‖ = 0. (3.12)

From Lemmas 2.1 and 2.2, we obtain

‖ut − z‖2 = ‖Tr(xt − rAxt) − Tr(z − rAz)‖2

≤ 〈(xt − rAxt) − (z − rAz), ut − z〉

=
1
2

(

‖(xt − rAxt) − (z − rAz)‖2 + ‖ut − z‖2 − ‖(xt − z) − r(Axt −Az) − (ut − z)‖2
)

≤ 1
2

(

‖xt − z‖2 + ‖ut − z‖2 − ‖(xt − ut) − r(Axt −Az)‖2
)

=
1
2

(

‖xt − z‖2 + ‖ut − z‖2 − ‖xt − ut‖2 + 2r〈xt − ut,Axt −Az〉 − r2‖Axt −Az‖2
)

,

(3.13)
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which implies that

‖ut − z‖2 ≤ ‖xt − z‖2 − ‖xt − ut‖2 + 2r〈xt − ut,Axt −Az〉 − r2‖Axt −Az‖2

≤ ‖xt − z‖2 − ‖xt − ut‖2 + 2r‖xt − ut‖‖Axt −Az‖

≤ ‖xt − z‖2 − ‖xt − ut‖2 +M‖Axt −Az‖.

(3.14)

By (3.10), and (3.14), we have

‖xt − z‖2 ≤ ‖ut − z‖2 + tM

≤ ‖xt − z‖2 − ‖xt − ut‖2 + (‖Axt −Az‖ + t)M.
(3.15)

It follows that

‖xt − ut‖2 ≤ (‖Axt −Az‖ + t)M. (3.16)

This together with (3.12) imply that

lim
t→ 0

‖xt − ut‖ = 0. (3.17)

It follows that

lim
t→ 0

∥
∥xt − PC

[

yt

]∥
∥ = lim

t→ 0

1 − μ

μ
‖xt − ut‖ = 0. (3.18)

Hence,

‖xt − Sxt‖ ≤ ∥
∥xt − PC

[

yt

]∥
∥ +

∥
∥PC

[

yt

] − Sxt

∥
∥

≤ ∥
∥xt − PC

[

yt

]∥
∥ +

∥
∥yt − Sxt

∥
∥

≤ ∥
∥xt − PC

[

yt

]∥
∥ + t

∥
∥f(xt)

∥
∥ −→ 0.

(3.19)

Next, we show that {xt} is relatively norm compact as t → 0. Let {tn} ⊂ (0, 1) be a sequence
such that tn → 0 as n → ∞. Put xn := xtn and un := utn . From (3.19), we get

‖xn − Sxn‖ −→ 0. (3.20)

By (3.4), we deduce

‖xt − z‖2 = ∥
∥μ(PC[yt] − z) + (1 − μ)(ut − z)

∥
∥
2

≤ μ
∥
∥PC[yt] − z

∥
∥
2 +

(

1 − μ
)‖ut − z‖2

≤ μ
∥
∥yt − z

∥
∥
2 +

(

1 − μ
)‖xt − z‖2,

(3.21)
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that is,

‖xt − z‖2 ≤ ∥
∥t
(

f(xt) − z
)

+ (1 − t)(Sxt − z)
∥
∥
2

= (1 − t)2‖Sxt − z‖2 + 2t(1 − t)
〈

f(xt) − f(z), Sxt − z
〉

+ 2t(1 − t)
〈

f(z) − z, Sxt − z
〉

+ t2
∥
∥f(xt) − z

∥
∥
2

≤ (1 − t)2‖xt − z‖2 + 2t(1 − t)ρ‖xt − z‖2

+ 2t(1 − t)
〈

f(z) − z, Sxt − z
〉

+ t2
∥
∥f(xt) − z

∥
∥
2

≤ [

1 − 2
(

1 − ρ
)

t
]‖xt − z‖2 + 2t

〈

f(z) − z, Sxt − z
〉

+ t2M.

