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The boundedness and compactness of weighted iterated radial composition operators from the
mixed-norm space to the weighted-type space and the little weighted-type space on the unit ball
are characterized here. We also calculate the Hilbert-Schmidt norm of the operator on the weighted
Bergman-Hilbert space as well as on the HardyH2 space.

1. Introduction

Let z = (z1, . . . , zn) and w = (w1, . . . , wn) be points in C
n, 〈z,w〉 =

∑n
k=1 zkwk, and |z| =√

〈z, z〉. Let B = {z ∈ C
n : |z| < 1} be the open unit ball in C

n, ∂B its boundary, and H(B) the
class of all holomorphic functions on B.

For an f ∈ H(B)with the Taylor expansion f(z) =
∑

|β|≥0 aβz
β, let

Rf(z) =
∑

|β|≥0
∣
∣β
∣
∣aβz

β

(1.1)

be the radial derivative of f , where β = (β1, β2, . . . , βn) is a multi-index, |β| = β1 + · · · + βn and
zβ = z

β1
1 · · · zβnn [1]. It is easy to see that

Rf(z) =
〈∇f(z), z

〉
, (1.2)

where ∇f is the complex gradient of function f .
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The iterated radial derivative operator Rmf is defined inductively by

Rmf = R
(
Rm−1f

)
, m ∈ N \ {1}. (1.3)

A positive continuous function ν on the interval [0, 1) is called normal [2] if there are
δ ∈ [0, 1) and τ and t, 0 < τ < t such that

ν(r)
(1 − r)τ

is decreasing on [δ, 1), lim
r→ 1

ν(r)
(1 − r)τ

= 0,

ν(r)

(1 − r)t
is increasing on [δ, 1), lim

r→ 1

ν(r)

(1 − r)t
= ∞.

(1.4)

If we say that a function ν : B → [0,∞) is normal, we also assume that it is radial, that is,
ν(z) = ν(|z|), z ∈ B.

Strictly positive continuous functions on B are called weights.
The weighted-type space H∞

μ (B) = H∞
μ consists of all f ∈ H(B) such that

∥
∥f
∥
∥
H∞

μ
:= sup

z∈B

μ(z)
∣
∣f(z)

∣
∣ < ∞, (1.5)

where μ is a weight (see, e.g., [3, 4] as well as [5] for a related class of spaces).
The little weighted-type space H∞

μ,0(B) = H∞
μ,0 is a subspace of H∞

μ consisting of all
f ∈ H(B) such that

lim
|z|→ 1

μ(z)
∣
∣f(z)

∣
∣ = 0. (1.6)

For 0 < p, q < ∞, and φ normal, the mixed-norm space H(p, q, φ)(B) = H(p, q, φ)
consists of all functions f ∈ H(B) such that

∥
∥f
∥
∥
H(p,q,φ) =

(∫1

0
M

p
q(f, r)

φp(r)
1 − r

dr

)1/p

< ∞, (1.7)

where

Mq

(
f, r
)
=
(∫

∂B

∣
∣f(rζ)

∣
∣qdσ(ζ)

)1/q

, (1.8)

and dσ is the normalized surface measure on ∂B. For p = q, φ(r) = (1 − r2)(α+1)/p, and α > −1,
the space is equivalent with the weighted Bergman space A

p
α(B) = A

p
α, which is defined as

the class of all f ∈ H(B) such that

∥
∥f
∥
∥p
A

p
α
:=
∫

B

∣
∣f(z)

∣
∣p
(
1 − |z|2

)α
dV (z) < ∞, (1.9)
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where dV (z) is the Lebesgue volume measure on B. Some facts on mixed-norm spaces in
various domains in C

n can be found, for example, in [6–8] (see also the references therein).
For 0 < p < ∞ the Hardy space Hp(B) = Hp consists of all f ∈ H(B) such that

∥
∥f
∥
∥
Hp := sup

0<r<1

(∫

∂B

∣
∣f(rζ)

∣
∣pdσ(ζ)

)1/p

< ∞. (1.10)

