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We introduce the notion of regularized quasi-semigroup of bounded linear operators on Banach
spaces and its infinitesimal generator, as a generalization of regularized semigroups of operators.
After some examples of such quasi-semigroups, the properties of this family of operators will
be studied. Also some applications of regularized quasi-semigroups in the abstract evolution
equations will be considered. Next some elementary perturbation results on regularized quasi-
semigroups will be discussed.

1. Introduction and Preliminaries

The theory of quasi-semigroups of bounded linear operators, as a generalization of strongly
continuous semigroups of operators, was introduced in 1991 [1], in a preprint of Barcenas
and Leiva. This notion, its elementary properties, exponentially stability, and some of its
applications in abstract evolution equations are studied in [2–5]. The dual quasi-semigroups
and the controllability of evolution equations are also discussed in [6].

Given a Banach space X, we denote by B(X) the space of all bounded linear operators
on X. A biparametric commutative family {R(s, t)}s,t≥0 ⊆ B(X) is called a quasi-semigroup of
operators if for every s, t, r ≥ 0 and x ∈ X, it satisfies

(1) R(t, 0) = I, the identity operator on X,

(2) R(r, s + t) = R(r + t, s)R(r, t),

(3) lim(s,t)→ (s0,t0)‖R(s, t)x − R(s0, t0)x‖ = 0, x ∈ X,

(4) ‖R(s, t)‖ ≤ M(s+ t), for some continuous increasing mappingM : [0,∞) → [0,∞).

Also regularized semigroups and their connection with abstract Cauchy problems are
introduced in [7] and have been studied in [8–12] and many other papers.
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We mention that if C ∈ B(X) is an injective operator, then a one-parameter family
{T(t)}≥0 ⊆ B(X) is called a C-semigroup if for any s, t ≥ 0 it satisfies T(s + t)C = T(s)T(t) and
T(0) = C.

In this paper we are going to introduce regularized quasi-semigroups of operators.
In Section 2, some useful examples are discussed and elementary properties of

regularized quasi-semigroups are studied.
In Section 3 regularized quasi-semigroups are applied to find solutions of the abstract

evolution equations. Also perturbations of the generator of regularized quasi-semigroups are
also considered in this section. Our results are mainly based on the work of Barcenas and
Leiva [1].

2. Regularized Quasi-Semigroups

SupposeX is a Banach space and {K(s, t)}s,t≥0 is a two-parameter family of operators in B(X).
This family is called commutative if for any r, s, t, u ≥ 0,

K(r, t)K(s, u) = K(s, u)K(r, t). (2.1)

Definition 2.1. Suppose C is an injective bounded linear operator on Banach space X. A
commutative two-parameter family {K(s, t)}s,t≥0 in B(X) is called a regularized quasi-
semigroups (or C-quasi-semigroups) if

(1) K(t, 0) = C, for any t ≥ 0;

(2) CK(r, t + s) = K(r + t, s)K(r, t), r, t, s ≥ 0;

(3) {K(s, t)}s,t≥0 is strongly continuous, that is,

lim
(s,t)→ (s0,t0)

‖K(s, t)x −K(s0, t0)x‖ = 0, x ∈ X; (2.2)

(4) there exists a continuous and increasing function M : [0,∞) → [0,∞), such that
for any s, t > 0, ‖K(s, t)‖ ≤ M(s + t).

For a C-quasi-semigroups {K(s, t)}s,t≥0 on Banach space X, let D be the set of all x ∈ X for
which the following limits exist in the range of C:

lim
t→ 0+

K(s, t)x − Cx

t
= lim

t→ 0+

K(s − t, t)x − Cx

t
, s > 0

lim
t→ 0+

K(0, t)x − Cx

t
.

(2.3)

Now for x ∈ D and s ≥ 0, define

A(s)x = C−1 lim
t→ 0+

K(s, t)x − Cx

t
. (2.4)

{A(s)}s≥0 is called the infinitesimal generator of the regularized quasi-semigroup
{K(s, t)}s,t≥0. Somewhere we briefly apply generator instead of infinitesimal generator.
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Here are some useful examples of regularized quasi-semigroups.