(3.22)

It follows that

‖xt − z‖2 ≤ 1
1 − ρ

〈

z − f(z), z − Sxt

〉

+
t

2
(

1 − ρ
)M. (3.23)

In particular,

‖xn − z‖2 ≤ 1
1 − ρ

〈

z − f(z), z − Sxn

〉

+
tn

2
(

1 − ρ
)M, z ∈ Γ. (3.24)

Since {xn} is bounded, without loss of generality, we may assume that {xn} converges
weakly to a point x∗ ∈ C. Also Sxn → x∗ weakly. Noticing (3.20) we can use Lemma 2.3 to
get x∗ ∈ Fix(S).

Now, we show x∗ ∈ EP. Since un = Tr(xn − rAxn), for any y ∈ C, we have

F
(

un, y
)

+
1
r

〈

y − un, un − (xn − rAxn)
〉 ≥ 0. (3.25)

From the monotonicity of F, we have

1
r

〈

y − un, un − (xn − rAxn)
〉 ≥ F

(

y, un

)

, ∀y ∈ C. (3.26)

Hence,

〈

y − uni ,
uni − xni

r
+Axni

〉

≥ F
(

y, uni

)

, ∀y ∈ C. (3.27)
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Put zt = ty + (1 − t)x∗ for all t ∈ (0, 1] and y ∈ C. Then, we have zt ∈ C. So, from (3.27), we
have

〈zt − uni , Azt〉 ≥ 〈zt − uni , Azt〉 −
〈

zt − uni ,
uni − xni

r
+Axni

〉

+ F(zt, uni)

= 〈zt − uni , Azt −Auni〉 + 〈zt − uni , Auni −Axni〉

−
〈

zt − uni ,
uni − xni

r

〉

+ F(zt, uni).

(3.28)

Note that ‖Auni − Axni‖ ≤ (1/α)‖uni − xni‖ → 0. Further, from monotonicity of A, we have
〈zt − uni , Azt −Auni〉 ≥ 0. Letting i → ∞ in (3.28), we have

〈zt − x∗, Azt〉 ≥ F(zt, x∗). (3.29)

From (H1), (H4), and (3.29), we also have

0 = F(zt, zt) ≤ tF
(

zt, y
)

+ (1 − t)F(zt, x∗)

≤ tF
(

zt, y
)

+ (1 − t)〈zt − x∗, Azt〉
= tF

(

zt, y
)

+ (1 − t)t
〈

y − x∗, Azt
〉

(3.30)

and hence

0 ≤ F
(

zt, y
)

+ (1 − t)
〈

Azt, y − x∗〉. (3.31)

Letting t → 0 in (3.31), we have, for each y ∈ C,

0 ≤ F
(

x∗, y
)

+
〈

y − x∗, Ax∗〉. (3.32)

This implies that x∗ ∈ EP. Therefore, x∗ ∈ Γ.
We substitute x∗ for z in (3.24) to get

‖xn − x∗‖2 ≤ 1
1 − ρ

〈

x∗ − f(x∗), x∗ − Sxn

〉

+
tn

2
(

1 − ρ
)M. (3.33)

Hence, the weak convergence of {Sxn} to x∗ implies that xn → x∗ strongly. This has proved
the relative norm compactness of the net {xt} as t → 0. This completes the proof.

Now, we show our first main result.

Theorem 3.3. The net {xt} generated by the implicit method (3.4) converges in norm, as t → 0, to
the unique solution x∗ of the following variational inequality:

x∗ ∈ Γ,
〈(

I − f
)

x∗, x − x∗〉 ≥ 0, x ∈ Γ. (3.34)
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In particular, if we take f = 0, then the net {xt} defined by (3.2) converges in norm, as t → 0, to a
solution of the minimization problem (3.1).