For p = 2 the Hardy and the weighted Bergman space are Hilbert.
Let ϕ be a holomorphic self-map of B, u ∈ H(B), and m ∈ N0. For f ∈ H(B), the

weighted iterated radial composition operator is defined by

Rm
u,ϕ

(
f
)
(z) = u(z)Rmf

(
ϕ(z)

)
, z ∈ B. (1.11)

Note that the operator is the composition of the multiplication, composition and the iterated
radial operator, that is

Rm
u,ϕ = Mu ◦ Cϕ ◦ Rm. (1.12)

This is one of the product operators suggested by this author to be investigated at numerous
talks (e.g., in [9]). Note that for m = 0 the operator Rm

u,ϕ becomes the weighted composition
operator (see, e.g., [4, 8, 10]). It is of interest to provide function-theoretic characterizations
for when ϕ and u induce bounded or compact weighted iterated radial composition operators
on spaces of holomorphic functions. Studying products of some concrete linear operators on
spaces of analytic functions attracted recently some attention see, for example, [11–32] as well
as the related references therein. Some operators on mixed-norm spaces have been studied,
for example, in [8, 10, 11, 16, 25, 26, 29, 33] (see also the references therein).

Here we study the boundedness and compactness of weighted iterated radial
composition operators from mixed-norm spaces to weighted-type spaces on the unit ball for
the case m ∈ N. We also calculate the Hilbert-Schmidt norm of the operator on the weighted
Bergman-Hilbert space A2

α(B) as well as on the Hardy H2(B) space.
In this paper, constants are denoted by C, they are positive and may differ from one

occurrence to the other. The notation a 
 b means that there is a positive constant C such that
a ≤ Cb. If both a 
 b and b 
 a hold, then one says that a � b.

2. Auxiliary Results

In this section we quote several lemmas which are used in the proofs of the main results.
The next characterization of compactness is proved in a standard way, hence we omit

its proof (see, e.g., [34]).

Lemma 2.1. Assume p, q > 0, ϕ is a holomorphic self-map of B, u ∈ H(B), φ is normal and μ is
a weight. Then the operator Rm

u,ϕ : H(p, q, φ) → H∞
μ is compact if and only if for every bounded

sequence (fk)k∈N
⊂ H(p, q, φ) converging to 0 uniformly on compacts of B as k → ∞, one has

lim
k→∞

∥
∥
∥Rm

u,ϕfk
∥
∥
∥
H∞

μ

= 0. (2.1)



4 Abstract and Applied Analysis

The following lemma is a slight modification of Lemma 2.5 in [8] and is proved similar
to Lemma 1 in [35].

Lemma 2.2. Assume μ is a normal weight. Then a closed set K in H∞
μ,0 is compact if and only if it is

bounded and

lim
|z|→ 1

sup
f∈K

μ(z)
∣
∣f(z)

∣
∣ = 0. (2.2)

The following lemma is folklore and in the next form it can be found in [36].

Lemma 2.3. Assume that 0 < p, q < ∞, φ is normal, and m ∈ N. Then for every f ∈ H(B) the
following asymptotic relationship holds:

∫1

0
M

p
q

(
f, r
)φp(r)
1 − r

dr � ∣∣f(0)∣∣p +
∫1

0
M

p
q

(
Rmf, r

)
(1 − r)mp φ

p(r)
1 − r

dr. (2.3)

Lemma 2.4. Assume that m ∈ N, 0 < p, q < ∞, φ is normal and f ∈ H(p, q, φ). Then, there is a
positive constant C independent of f such that

∣
∣Rmf(z)

∣
∣ ≤ C

∥
∥f
∥
∥
H(p,q,φ)

|z|
φ(|z|)

(
1 − |z|2

)n/q+m . (2.4)

Proof. Let g = Rm−1f and z ∈ B. By the definition of the radial derivative, the Cauchy-Schwarz
inequality and the Chauchy inequality, we have that

∣
∣Rg(z)

∣
∣ ≤ |z|∣∣∇g(z)

∣
∣ ≤ C|z|

supB(z,1−|z|)/4)
∣
∣g(w)