Example 2.2. Let {Tt}t≥0 be an exponentially bounded strongly continuous C-semigroup on
Banach space X, with the generator A. Then

K(s, t) := Tt, s, t ≥ 0, (2.5)

defines a C-quasi-semigroup with the generator A(s) = A, s ≥ 0, and so D = D(A).

Example 2.3. Let X = BUC(R), the space of all bounded uniformly continuous functions on R

with the supremum-norm. Define C,K(s, t) ∈ B(X), by

Cf(x) = e−x
2
f(x), K(s, t)f(x) = e−x

2
f
(
t2 + 2st + x

)
, s, t ≥ 0. (2.6)

One can see that {K(s, t)}s,t≥0 is a regularized C-quasi-semigroup of operators on X, with the
infinitesimal generator A(s)f = 2sḟ on D, where D = {f ∈ X : ḟ ∈ X}.

Example 2.4. Let {Tt}t≥0 be a strongly continuous semigroup of operators on Banach space X,
with the generator A. If C ∈ B(X) is injective and commutes with Tt, t ≥ 0, then

K(s, t) := CeTs+t−Ts , s, t ≥ 0, (2.7)

is a C-quasi-semigroup with the generator A(s) = ATs. Thus D = D(A). In fact, for x ∈ D,
boundedness of C implies that

CA(s)x = lim
t→ 0+

CeTs+t−Tsx − Cx

t
= C lim

t→ 0+

eTs+t−Tsx − x

t
= C

d

ds
|t=0(Ts+t − Ts)x = CATsx. (2.8)

Now injectivity of C implies that A(s)x = ATsx, and so D = D(A).

Example 2.5. Let {Tt}t≥0 be a strongly continuous exponentially bounded C-semigroup of
operators on Banach space X, with the generator A. For s, t ≥ 0, define

K(s, t) = T
(
g(s + t) − g(s)

)
, s, t ≥ 0, (2.9)

where g(t) =
∫ t
0 a(s)ds, and a ∈ C[0,∞), with a(t) > 0. We have K(s, 0) = T(0) = C and the

C-semigroup properties of {T(t)}t≥0 imply that

CK(r, s + t) = CT
(
g(r + t + s) − g(r)

)

= CT
(
g(r + t + s) − g(t + r) + g(t + r) − g(r)

)

= T
(
g(r + t + s) − g(t + r)

)
T
(
g(t + r) − g(r)

)

= K(r + t, s)K(r, t).

(2.10)
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So {K(s, t)}s,t≥0 is a C-quasi-semigroup (the other properties can be also verified easily). Also
D = D(A) and for x ∈ D, A(s)x = a(s)Ax.

Some elementary properties of regularized quasi-semigroups can be seen in the
following theorem.

Theorem 2.6. Suppose {K(s, t)}s,t≥0 is aC-quasi-semigroup with the generator {A(s)}s≥0 on Banach
space X. Then

(i) for any x ∈ D and s0, t0 ≥ 0, K(s0, t0)x ∈ D and

K(s0, t0)A(s)x = A(s)K(s0, t0)x; (2.11)

(ii) for each x0 ∈ D,

∂

∂t
K(r, t)Cx0 = A(r + t)K(r, t)Cx0 = K(r, t)A(r + t)Cx0; (2.12)

(iii) if A(s) is locally integrable, then for each x0 ∈ D and r ≥ 0,

K(r, t)x0 = Cx0 +
∫ t

0
A(r + s)K(r, s)x0ds, t ≥ 0; (2.13)

(iv) let f : [0,∞) → X be a continuous function; then for every t ∈ [0,∞),

lim
h→ 0

1
h

∫ t+h

t

K(s, u)f(u)du = K(s, t)f(t); (2.14)

(v) Let C′ ∈ B(X) be injective and for any s, t ≥ 0, C′K(s, t) = K(s, t)C′. Then R(s, t) :=
C′K(s, t) is a CC′-quasi-semigroup with the generator {A(s)}s≥0,

(vi) Suppose {R(s, t)}s,t≥0 is a quasi-semigroup of operators on Banach space X with the
generator {A(s)}s≥0, and C ∈ B(X) commutes with every R(s, t), s, t ≥ 0. Then
K(s, t) := CR(s, t) is aC-quasi-semigroup of operators onX with the generator {A(s)}s≥0.

