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We introduce new spaces that are extensions of the Hardy spaces and we investigate the continuity
of the point evaluations as well as the boundedness and the compactness of the composition
operators on these spaces.

1. Introduction

Let U be the open unit disk in the complex plane C, ∂U its boundary, and H(U) the space of
all analytic functions on the unit disk.

For an analytic function f on the unit disk and 0 < r < 1, we define the delay function
fr by fr(eiθ) = f(reiθ). It is easy to see that the functions fr are continuous for each r, hence
they are in Lp(∂U, dθ/2π), where dθ/2π is the normalized arc length on the unit circle.

For 0 < p < ∞, the Hardy space Hp(U) = Hp is the set of all f ∈ H(U) such that
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∥
p

p = sup
0<r<1

∫2π

0
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p dθ

2π
< ∞. (1.1)

Also we recall that H∞(U) = H∞ is the space of all bounded analytic functions defined on
U, with supremum norm ‖f‖∞ = supz∈U|f(z)|. We know that for p ≥ 1,Hp is a Banach space
(see, e.g., [1, page 37]).

By the Littlewood Subordination Theorem (see [2, Corollary 2.23]), we see that the
supremum in the above definition of Hp is actually a limit, that is,
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2π
< ∞. (1.2)
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Another important result is Fatou’s Radial Limit Theorem (see [1, Theorems 2.2 and 2.6]),
which says, if f is in Hp for some p > 0, then the radial limit

f∗
(

eiθ
)

= lim
r→ 1

f
(

reiθ
)

(1.3)

exists for almost all θ and the mapping f → f∗ is an isometry of Hp to a closed subspace of
Lp(∂U, dθ/2π). Therefore,

∥
∥f

∥
∥
p

p =
∫2π

0

∣
∣
∣f∗

(

eiθ
)∣
∣
∣

p dθ

2π
< ∞. (1.4)

We will also write f(eiθ) for f∗(eiθ). If p = 2 and f̂(n) are the nth coefficients of f in its
Maclaurin series, then we have another representation for the norm of f on H2 as follows:

∥
∥f

∥
∥
2
2 =

∞∑

n=0

∣
∣
∣f̂(n)

∣
∣
∣

2
< ∞. (1.5)

The formula above defines a norm that turns H2 into a Hilbert space whose inner product is
given by

〈

f, g
〉

H2 =
∞∑

n=0

f̂(n)ĝ(n) =
∫2π

0
f
(

eiθ
)

g(eiθ)
dθ

2π
(1.6)

for each f, g ∈ H2 (see, e.g., [2]).
Let ew be the point evaluation at w, that is, ew(f) = f(w). It is well known that point

evaluations at the points of U are all continuous on Hp (see, e.g., [1, page 36]).
Let w ∈ U and H be a Hilbert space of analytic functions on U. If ew is a bounded

linear functional onH, then the Riesz Representation Theorem implies that there is a function
(which is usually calledKw) inH that induces this linear functional, that is, ew(f) = 〈f,Kw〉.

Let ϕ be an analytic self-map of the unit disk. The linear composition operator Cϕ is
defined by Cϕ(f) = f ◦ϕ for f ∈ H(U). It is well known (see, e.g., [1, page 29] or [3, Theorem
1]) that the composition operators are bounded on each of the Hardy spacesHp (0 < p < ∞).
One of the first papers in this research area is [3], while Schwartz in [4] begun the research
on compact composition operators on Hp. Shapiro and Taylor in [5] have studied the role of
angular derivative for compactness of Cϕ inHp. For some other classical results, see [2, 6].

The boundedness and compactness of composition operators, as well as weighted
composition operators and other natural extensions of them, on various spaces of analytic
functions have been investigated by many authors; see, books [2, 6], and, for example, the
following recent papers [7–28] and the references therein.

Throughout this paper, P denotes the set of all analytic polynomials and for a function
F, RF denotes the range of F.

2. Generalized Hardy Spaces

In this section, we define new spaces and investigate some basic properties of these spaces.
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Definition 2.1. Let F : H(U) → H(U) be a linear operator such that F(f) = 0 if and only if
f = 0, that is, F is 1-1. For 1 ≤ p < ∞, the generalized Hardy space HF,p(U) = HF,p is defined
to be the collection of all analytic functions f on U for which

sup
0<r<1

∫2π

0

∣
∣
∣

(

F
(

f
))

r

(

eiθ
)∣
∣
∣

p dθ

2π
< ∞. (2.1)

Denote the pth root of this supremum by ‖f‖HF,p
. Since |F(f)|p is a subharmonic function, so

by [2, Corollary 2.23], we have

∥
∥f

∥
∥
p
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= lim

r→ 1

∫2π
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∣
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r

(

eiθ
)∣
∣
∣

p dθ

2π
. (2.2)

Therefore, f ∈ HF,p if and only if F(f) ∈ Hp and

∥
∥f

∥
∥
p

HF,p
=
∥
∥F(f)

∥
∥
p

p =
∫2π

0

∣
∣
∣F

(

f
)(

eiθ
)∣
∣
∣

p dθ

2π
. (2.3)

It is easy to see that HF,p is a normed space with the norm ‖ · ‖HF,p
.