∣
∣

1 − |z| . (2.5)

From (2.3) with m → m − 1 we easily obtain the following inequality (see, e.g., [8,
Lemma 2.1]):

∣
∣g(z)

∣
∣ ≤ C

∥
∥f
∥
∥
H(p,q,φ)

φ(|z|)
(
1 − |z|2

)n/q+m−1 . (2.6)

From (2.5) and (2.6) and the asymptotic relations

1 − |w| � 1 − |z|, φ(|z|) � φ(|w|), for w ∈ B

(

z,
1 − |z|

2

)

, (2.7)

inequality (2.4) follows.



Abstract and Applied Analysis 5

Lemma 2.5. Let

fa,s(z) =
1

(1 − 〈z, a〉)s , z ∈ B. (2.8)

Then,

Rmfa,s(z) = s
Pm(〈z, a〉)

(1 − 〈z, a〉)s+m , (2.9)

where

Pm(w) = sm−1wm + p
(m)
m−1(s)w

m−1 + · · · + p
(m)
2 (s)w2 +w, (2.10)

and where p(m)
j (s), j = 2, . . . , m − 1 are nonnegative polynomials for s > 0.

Proof. We prove the lemma by induction. For m = 1,

Rfa,s(z) = s
〈z, a〉

(1 − 〈z, a〉)s+1
, z ∈ B, (2.11)

which is formula (2.9) with P1(w) = w.
Assume (2.9) is true for every m ∈ {1, . . . , l}. Taking the radial derivative operator on

equality (2.9)withm = l, we obtain

Rl+1fa,s(z) = sR
sl−1〈z, a〉l + p

(l)
l−1(s)〈z, a〉l−1 + · · · + p

(l)
2 (s)〈z, a〉2 + 〈z, a〉

(1 − 〈z, a〉)s+l

= s
(s + l)

(
sl−1〈z, a〉l+1 + p

(l)
l−1(s)〈z, a〉l + · · · + p

(l)
2 (s)〈z, a〉3 + 〈z, a〉2

)

(1 − 〈z, a〉)s+l+1

+ s

(
lsl−1〈z, a〉l+(l−1)p(l)l−1(s)〈z, a〉l−1+ · · ·+2p(l)2 (s)〈z, a〉2+〈z, a〉

)
(1−〈z, a〉)

(1 − 〈z, a〉)s+l+1
,

= s
sl〈z, a〉l+1 + · · · +

[
(s + l − 2)p(l)2 (s) + 3p(l)3 (s)

]
〈z, a〉3

(1 − 〈z, a〉)s+l+1

+

[
(s + l − 1) + 2p(l)2 (s)

]
〈z, a〉2 + 〈z, a〉

(1 − 〈z, a〉)s+l+1
(2.12)

from which the inductive proof easily follows.
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3. Boundedness and Compactness of Rm
u,ϕ : H(p, q, φ) → H∞

μ (or H∞
μ,0)

This section characterizes the boundedness and compactness of Rm
u,ϕ : H(p, q, φ) →

H∞
μ (or H∞

μ,0).

Theorem 3.1. Assumem ∈ N, 0 < p, q < ∞, φ is normal, μ is a weight, ϕ is a holomorphic self-map
of B, and u ∈ H(B). Then Rm

u,ϕ : H(p, q, φ) → H∞
μ is bounded if and only if

M1 := sup
z∈B

μ(z)|u(z)|∣∣ϕ(z)∣∣

φ
(∣
∣ϕ(z)

∣
∣
)(

1 − ∣∣ϕ(z)∣∣2
)n/q+m < ∞. (3.1)

Moreover, if Rm
u,ϕ : H(p, q, φ) → H∞

μ is bounded, then the following asymptotic relationship holds

∥
∥
∥Rm

u,ϕ

∥
∥
∥
H(p,q,φ)→H∞

μ

� M1. (3.2)

Proof. Assume (3.1) holds. Then by Lemma 2.4 for each f ∈ H(p, q, φ), we have that