Proof. First we note that from the commutativity of {K(s, t)}s,t≥0;

CK(s, t) = K(s, t)C s, t ≥ 0. (2.15)

Also x ∈ D implies that

lim
t→ 0+

K(s, t)x − Cx

t
= CA(s)x s ≥ 0. (2.16)
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Thus from continuity of K(s0, t0), we have

lim
t→ 0+

K(s, t)K(s0, t0)x − CK(s0, t0)x
t

= K(s0, t0) lim
t→ 0+

K(s, t)x − Cx

t

= K(s0, t0)CA(s)x

= CK(s0, t0)A(s)x.

(2.17)

Thus K(s0, t0)x ∈ D and A(s)K(s0, t0) = K(s0, t0)A(s)x.
To prove (ii), consider the quotient

K(r, t + s)Cx0 −K(r, t)Cx0

s
=

K(r + t, s)K(r, t)x0 −K(r, t)Cx0

s

= K(r, t)
K(r + t, s)x0 − Cx0

s
,

(2.18)

which tends to K(r, t)CA(r + t)x0 as s → 0+.
Also for s < 0,

K(r, t + s)Cx0 −K(r, t)Cx0

s
=

K(r, t)Cx0 −K(r, t + s)Cx0

−s

=
K(r + t + s,−s)K(r, t + s)x0 −K(r, t + s)Cx0

−s

= K(r, t + s)
K(r + t + s,−s)x0 − Cx0

−s

= K(r, t + s)
1
−s (K(r + t + s,−s)x0

−K(r + t,−s)x0 +K(r + t,−s)x0 − Cx0).

(2.19)

Now the strongly continuity of {K(s, t)}s,t≥0 implies that

lim
s→ 0−

K(r + t + s,−s)x0 −K(r + t,−s)x0 = 0. (2.20)

Thus

lim
s→ 0−

K(r + t + s,−s)x0 − Cx0

−s = CA(r + t)x0. (2.21)

Hence by the strongly continuity of K(s, t),

lim
s→ 0−

K(r, t + s)Cx0 −K(r, t)Cx0

s
= K(r, t)CA(r + t)x0. (2.22)

Thus (∂/∂t)K(r, t)Cx0 = K(r, t)CA(r + t)x0. The second equality holds by (i).
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Now integrating of this equation, we have

K(r, t)Cx0 − Cx0 = C

∫ t

0
K(r, s)A(r + s)x0ds. (2.23)

Hence injectivity of C implies (iii).

(iv) is trivial from continuity of f and strongly continuity of {K(s, t)}s,t≥0. In (v),
obviously {R(s, t)}s,t≥0 is a C′C-quasi-semigroup. For x ∈ D, we have

R(s, t)x − CC′x
t

= C’
K(s, t)x − Cx

t
, (2.24)

which tends to C′CA(s), as t → 0+. This proves (v).

(vi) can be seen easily.

3. Evolution Equations and Regularized Quasi-Semigroups

Suppose C is an injective bounded linear operator on Banach space X and r > 0. In
this section, we study the solutions of the following abstract evolution equation using the
regularized quasi-semigroups:

ẋ(t) = A(t + r)x(t), t > 0,

x(0) = C2x0, x0 ∈ X.
(3.1)

One can see [13, 14] for a comprehensive studying of abstract evolution equations.

Theorem 3.1. Let {A(s)}s≥0 be the infinitesimal generator of a C-quasi-semigroups {K(s, t)}s,t≥0 on
Banach space X, with domain D. Then for each x0 ∈ D and r ≥ 0, the initial value problem (3.1)
admits a unique solution.

Proof. Let x(t) = K(r, t)Cx0. By Theorem 2.6(ii), x(t) is a solution of (3.1).
Now we show that this solution is unique. Suppose y(s) is another solution of (3.1).

Trivially y(s) ∈ D. Let t > 0. For s ∈ [0, t] and x ∈ X, define

F(s)x = K(r + s, t − s)Cx, G(s) = F(s)Cy(s). (3.2)

From C-quasi-semigroup properties, for small enough h > 0, we have

K(r + s, t − s)C = K(r + s + t − s − (t − s − h), t − s − h)K(r + s, t − s − (t − s − h))

= K(r + s + h, t − s − h)K(r + s, h).
(3.3)
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So

F(s + h)x − F(s)x
h

=
K(r + s + h, t − s − h)Cx −K(r + s + h, t − s − h)K(r + s, h)x

h

= −K(r + s + h, t − s − h)
[
K(r + s, h)x − Cx

h

]

−→ −K(r + s, t − s)CA(r + s)x, as h −→ 0.