Proof. Now we return to (3.24) in Lemma 3.2 and take the limit as n → ∞ to get

‖x∗ − z‖2 ≤ 1
1 − ρ

〈

z − f(z), z − x∗〉, z ∈ Γ. (3.35)

In particular, x∗ solves the following variational inequality

x∗ ∈ Γ,
〈(

I − f
)

z, z − x∗〉 ≥ 0, z ∈ Γ (3.36)

or the equivalent dual variational inequality:

x∗ ∈ Γ,
〈(

I − f
)

x∗, z − x∗〉 ≥ 0, z ∈ Γ. (3.37)

Therefore, x∗ = (PΓf)x∗. That is, x∗ is the unique fixed point in Γ of the contraction PΓf .
Clearly this is sufficient to conclude that the entire net {xt} converges in norm to x∗ as t → 0.

Finally, if we take f = 0, then (3.35) is reduced to

‖x∗ − z‖2 ≤ 〈z, z − x∗〉, z ∈ Γ. (3.38)

Equivalently,

‖x∗‖2 ≤ 〈x∗, z〉, z ∈ Γ. (3.39)

This clearly implies that

‖x∗‖ ≤ ‖z‖, z ∈ Γ. (3.40)

Therefore, x∗ is a solution of minimization problem (3.1). This completes the proof.

Next we introduce an explicit algorithm for finding a solution of minimization
problem (3.1). This scheme is obtained by discretizing the implicit scheme (3.4).

Algorithm 3.4. Given that x0 ∈ C arbitrarily, let the sequence {xn} be generated iteratively by

xn+1 = μnPC

[

αnf(xn) + (1 − αn)Sxn

]

+
(

1 − μn

)

Tr(xn − rAxn), n ≥ 0, (3.41)

where {αn} and {μn} are two sequences in [0, 1].

Next, we give several lemmas in order to prove our second main result.
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Lemma 3.5. The sequence {xn} generated by (3.41) is bounded.

Proof. Pick z ∈ Γ. Let un = Tr(xn − rAxn) and yn = tf(xn) + (1 − t)Sxn for all n ≥ 0. From
(3.41), we get

‖un − z‖ = ‖Tr(xn − rAxn) − Tr(z − rAz)‖
≤ ‖xn − z‖,

‖xn+1 − z‖ =
∥
∥μn

(

PC

[

yn

] − z
)

+
(

1 − μn

)

(un − z)
∥
∥

≤ μn

∥
∥PC

[

yn

] − z
∥
∥ +

(

1 − μn

)‖un − z‖
≤ μn

∥
∥yn − z

∥
∥ +

(

1 − μn

)‖xn − z‖
≤ μnαn

∥
∥f(xn) − z

∥
∥ + μn(1 − αn)‖Sxn − z‖ + (

1 − μn

)‖xn − z‖
≤ [

1 − (

1 − ρ
)

μnαn

]‖xn − z‖ + μnαn

∥
∥f(z) − z

∥
∥.

(3.42)

By induction, we obtain, for all n ≥ 0,

‖xn − z‖ ≤ max

{

‖x0 − z‖,
∥
∥f(z) − z

∥
∥

1 − ρ

}

. (3.43)

Hence, {xn} is bounded. Consequently, we deduce that {un}, {f(xn)} and {Axn} are all
bounded. This completes the proof.

Lemma 3.6. Assume the sequences {αn} and {μn} satisfy the following conditions:

(i) limn→∞αn = 0 and limn→∞(αn+1/αn) = 1;

(ii) 0 < lim infn→∞μn ≤ lim supn→∞μn < 1 and limn→∞((μn+1 − μn)/αn+1) = 1.

Then limn→∞‖xn − Sxn‖ = 0.

Proof. From (3.41), we have

‖xn+2 − xn+1‖ =
∥
∥μn+1PC

[

yn+1
]

+
(

1 − μn+1
)

un+1 − μnPC

[

yn

] − (

1 − μn

)

un

∥
∥

=
∥
∥μn+1

(

PC

[

yn+1
] − PC

[

yn

])

+
(

μn+1 − μn

)

PC

[

yn

]

+
(

1 − μn+1
)

(un+1 − un) +
(

μn − μn+1
)

un

∥
∥

≤ μn+1
∥
∥yn+1 − yn

∥
∥ +

(

1 − μn+1
)‖un+1 − un‖

+
∣
∣μn+1 − μn

∣
∣
(∥
∥PC

[

yn

]∥
∥ + ‖un‖

)

.