μ(z)
∣
∣
∣Rm

u,ϕf(z)
∣
∣
∣ ≤ C

∥
∥f
∥
∥
H(p,q,φ)

μ(z)|u(z)|∣∣ϕ(z)∣∣

φ
(∣
∣ϕ(z)

∣
∣
)(

1 − ∣∣ϕ(z)∣∣2
)n/q+m . (3.3)

Taking the supremum over the unit ball in (3.3) and using (3.1) the boundedness of operator
Rm

u,ϕ : H(p, q, φ) → H∞
μ follows and

∥
∥
∥Rm

u,ϕ

∥
∥
∥
H(p,q,φ)→H∞

μ

≤ CM1. (3.4)

Now assume that operator Rm
u,ϕ : H(p, q, φ) → H∞

μ is bounded. By using the test
functions

fj(z) = zj ∈ H
(
p, q, φ

)
, j = 1, . . . , n, (3.5)

we obtain

Rm
u,ϕfj ∈ H∞

μ , j = 1, . . . , n, (3.6)

that is, for each j = 1, . . . , n, holds

∥
∥
∥Rm

u,ϕfj
∥
∥
∥
H∞

μ

= sup
z∈B

μ(z)|u(z)|∣∣ϕj(z)
∣
∣ ≤ ∥∥zj

∥
∥
H(p,q,φ)

∥
∥
∥Rm

u,ϕ

∥
∥
∥
H(p,q,φ)→H∞

μ

< ∞, (3.7)
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which implies that

sup
z∈B

μ(z)|u(z)|∣∣ϕ(z)∣∣ ≤
n∑

j=1

sup
z∈B

μ(z)|u(z)|∣∣ϕj(z)
∣
∣

≤
∥
∥
∥Rm

u,ϕ

∥
∥
∥
H(p,q,φ)→H∞

μ

n∑

j=1

∥
∥zj
∥
∥
H(p,q,φ) < ∞.

(3.8)

Let

fw(z) =

(
1 − |w|2

)t+1

φ(w)(1 − 〈z,w〉)n/q+t+1
. (3.9)

It is known that L1 := supw∈B
‖fw‖H(p,q,φ) < ∞ (see [8, Theorem 3.3]). From this, using the

boundedness of Rm
u,ϕ : H(p, q, φ) → H∞

μ and by Lemma 2.5, we have that for each a ∈ B

L1

∥
∥
∥Rm

u,ϕ

∥
∥
∥
H(p,q,φ)→H∞

μ

≥
∥
∥
∥Rm

u,ϕ(fϕ(a))
∥
∥
∥
H∞

μ

= sup
z∈B

μ(z)|u(z)|∣∣Rmfϕ(a)
(
ϕ(z)

)∣
∣

≥
(
n

q
+ t + 1

) μ(a)|u(a)|Pm

(∣
∣ϕ(a)

∣
∣2
)

φ
(∣
∣ϕ(a)

∣
∣
)(

1 − ∣∣ϕ(a)∣∣2
)n/q+m

≥
(
n

q
+ t + 1

)
μ(a)|u(a)|∣∣ϕ(a)∣∣2

φ
(∣
∣ϕ(a)

∣
∣
)(

1 − ∣∣ϕ(a)∣∣2
)n/q+m .

(3.10)

From (3.10), we have that

∞ > sup
|ϕ(z)|>1/2

μ(z)|u(z)|∣∣ϕ(z)∣∣2

φ
(∣
∣ϕ(z)

∣
∣
)(

1 − ∣∣ϕ(z)∣∣2
)n/q+m

≥ sup
|ϕ(z)|>1/2

μ(z)|u(z)|∣∣ϕ(z)∣∣

2φ
(∣
∣ϕ(z)

∣
∣
)(

1 − ∣∣ϕ(z)∣∣2
)n/q+m .