(3.4)

This means that

Ḟ(s)x = −K(r + s, t − s)CA(r + s)x. (3.5)

Therefore, from this, the fact that y(s) satisfies (3.1), and CF(s) = F(s)C, we obtain that

Ġ(s) = Ḟ(s)Cy(s) + F(s)Cẏ(s) = −K(r + s, t − s)CA(r + s)Cy(s) +K(r + s, t − s)C2ẏ(s)

= −K(r + s, t − s)CA(r + s)Cy(s) +K(r + s, t − s)C2A(r + s)y(s) = 0.
(3.6)

Hence for every s ∈ (0, t), Ġ(s) = 0. Consequently, G(s) is a constant function on [0, t]. In
particular, G(0) = G(t). So from y(0) = Cx0, we have

G(0) = F(0)Cy(0) = K(r, t)C2x0 = G(t) = F(t)Cy(t) = K(r + t, 0)C2y(t) = C3y(t). (3.7)

HenceC2K(r, t)x0 = C3y(t). Now injectivity ofC implies that y(t) = K(r, t)Cx0, which proves
the uniqueness of the solution.

Now with the above notation, we consider the inhomogeneous evolution equation

ẋ(t) = A(r + t)x(t) + C2f(t), 0 < t ≤ T,

x(0) = C2x0, x0 ∈ D.
(3.8)

The following theorem guarantees the existence and uniqueness of solutions of (3.8) with
some sufficient conditions on f .

Theorem 3.2. Let K(s, t) be a C-quasi-semigroup on Banach space X, with the generator {A(s)}s≥0
whose domain is D. If f : [0, T] → D is a continuous function, each operator A(s) is closed, and

C

∫ t

0
K(r + s, t − s)f(s)ds ∈ D, 0 < t ≤ T, (3.9)

then the initial value equation (3.8) admits a unique solution

x(t) = K(r, t)Cx0 +
∫ t

0
K(r + s, t − s)Cf(s)ds. (3.10)
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Proof. For the existence of the solution, it is enough to show that x(t) in (3.10) is continuously
differentiable and satisfies (3.8).

Trivially x(0) = Cx0. We know that y(t) = K(r, t)Cx0 is a solution of (3.1) by
Theorem 3.1. Define

g(t) =
∫ t

0
K(r + s, t − s)Cf(s)ds, (3.11)

which is in D by our hypothesis. We have

g(t + h) − g(t)
h

=
1
h

[∫ t+h

0
K(r + s, t + h − s)Cf(s)ds −

∫ t

0
K(r + s, t − s)Cf(s)ds

]

=
1
h

[∫ t

0
K(r + s, t + h − s)Cf(s)ds −

∫ t

0
K(r + s, t − s)Cf(s)ds

+
∫ t+h

t

K(r + s, t + h − s)Cf(s)ds

]
.

(3.12)

On the other hand, the C-quasi-semigroup properties imply that

K(r + s, t + h − s)Cf(s) = K(r + s + t + h − s − h, h)K(r + s, t + h − s − h)f(s)

= K(r + t, h)K(r + s, t − s)f(s).
(3.13)

So

g(t + h) − g(t)
h

=
1
h

[∫ t

0
K(r + t, h)K(r + t, t − s)f(s)ds

−
∫ t

0
K(r + s, t − s)Cf(s)ds +

∫ t+h

t

K(r + s, t + h − s)Cf(s)ds

]

=
∫ t

0
K(r + t, t − s)

(
K(r + t, h)f(s) − Cf(s)

h

)
ds

+
1
h

∫ t+h

t

K(r + s, t + h − s)Cf(s)ds.