From now on, unless otherwise stated, we assume that F satisfies the conditions of
Definition 2.1.

In this section, we first set some conditions on F such that HF,p becomes a Banach
space. In the following theorem, we obtain a necessary and sufficient condition forHF,p to be
a Banach space.

Theorem 2.2. Let 1 ≤ p < ∞ and P ⊆ RF . Then Hp is a subspace of RF if and only if HF,p is a
Banach space.

Proof. Suppose that Hp ⊆ RF . Since HF,p is a normed space, it suffices to show that it is
complete. Let {fn} be a Cauchy sequence in HF,p and set F(fn) = gn. Then {gn} is a Cauchy
sequence inHp. Since Hp is complete, there is a g ∈ Hp such that

∥
∥gn − g

∥
∥
p −→ 0, as n −→ ∞. (2.4)

Since Hp ⊆ RF , there is an f ∈ H(U) such that F(f) = g. Now we show that this f is the
HF,p-limit of {fn}. We have

∥
∥fn − f

∥
∥
HF,p

=
∥
∥gn − g

∥
∥
p −→ 0, as n −→ ∞. (2.5)

Hence fn − f ∈ HF,p for sufficiently large positive integer n, which implies that f ∈ HF,p. So
fn → f inHF,p as n → ∞.

Conversely, suppose thatHF,p is a Banach space. IfHp/⊆RF , then there is a g ∈ Hp such
that g is not in RF . Since the polynomials are dense in Hp, there is a sequence {pn} in P such
that ‖pn − g‖p → 0 as n → ∞. Let qn = F−1(pn). Then {qn} is a Cauchy sequence in HF,p and
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so there is a q ∈ HF,p such that ‖qn − q‖HF,p → 0 as n → ∞. Hence ‖F(qn) − F(q)‖p → 0 as
n → ∞. On the other hand, ‖F(qn) − g‖p → 0 as n → ∞. This shows that g = F(q) which is
a contradiction.

Example 2.3. Let F(
∑∞

j=0 ajz
j) =

∑∞
j=0(aj/2j)zj , where

∑∞
j=0 ajz

j ∈ H(U). It is not hard to see
that g(z) =

∑∞
n=0 2

−n/2zn ∈ H2 and g is not in RF . So by Theorem 2.2, HF,2 is not a Banach
space.

Proposition 2.4. If H2 ⊆ RF , thenHF,2 is a Hilbert space.

Proof. We define a scalar product on HF,2 by

〈

f, g
〉

HF,2
=
〈

F
(

f
)

, F
(

g
)〉

H2 . (2.6)

It is easy to show that this scalar product defines an inner product onHF,2.

There is a Banach spaceHF,p such that it does not satisfy the condition of Theorem 2.2.
For example, let 1 ≤ p < ∞, F(f) = zf for each f ∈ H(U). Then 1/∈RF . By the following
proposition, we see that although Hp/⊆RF ,HF,p is a Banach space.

Proposition 2.5. Suppose 1 ≤ p < ∞, h ∈ H(U), h /≡ 0, and F(f) = fh for every f ∈ H(U). Then
HF,p is a Banach space.

Proof. If Hp ⊆ RF , then by Theorem 2.2, the proposition holds. Otherwise, let {fn} be a
Cauchy sequence in HF,p. Seting F(fn) = gn, so {gn} is a Cauchy sequence in Hp. Therefore,
there is a g ∈ Hp such that ‖gn − g‖p → 0 as n → ∞. If g ∈ RF , then the proof is similar to
the proof of Theorem 2.2.

Now suppose that g is not in RF . Then there are z0 ∈ U,m1 ≥ 0, andm2 > m1 such that

g(z) = (z − z0)m1g0(z),

h(z) = (z − z0)m2h0(z),
(2.7)

where h0, g0 ∈ H(U), g0(z0)/= 0, and h0(z0)/= 0. Therefore, we have

∥
∥gn − g

∥
∥
p =

∥
∥hfn − g

∥
∥
p

=
∫2π

0

∣
∣
∣

(

eiθ − z0
)m2

h0

(

eiθ
)

fn
(

eiθ
)

−
(

eiθ − z0
)m1

g0
(

eiθ
)∣
∣
∣

p dθ

2π

=
∫2π

0

∣
∣
∣

(

eiθ − z0
)∣
∣
∣

m1
∣
∣
∣
∣

(

eiθ − z0
)m2−m1

h0

(

eiθ
)

fn
(

eiθ
)

− g0
(

eiθ
)
∣
∣
∣
∣

p dθ

2π

≥ (1 − |z0|)m1

∫2π

0

∣
∣
∣
∣

(

eiθ − z0
)m2−m1

h0

(

eiθ
)

fn
(

eiθ
)

− g0
(

eiθ
)
∣
∣
∣
∣

p dθ

2π
.