(3.11)

On the other hand, from (3.8) and since φ is normal, we obtain

sup
|ϕ(z)|≤1/2

μ
(
ϕ(z)

)|u(z)|∣∣ϕ(z)∣∣2

φ
(
ϕ(z)

)(
1 − ∣∣ϕ(z)∣∣2

)n/q+m ≤ C sup
z∈B

μ
(
ϕ(z)

)|u(z)|∣∣ϕ(z)∣∣ < ∞. (3.12)
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From (3.8), (3.10), (3.11), and (3.12) condition (3.1) follows, and moreover

M1 ≤ C
∥
∥
∥Rm

u,ϕ

∥
∥
∥
H(p,q,φ)→H∞

μ

. (3.13)

From (3.4) and (3.13) asymptotic relationship (3.2) follows, finishing the proof of the theorem.

Theorem 3.2. Assumem ∈ N, 0 < p, q < ∞, φ is normal, μ is a weight, ϕ is a holomorphic self-map of
B and u ∈ H(B). Then Rm

u,ϕ : H(p, q, φ) → H∞
μ is compact if and only if Rm

u,ϕ : H(p, q, φ) → H∞
μ

is bounded and

lim
|ϕ(z)|→ 1

μ(z)|u(z)|∣∣ϕ(z)∣∣

φ
(∣
∣ϕ(z)

∣
∣
)(

1 − ∣∣ϕ(z)∣∣2
)n/q+m = 0. (3.14)

Proof. Suppose that Rm
u,ϕ : H(p, q, φ) → H∞

μ is compact. Then it is clear that Rm
u,ϕ :

H(p, q, φ) → H∞
μ is bounded. If ‖ϕ‖∞ < 1, then (3.14) is vacuously satisfied. Hence assume

that ‖ϕ‖∞ = 1. Let (zk)k∈N
be a sequence in B such that |ϕ(zk)| → 1 as k → ∞, and

fk(z) = fϕ(zk)(z),k ∈ N, where fw is defined in (3.9). Then supk∈N
‖fk‖H(p,q,φ) < ∞, fk → 0

uniformly on compacts of B as k → ∞ since

lim
k→∞

(
1 − ∣∣ϕ(zk)

∣
∣2
)t+1

φ
(∣
∣ϕ(zk)

∣
∣
) = 0, (3.15)

so that

lim
k→∞

∥
∥
∥Rm

u,ϕfk
∥
∥
∥
H∞

μ

= 0. (3.16)

On the other hand, by (3.10), we have

μ(zk)|u(zk)|
∣
∣ϕ(zk)

∣
∣2

φ
(∣
∣ϕ(zk)

∣
∣
)(

1 − ∣∣ϕ(zk)
∣
∣2
)n/q+m ≤ C

∥
∥
∥Rm

u,ϕfk
∥
∥
∥
H∞

μ

. (3.17)

From (3.16) and (3.17), equality (3.14) easily follows.
Conversely, assume that Rm

u,ϕ : H(p, q, φ) → H∞
μ is bounded and (3.14) holds. From

the proof of Theorem 3.1 we know that (3.1) holds. On the other hand, from (3.14), we have
that, for every ε > 0, there is a δ ∈ (0, 1), such that

μ(z)|u(z)|∣∣ϕ(z)∣∣

φ
(∣
∣ϕ(z)

∣
∣
)(

1 − ∣∣ϕ(z)∣∣2
)n/q+m < ε (3.18)

whenever δ < |ϕ(z)| < 1.
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Assume (fk)k∈N
is a sequence in H(p, q, φ) such that supk∈N

‖fk‖H(p,q,φ) ≤ L and fk
converges to 0 uniformly on compact subsets of B as k → ∞. Let K = {z ∈ B : |ϕ(z)| ≤ δ}.
Then from (3.18), and by Lemma 2.4, it follows that

∥
∥
∥Rm

u,ϕfk
∥
∥
∥
H∞

μ

= sup
z∈B

μ(z)|u(z)|∣∣Rmfk
(
ϕ(z)

)∣
∣

≤ sup
z∈K

μ(z)|u(z)|∣∣Rmfk
(
ϕ(z)

)∣
∣ + sup

z∈B\K
μ(z)|u(z)|∣∣Rmfk

(
ϕ(z)