(3.14)

Since the range of f is in D, passing to the limit when h → 0, and using Theorem 2.6(v), we
have

ġ(t) =
∫ t

0
K(r + s, t − s)CA(r + t)f(s)ds +K(r + t, t − t)Cf(t)

=
∫ t

0
K(r + s, t − s)CA(r + t)f(s)ds + C2f(t).

(3.15)
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Therefore, ġ(t) exists. Also by our hypothesisA(r + t) is closed, and
∫ t
0 K(r +s, t−s)Cf(s)ds ∈

D, thus

∫ t

0
K(r + s, t − s)CA(r + t)f(s)ds = A(r + t)

∫ t

0
K(r + s, t − s)Cf(s)ds. (3.16)

Consequently,

ġ(t) = A(r + t)g(t) + C2f(t), t ≥ 0. (3.17)

Hence

ẋ(t) =
∂

∂t
K(r, t)Cx0 +A(r + t)

∫ t

0
K(r + s, t − s)Cf(s)ds + C2f(t)

= A(r + t)

(
K(r, t)Cx0 +

∫ t

0
K(r + s, t − s)Cf(s)ds

)
+ C2f(t)

= A(r + t)x(t) + C2f(t).

(3.18)

This completes the proof.

We conclude this section with two simple perturbation theorems and some examples,
as applications of our discussion.

Theorem 3.3. (a) Suppose B is the infinitesimal generator of a strongly continuous semigroup
{T(t)}t≥0 and {A(s)}s≥0 with domain D is the generator of a regularized C-quasi-semigroup
{K(s, t)}s,t≥0, which commutes with {T(t)}t≥0. Then {A(s) + B}s≥0 with domain D ∩ D(B) is the
infinitesimal generator of a regularized C-quasi-semigroup.

(b) Suppose B is the infinitesimal generator of an exponentially bounded C-semigroup
{T(t)}t≥0 and {A(s)}s≥0 with domain D is the generator of a quasi-semigroup (resp., regularized C′-
quasi-semigroup) {K(s, t)}s,t≥0, which commutes with {T(t)}t≥0. Then {A(s) + B}s≥0 with domain
D ∩ D(B) is the infinitesimal generator of a C-regularized quasi-semigroup (resp., regularized CC′-
quasi-semigroup).

Proof. In (a) and (b), define

R(s, t) = T(t)K(s, t). (3.19)

One can see that {R(s, t)}s,t≥0 is a C-regularized quasi-semigroup (in (b), resp., regularized
CC′-quasi-semigroup). We just prove that {A(s) + B}s≥0 is its generator. In (a), let {B(s)}s≥0
be the infinitesimal generator of {R(s, t)}s,t≥0 and x ∈ D ∩D(B). Hence

lim
t→ 0+

T(t)x − x

t
, lim

t→ 0+

K(s, t)x − Cx

t
(3.20)
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exist in X and the range of C, respectively. Now the fact that C commutes with T(t) and
strongly continuity of T(t) implies that

lim
t→ 0+

T(t)
K(s, t)x − Cx

t
(3.21)

exists in the range of C. So

lim
t→ 0+

R(s, t)x − Cx

t
= lim

t→ 0+

T(t)K(s, t)x − Cx

t
= lim

t→ 0+
T(t)

K(s, t)x − Cx

t
+ C lim

t→ 0+

T(t)x − x

t
(3.22)

exists in the range of C and

CB(s)x = lim
t→ 0+

R(s, t)x − Cx

t
= CA(s)x + CBx. (3.23)

By injectivity of C, B(s)x = A(s)x + Bx.
The proof the other parts is similar.

Theorem 3.4. Let K(s, t) be a C-quasi-semigroup of operator on Banach space X with the generator
{A(s)} on domain D. If B ∈ B(X) commutes with K(s, t), s, t ≥ 0, and B2 = B, then {BA(s)}s≥0 is
the infinitesimal generator of C-regularized quasi-semigroup

R(s, t) = B(K(s, t) − C) + C. (3.24)

Proof. The C-quasi-semigroup properties of {R(s, t)}s,t≥0 can be easily verified. We just prove
that its generator is {BA(s)}s≥0. Let x ∈ D; we have

R(s, t)x − Cx

t
=

B(K(s, t) − C)x + Cx − Cx

t
= B

K(s, t)x − Cx

t
(3.25)

which tends to BA(s)x, as t → 0. This completes the proof.

Example 3.5. Let r > 0. Consider the following initial value problem:

∂

∂t
x(t, ε) = 2(r + t)

∂

∂ε
x(t, ε) + εx(t, ε),

x(0, ε) = e−4ε
2
x0(ε), ε, t ≥ 0.