(3.44)
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Next we estimate ‖yn+1 − yn‖ and ‖un+1 − un‖. We have

∥
∥yn+1 − yn

∥
∥ =

∥
∥αn+1f(xn+1) + (1 − αn+1)Sxn+1 − αnf(xn) + (1 − αn)Sxn

∥
∥

=
∥
∥αn+1

(

f(xn+1) − f(xn)
)

+ (αn+1 − αn)f(xn)

+ (1 − αn+1)(Sxn+1 − Sxn) + (αn − αn+1)Sxn‖
≤ [

1 − (

1 − ρ
)

αn+1
]‖xn+1 − xn‖ + |αn+1 − αn|

(∥
∥f(xn)

∥
∥ + ‖Sxn‖

)

,

‖un+1 − un‖ = ‖Tr(xn+1 − rAxn+1) − Tr(xn − rAxn)‖
≤ ‖(xn+1 − rAxn+1) − (xn − rAxn)‖
≤ ‖xn+1 − xn‖.

(3.45)

Then, we obtain

‖xn+2 − xn+1‖ ≤ [

1 − (

1 − ρ
)

αn+1μn+1
]‖xn+1 − xn‖

+
(|αn+1 − αn| +

∣
∣μn+1 − μn

∣
∣
)

M,
(3.46)

where M > 0 is a constant satisfying

sup
n

{∥
∥f(xn)

∥
∥ + ‖Sxn‖,

∥
∥PC

[

yn

]∥
∥ + ‖un‖,

∥
∥f(xn) − z

∥
∥
2
, 2‖xn − z‖, 2r‖xn − un‖

}

≤ M.

(3.47)

This together with (i), (ii) and Lemma 2.4 imply that

lim
n→∞

‖xn+2 − xn+1‖ = 0. (3.48)

By the convexity of the norm ‖ · ‖, we have

‖xn+1 − z‖2 = ∥
∥μn(PC[yn] − z) + (1 − μn)(un − z)

∥
∥
2

≤ μn

∥
∥PC[yn] − z

∥
∥
2 +

(

1 − μn

)‖un − z‖2

≤ μn

∥
∥αn(f(xn) − z) + (1 − αn)(Sxn − z)

∥
∥
2 +

(

1 − μn

)‖un − z‖2

≤ μn

[

αn

∥
∥f(xn) − z

∥
∥
2 + (1 − αn)‖Sxn − z‖2

]

+
(

1 − μn

)‖un − z‖2

≤ μn

[

αnM + (1 − αn)‖xn − z‖2
]

+
(

1 − μn

)‖un − z‖2.

(3.49)
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From Lemma 2.2, we get

‖un − z‖2 = ‖Tr(xn − rAxn) − Tr(z − rAz)‖2

≤ ‖(xn − rAxn) − (z − rAz)‖2

≤ ‖xn − z‖2 + r(r − 2α)‖Axn −Az‖2.

(3.50)

Substituting (3.50) into (3.49), we have

‖xn+1 − z‖2 ≤ (

1 − μnαn

)‖xn − z‖2 + r(r − 2α)
(

1 − μn

)‖Axn −Az‖2 + μnαnM. (3.51)

Therefore,

r(2α − r)
(

1 − μn

)‖Axn −Az‖2 ≤ (

1 − μnαn

)‖xn − z‖2 − ‖xn+1 − z‖2 + μnαnM

≤ (‖xn − z‖ + ‖xn+1 − z‖)‖xn − xn+1‖ + αnM

≤ (‖xn − xn+1‖ + αn)M.