)∣
∣

≤ sup
z∈K

μ(z)|u(z)|∣∣ϕ(z)∣∣
∣
∣
∣∇Rm−1fk

(
ϕ(z)

)∣∣
∣

+ C
∥
∥fk
∥
∥
H(p,q,φ) sup

z∈B\K

μ(z)|u(z)|∣∣ϕ(z)∣∣

φ
(∣
∣ϕ(z)

∣
∣
)(

1 − ∣∣ϕ(z)∣∣2
)n/q+m

≤ K2Csup
|ζ|≤δ

∣
∣
∣∇Rm−1fk(ζ)

∣
∣
∣ + Cε

∥
∥fk
∥
∥
H(p,q,φ),

(3.19)

where K2 := supz∈B
μ(z)|u(z)||ϕ(z)| (see (3.8)). Therefore

∥
∥
∥Rm

u,ϕfk
∥
∥
∥
H∞

μ

≤ K2sup
|ζ|≤δ

∣
∣
∣∇Rm−1fk(ζ)

∣
∣
∣ + CLε. (3.20)

Since (fk)k∈N
converges to zero on compact subsets of B as k → ∞, by Cauchy’s estimates it

follows that the sequence (|∇Rm−1fk|)k∈N
also converges to zero on compact subsets of B as

k → ∞, in particular

lim
k→∞

sup
|ζ|≤δ

∣
∣
∣∇Rm−1fk(ζ)

∣
∣
∣ = 0. (3.21)

Using these facts and letting k → ∞ in (3.20), we obtain that

lim sup
k→∞

∥
∥
∥Rm

u,ϕfk
∥
∥
∥
H∞

μ

≤ CLε . (3.22)

Since ε is an arbitrary positive number it follows that the last limit is equal to zero. Applying
Lemma 2.1, the implication follows.

Theorem 3.3. Assume m ∈ N, 0 < p, q < ∞, φ, μ are normal, ϕ is a holomorphic self-map of B and
u ∈ H(B). Then Rm

u,ϕ : H(p, q, φ) → H∞
μ,0 is bounded if and only if Rm

u,ϕ : H(p, q, φ) → H∞
μ is

bounded and

lim
|z|→ 1

μ(z)|u(z)|∣∣ϕ(z)∣∣ = 0. (3.23)

Proof. First assume that Rm
u,ϕ : H(p, q, φ) → H∞

μ,0 is bounded. Then, it is clear that Rm
u,ϕ :

H(p, q, φ) → H∞
μ is bounded, and as in the proof of Theorem 3.1, by taking the test functions

fj(z) = zj , j = 1, . . . , n, we obtain (3.23).
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Conversely, assume that the operator Rm
u,ϕ : H(p, q, φ) → H∞

μ is bounded and
condition (3.23) holds. Then, for each polynomial p, we have

μ(z)
∣
∣
∣
(
Rm

u,ϕp
)
(z)
∣
∣
∣ ≤ μ(z)|u(z)|∣∣(Rmp

)(
ϕ(z)

)∣
∣ ≤ μ(z)|u(z)|∣∣ϕ(z)∣∣

∥
∥
∥∇Rm−1p

∥
∥
∥
∞
, (3.24)

from which along with condition (3.23) it follows that Rm
u,ϕp ∈ H∞

μ,0. Since the set of all
polynomials is dense in H(p, q, φ), we see that for every f ∈ H(p, q, φ) there is a sequence of
polynomials (pk)k∈N

such that

lim
k→∞

∥
∥f − pk

∥
∥
H(p,q,φ) = 0. (3.25)

From this and by the boundedness of the operator Rm
u,ϕ : H(p, q, φ) → H∞

μ , we have that

∥
∥
∥Rm

u,ϕf − Rm
u,ϕpk

∥
∥
∥
H∞

μ

≤
∥
∥
∥Rm

u,ϕ

∥
∥
∥
H(p,q,φ)→H∞

μ

∥
∥f − pk

∥
∥
H(p,q,φ) −→ 0 (3.26)

as k → ∞. Hence Rm
u,ϕ(H(p, q, φ)) ⊆ H∞

μ,0, and consequently Rm
u,ϕ : H(p, q, φ) → H∞

μ,0 is
bounded.