(3.26)

Let X = BUC(R), with the supremum-norm. Define C ∈ B(X) by Cx(ε) = e−ε
2
x(ε), x(·) ∈ X.

Also define B : D(B) → X by Bx(ε) = εx(ε), where D(B) = {x ∈ X : Bx ∈ X}. It is
well known that B is the infinitesimal generator of C-regularized semigroup T(t), defined by
T(t)x(ε) = e−ε

2+εtx(ε). Now with D = {x ∈ X : ẋ ∈ X}, if A(s) : D → X is defined by
A(s)x = 2sẋ, then by Example 2.3, {A(s)}s≥0 is the infinitesimal generator of the regularized
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C2-quasi-semigroup K(s, t)x(ε) = e−ε
2
x(t2 + 2st + ε). Using Theorem 3.3 and the fact that

T(t)K(s, r) = K(s, r)T(t), s, t, t ≥ 0, we obtain that {A(s) + B} is the infinitesimal generator of
regularized C2-quasi-semigroup R(s, t) = T(t)K(s, t). Also using these operators, (3.26) can
be written as

ẋ(t) = (A(r + t) + B)x(t),

x(0) = C4x0.
(3.27)

Thus by Theorem 3.1 for any x0 ∈ D ∩D(B), (3.26) has the unique solution

x(t, ε) = R(r, t)C2x0(ε) = e−4ε
2+εtx0

(
t2 + 2rt + ε

)
. (3.28)

Example 3.6. For a given sequence (pn)n∈N
of complex numbers with nonzero elements and

(yn)n∈N
, consider the following equation:

d

dt
xn(t) = ein(t+1)xn(t) + pnxn(t),

xn(0) = p2nyn, n ∈ N.

(3.29)

LetX be the space c0, the set of all complex sequence with zero limit at infinity. For a bounded
sequence p = (pn)n∈N

, define A : D(A) :→ X and Mp on X by

A(xn)n∈N
=
(
einxn

)
n∈N

, Mp(xn)n∈N
=
(
pnxn

)
. (3.30)

One can easily see that D(A) = {(xn)n∈N
∈ c0 : (einxn)n∈N

∈ c0} and Mp is a bounded linear
operator which is injective. It is well known that A is the infinitesimal generator of strongly
continuous semigroup

T(t)(xn)n∈N
=
(
einxn

)
n∈N

. (3.31)

Thus by Example 2.4, {A(t)}t≥0, defined by

A(t)(xn)n∈N
:= AT(t)(xn)n∈N

=
(
ein(1+t)xn

)
n∈N

, (3.32)

is the infinitesimal generator of the Mp-quasi-semigroup

K(s, t) = Mp

(
eT(s+t)−T(s)

)
. (3.33)
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Using these operators, one can rewrite (3.29) as

ẋ(t) = (A(t) +MP )x(t),

x(0) = M2
py0,

(3.34)

where x0 = (yn)n∈N
. Trivially T(t) commutes with K(r, s), for any r, s, t ≥ 0. Now using

Theorem 3.3 we obtain that {A(t) + Mp}t≥0 is the infinitesimal generator of of Mp-quasi-
semigroup

R(s, t) = T(t)K(s, t). (3.35)

Also from Theorem 3.1, with r = 0, for any y ∈ D(A), (3.34) has a unique solution

x(t) = R(0, t)Mpy = T(t)K(0, t)M2
px0. (3.36)

But from definition of K(s, t), for a given (xn)n∈N
∈ c0,

K(0, t)(xn)n∈N
= eT(t)−I = e−1

∞∑
k=0

Tk(t)
k!

(xn)n∈N
= e−1

∞∑
k=0

(
eikntxn

k!

)

n∈N

= e−1
( ∞∑

k=0

eikntxn

k!

)

n∈N

.

(3.37)

So the solution of (3.34) is

x(t) = R(0, t)Mpy =

( ∞∑
k=0

eikt(n+1)−1p4nyn

k!

)

n∈N

, (3.38)

or equivalently the solution of (3.29) is

xn(t) =
∞∑
k=0

eikt(n+1)−1p4nyn

k!
, n ∈ N. (3.39)
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