(3.52)

Since lim infn→∞(1 − μn)r(2α − r) > 0, ‖xn − xn+1‖ → 0 and αn → 0, we derive

lim
n→∞

‖Axn −Az‖ = 0. (3.53)

From Lemma 2.1 and (3.41), we obtain

‖un − z‖2 = ‖Tr(xn − rAxn) − Tr(z − rAz)‖2

≤ 〈(xn − rAxn) − (z − rAz), un − z〉

=
1
2

(

‖(xn − rAxn) − (z − rAz)‖2 + ‖un − z‖2

− ‖(xn − z) − r(Axn −Az) − (un − z)‖2
)

≤ 1
2

(

‖xn − z‖2 + ‖un − z‖2 − ‖(xn − un) − r(Axn −Az)‖2
)

=
1
2

(

‖xn − z‖2 + ‖un − z‖2 − ‖xn − un‖2 + 2r〈xn − un,Axn −Az〉

− r2‖Axn −Az‖2
)

.

(3.54)

Thus, we deduce

‖un − z‖2 ≤ ‖xn − z‖2 − ‖xn − un‖2 + 2r‖xn − un‖‖Axn −Az‖

≤ ‖xn − z‖2 − ‖xn − un‖2 +M‖Axn −Az‖.
(3.55)
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By (3.49) and (3.55), we have

‖xn+1 − z‖2 ≤ μn

[

αnM + (1 − αn)‖xn − z‖2
]

+
(

1 − μn

)‖un − z‖2

≤ μn

[

αnM + (1 − αn)‖xn − z‖2
]

+
(

1 − μn

)[‖xn − z‖2 − ‖xn − un‖2 +M‖Axn −Az‖
]

≤ ‖xn − z‖2 − (

1 − μn

)‖xn − un‖2 + (‖Axn −Az‖ + αn)M.

(3.56)

It follows that

(

1 − μn

)‖xn − un‖2 ≤ (‖xn+1 − xn‖ + ‖Axn −Az‖ + αn)M. (3.57)

Since lim infn→∞(1 − μn) > 0, αn → 0, ‖xn+1 − xn‖ → 0 and ‖Axn −Az‖ → 0, we derive that

lim
n→∞

‖xn − un‖ = 0. (3.58)

Note that xn+1 − xn = μn(PC[yn] − xn) + (1 − μn)(un − xn). Hence,

∥
∥PC

[

yn

] − xn

∥
∥ −→ 0. (3.59)

Therefore,

‖Sxn − xn‖ ≤ ∥
∥Sxn − PC

[

yn

]∥
∥ +

∥
∥PC

[

yn

] − xn

∥
∥

≤ ∥
∥Sxn − yn

∥
∥ +

∥
∥PC

[

yn

] − xn

∥
∥

≤ αn

∥
∥f(xn) − Sxn

∥
∥ +

∥
∥PC

[

yn

] − xn

∥
∥ −→ 0.

(3.60)

This completes the proof.

Now, we show the strong convergence of the sequence {xn} generated by (3.41).

Theorem 3.7. Assume the sequences {αn} and {μn} satisfy the following conditions:

(i) limn→∞αn = 0,
∑∞

n=0 αn = ∞ and limn→∞(αn+1/αn) = 1;

(ii) 0 < lim infn→∞μn ≤ lim supn→∞μn < 1 and limn→∞((μn+1 − μn)/αn+1) = 1.

Then the sequence {xn} generated by (3.41) converges strongly to x∗ which is the unique solution of
variational inequality (3.34). In particular, if f = 0, then the sequence {xn} generated by

xn+1 = μnPC[(1 − αn)Sxn] +
(

1 − μn

)

Tr(xn − rAxn), n ≥ 0, (3.61)

converges strongly to a solution of the minimization problem (3.1).
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Proof. We first prove

lim sup
n→∞

〈

x∗ − f(x∗), x∗ − Sxn

〉 ≤ 0 (3.62)

where x∗ = PΓf(x∗).
Indeed, we can choose a subsequence {Sxni} of {Sxn} such that

lim sup
n→∞

〈

x∗ − f(x∗), x∗ − Sxn

〉

= lim
i→∞

〈

x∗ − f(x∗), x∗ − Sxni

〉

. (3.63)