Theorem 3.4. Assume m ∈ N, 0 < p, q < ∞, φ, μ are normal, ϕ is a holomorphic self-map of B and
u ∈ H(B). Then Rm

u,ϕ : H(p, q, φ) → H∞
μ,0 is compact if and only if

lim
|z|→ 1

μ(z)|u(z)|∣∣ϕ(z)∣∣

φ
(∣
∣ϕ(z)

∣
∣
)(

1 − ∣∣ϕ(z)∣∣2
)n/q+m = 0. (3.27)

Proof. From (3.27), we see that (3.1) hold. This fact along with (3.3) implies that the set
Rm

u,ϕ({f | ‖f‖H(p,q,φ) ≤ 1}) is bounded inH∞
μ , moreover inH∞

μ,0. By taking the supremum in
(3.3) over the unit ball inH(p, q, φ), using (3.27) and applying Lemma 2.2 we obtain that the
operator Rm

u,ϕ : H(p, q, φ) → H∞
μ,0 is compact.

If Rm
u,ϕ : H(p, q, φ) → H∞

μ,0 is compact, then by Theorem 3.2, we have that condition
(3.14) holds, which implies that for every ε > 0 there is an r ∈ (0, 1) such that

μ(z)|u(z)|∣∣ϕ(z)∣∣

φ
(∣
∣ϕ(z)

∣
∣
)(

1 − ∣∣ϕ(z)∣∣2
)n/q+m < ε, (3.28)

for r < |ϕ(z)| < 1.
As in Theorem 3.3, we have that (3.23) holds. Thus there is a σ ∈ (0, 1) such that

μ(z)|u(z)|∣∣ϕ(z)∣∣ < ε
(
1 − r2

)n/q+m
inf

|ϕ(z)|≤r
φ
(∣
∣ϕ(z)

∣
∣
)
, (3.29)

for σ < |z| < 1.
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If |ϕ(z)| ≤ r and σ < |z| < 1, then from (3.29), we obtain

μ(z)|u(z)|∣∣ϕ(z)∣∣
(
1 − ∣∣ϕ(z)∣∣2

)n/q+m
φ
(∣
∣ϕ(z)

∣
∣
)
≤ μ(z)|u(z)|∣∣ϕ(z)∣∣

(1 − r2)n/q+minf|ϕ(z)|≤rφ
(∣
∣ϕ(z)

∣
∣
) < ε. (3.30)

Using (3.30) and the fact that from (3.28), we have

μ(z)|u(z)|∣∣ϕ(z)∣∣

φ
(∣
∣ϕ(z)

∣
∣
)(

1 − ∣∣ϕ(z)∣∣2
)n/q+m < ε, (3.31)

for σ < |z| < 1 and r < |ϕ(z)| < 1, we get (3.27).

4. Hilbert-Schmidt Norm of Rm
u,ϕ : A2

α → A2
α and Rm

u,ϕ : H2 → H2

In this section we calculate Hilbert-Schmidt norm of the operators Rm
u,ϕ : A2

α → A2
α and

Rm
u,ϕ : H2 → H2. For some related results see [37, 38].

If H is a separable Hilbert space, then the Hilbert-Schmidt norm ‖T‖HS of an operator
T : H → H is defined by

‖T‖HS =

( ∞∑

n=1

‖Ten‖2
)1/2

, (4.1)

where {en}n∈N
is an orthonormal basis onH. The right-hand side in (4.1) does not depend on

the choice of basis. Hence, it is larger than the operator norm ‖T‖op of T .
Let 〈· , ·〉α, α ≥ −1, be the usual scalar product on A2

α, where we regard that A2
−1 = H2.

Since for each multi-index β = (β1, . . . , βn) ∈ N
n
0

∫

B

∣
∣
∣zβ
∣
∣
∣
2
dvα(z) =

β!Γ(n + α + 1)
Γ
(
n +
∣
∣β
∣
∣ + α + 1

) , (4.2)

where β! = β1! · · · βn!, and
∫

B

zβzγdvα(z) = 0, β /= γ (4.3)

(see, e.g., [1]), we have that the vectors

eβ(z) =

√
Γ
(
n +
∣
∣β
∣
∣ + α + 1

)

β!Γ(n + α + 1)
zβ, β ∈ N

n
0 , (4.4)

form an orthonormal basis in A2
α.
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Theorem 4.1. Letm ∈ N0. Then Hilbert-Schmidt norm of the operator Rm
u,ϕ on A2

α, α > −1 is

∥
∥
∥Rm

u,ϕ

∥
∥
∥
HS

=

⎛

⎜
⎜
⎝

∫

B

|u(z)|2
⎛

⎜
⎝Rm 1

(
1 −∑n

j=1 wj

)n+α+1

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣
wj=|ϕj (z)|2

dvα(z)

⎞

⎟
⎟
⎠

1/2

. (4.5)

Proof. By using the definition of the Hilbert-Schmidt norm and the monotone convergence
theorem, we have

∥
∥
∥Rm

u,ϕ

∥
∥
∥
2

HS
=
∑

β

∥
∥
∥Rm

u,ϕ(eβ)
∥
∥
∥
2

2,α
=
∑

β

Γ
(
n +
∣
∣β
∣
∣ + α + 1

)

β!Γ(n + α + 1)

∥
∥
∥Rm

u,ϕ(z
β)
∥
∥
∥
2

2,α

=
∑

β

Γ
(
n +
∣
∣β
∣
∣ + α + 1

)

β!Γ(n + α + 1)

∣
∣β
∣
∣m
∫

B

|u(z)|2
n∏

j=1

∣
∣ϕj(z)

∣
∣2βj dvα(z)

=
∫

B

|u(z)|2
∑

β

∣
∣β
∣
∣m

Γ
(
n +
∣
∣β
∣
∣ + α + 1

)

β!Γ(n + α + 1)

n∏

j=1

∣
∣ϕj(z)

∣
∣2βj dvα(z).

(4.6)

We also have that

⎛

⎝1 −
n∑

j=1

wj

⎞

⎠

−(n+α+1)

=
∞∑

k=0

⎛

⎝
n∑

j=1

wj

⎞

⎠

k

Γ(n + α + k + 1)
k!Γ(n + α + 1)

=
∞∑

k=0

∑

|l|=k

k!
l!

n∏

j=1

w
lj
j

Γ(n + α + k + 1)
k!Γ(n + α + 1)

=
∑

l

Γ(n + α + |l| + 1)
l!Γ(n + α + 1)

n∏

j=1

w
lj
j ,

(4.7)

from which by taking the radial derivatives it follows that

Rm 1
(
1 −∑n

j=1 wj

)n+α+1 =
∑

l

|l|m Γ(n + α + |l| + 1)
l!Γ(n + α + 1)

n∏

j=1

w
lj
j . (4.8)

From (4.6) and (4.8) the result easily follows.

Similar to Theorem 4.1 the following result regarding the case of the Hardy space is
proved. We omit the proof.
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Theorem 4.2. Letm ∈ N0. Then, Hilbert-Schmidt norm of the operator Rm
u,ϕ on H2, is

∥
∥
∥Rm

u,ϕ

∥
∥
∥
HS

= sup
0<r<1

⎛

⎜
⎜
⎝

∫

S

|u(rζ)|2
⎛

⎜
⎝Rm 1

(
1 −∑n

j=1 wj

)n

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣
wj=|ϕj (rζ)|2

dσ(ζ)

⎞

⎟
⎟
⎠

1/2

. (4.9)
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[18] S. Stević, “On a new operator fromH∞ to the Bloch-type space on the unit ball,” Utilitas Mathematica,
vol. 77, pp. 257–263, 2008.
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[26] S. Stević, “On an integral-type operator from logarithmic Bloch-type andmixed-norm spaces to Bloch-
type spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 12, pp. 6323–6342, 2009.
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