Without loss of generality, we may further assume that Sxni → x̃ weakly. By the same
argument as that of Theorem 3.3, we can deduce that x̃ ∈ Γ. Therefore,

lim sup
n→∞

〈

x∗ − f(x∗), x∗ − Sxn

〉

=
〈

x∗ − f(x∗), x∗ − x̃
〉 ≤ 0. (3.64)

From (3.41), we have

‖xn+1 − x∗‖2 = ∥
∥μn(PC[yn] − z) + (1 − μn)(un − z)

∥
∥
2

≤ μn

∥
∥PC[yn] − z

∥
∥
2 +

(

1 − μn

)‖un − z‖2

≤ μn

∥
∥yn − x∗∥∥2 +

(

1 − μn

)‖xn − x∗‖2

= μn

[

(1 − αn)2‖Sxn − x∗‖2 + 2αn(1 − αn)
〈

f(xn) − f(x∗), Sxn − x∗〉

+ 2αn(1 − αn)
〈

f(x∗) − x∗, Sxn − x∗〉 + α2
n

∥
∥f(xn) − x∗∥∥2

]

+
(

1 − μn

)‖xn − x∗‖2

≤ μn

[

(1 − αn)2‖xn − x∗‖2 + 2αn(1 − αn)ρ‖xn − x∗‖2

+ 2αn(1 − αn)〈f(x∗) − x∗, Sxn − x∗〉 + α2
nM

]

+
(

1 − μn

)‖xn − x∗‖2

≤ [

1 − 2
(

1 − ρ
)

μnαn

]‖xn − x∗‖2 + 2αnμn(1 − αn)
〈

f(x∗) − x∗, Sxn − x∗〉 + 2α2
nμnM

=
(

1 − γn
)‖xn − x∗‖2 + δnγn,

(3.65)

where γn = 2(1 − ρ)μnαn and δn = ((1 − αn)/(1 − ρ))〈f(x)∗ − x∗, Sxn − x∗〉 + αnM/(1 − ρ). It is
clear that

∑∞
n=0 γn = ∞ and lim supn→∞δ ≤ 0. Hence, all conditions of Lemma 2.4 are satisfied.

Therefore, we immediately deduce that xn → x∗.
Finally, if we take f = 0, by the similar argument as that Theorem 3.3, we deduce

immediately that x∗ is a minimum norm element in Γ. This completes the proof.
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4. Conclusions

Iterative methods for finding the common element of the equilibrium problem and the fixed
point problem have been extensively studied, see, for example, [2, 4, 6, 7, 9, 14, 15, 21, 23–
28]. However, iterative methods for finding the minimum norm solution of the equilibrium
problem and the fixed point problem are far less developed than those for only finding the
common element of the equilibrium problem and the fixed point problem. In the present
paper, we suggest two algorithm, one implicit algorithm (3.4) and one explicit algorithm
(3.41). We prove the strong convergence of the algorithms (3.4) and (3.41) to the common
element of the equilibrium problem and the fixed points set of a nonexpansive mapping.
As special cases, we prove that algorithms (3.2) and (3.61) converges to x∗ which solves
the minimization problem (3.1). It should be pointed out that our algorithms and our main
results are new even if we assume f is a self-mapping on C.

Since in many problems, it is needed to find a solution with minimum norm. Hence,
it is a very interesting problem to construct some algorithms for finding the minimum norm
solution of some practical problem. The reader can develop iterative algorithms for solving
some minimization problems by using our methods and technique contained in the present
paper.

Acknowledgments

The authors thank three anonymous referees for their comments which improved the
presentation of this paper. Y. Yao was supported in part by Colleges and Universities Science
and Technology Development Foundation (20091003) of Tianjin and NSFC 11071279. The
second author was supported in part by NSC 99-2221-E-230-006.

References

[1] E. Blum andW. Oettli, “From optimization and variational inequalities to equilibrium problems,” The
Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994.

[2] S. Takahashi and W. Takahashi, “Strong convergence theorem for a generalized equilibrium problem
and a nonexpansive mapping in a Hilbert space,” Nonlinear Analysis, vol. 69, no. 3, pp. 1025–1033,
2008.
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