(2.8)
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Since ‖gn − g‖p → 0 as n → ∞, we have

lim
n→∞

∫2π

0

∣
∣
∣
∣

(

eiθ − z0
)m2−m1

h0

(

eiθ
)

fn
(

eiθ
)

− g0
(

eiθ
)
∣
∣
∣
∣

p dθ

2π
= 0. (2.9)

Hence ‖(z − z0)
m2−m1h0fn − g0‖p → 0 as n → ∞. Since the point evaluation at z0 is a bounded

linear functional onHp, we have

(z0 − z0)m2−m1h0(z0)fn(z0) − g0(z0) −→ 0, as n −→ ∞. (2.10)

So g0(z0) = 0, which is a contradiction.

The set of all analytic polynomials is dense inHp, but this is not the case for each space
HF,p. Also it is possible that P/⊆HF,p. For example, let p = 2, g(z) = 1/(1 − z), and F(f) = fg.
Then 1 is not in HF,2, for if 1 ∈ HF,2, then F(1) = g ∈ H2, which is a contradiction.

In the following proposition, we will find a dense subset in HF,p, whenever P ⊆ RF .

Proposition 2.6. Suppose 1 ≤ p < ∞ and P ⊆ RF . Then {F−1(p) : p ∈ P} = HF,p.

Proof. It is clear that {F−1(p) : p ∈ P} ⊆ HF,p. Suppose that f ∈ HF,p. Then there is a sequence
{hn} in P such that ‖hn − F(f)‖p → 0 as n → ∞. Setting fn = F−1(hn), we have

∥
∥fn − f

∥
∥
HF,p

=
∥
∥hn − F(f)

∥
∥
p, (2.11)

so the result follows.

Corollary 2.7. Suppose 1 ≤ p < ∞, P ⊆ RF, and F−1(p) ∈ P for each p ∈ P . Then P ∩HF,p = HF,p.

3. Point Evaluations

In this section, we investigate the continuity of the point evaluations onHF,p. The idea behind
Theorem 3.1 is similar to the one found in [29, page 51].

Theorem 3.1. Suppose that w ∈ U and H2 ⊆ RF . Then we have the following.

(a) If p ≥ 2 and
∑∞

j=0 F
−1(zj)(w)zj ∈ H2, then ew is continuous on HF,p.

(b) Let 1 ≤ p < 2 and
∑∞

j=0 F
−1(zj)(w)zj ∈ H∞. If for each 0 < r < 1 and f ∈ HF,1,

(F(f))r = F(fr), then ew is continuous on HF,p.

Proof. (a) By Proposition 2.4,HF,2 is a Hilbert space. Since

〈

F−1
(

zj
)

, F−1
(

zk
)〉

HF,2
=
〈

zj , zk
〉

H2
= 0,

∥
∥
∥F−1(zj)

∥
∥
∥
HF,2

=
∥
∥
∥zj

∥
∥
∥
H2

= 1
(3.1)
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for each j, k ∈ N∪{0}, where j /= k, {F−1(zj) : j ∈ N∪{0}} is an orthonormal set inHF,2. Also if
g ∈ HF,2 and for each j ∈ N∪{0}, 〈g, F−1(zj)〉HF,2

= 0, then for each j ∈ N∪{0}, 〈F(g), zj〉H2 = 0.
Since {zj : j ∈ N ∪ {0}} is a basis for H2, g ≡ 0. Therefore, {F−1(zj) : j ∈ N ∪ {0}} is a basis for
HF,2. Since

∑∞
j=0 F

−1(zj)(w)zj ∈ H2, there is an h ∈ HF,2 such that F(h) =
∑∞

j=0 F
−1(zj)(w)zj .

For each j ∈ N ∪ {0}, we have

〈

F−1
(

zj
)

, h
〉

HF,2
=
〈

zj , F(h)
〉

H2

=

〈

zj ,
∞∑

k=0

F−1(zk
)

(w)zk
〉

H2

= F−1
(

zj
)

(w).

(3.2)

Hence h = Kw ∈ HF,2 and ew is continuous on HF,2.
Let p ≥ 2. If f ∈ HF,p, then

∣
∣f(w)

∣
∣ ≤ ‖Kw‖HF,2

∥
∥f

∥
∥
HF,2

≤ ‖Kw‖HF,2

∥
∥f

∥
∥
HF,p

, (3.3)

so ew is continuous on HF,p.
(b) Let f ∈ HF,1. Then for each 0 < r < 1, fr ∈ HF,2 and so

fr(w) =
〈

fr,Kw

〉

HF,2

=
〈

F
(

fr
)

, F(Kw)
〉

H2

=
∫2π

0
F
(

fr
)(

eiθ
)

F(Kw)
(

eiθ
)dθ

2π
.

(3.4)

Also by [1, Theorem 2.6], ‖(F(f))r − F(f)‖1 → 0 as r → 1. Therefore, by Holder’s inequality
and the fact that F(Kw) =

∑∞
j=0 F

−1(zj)(w)zj , we have

∣
∣
∣
∣
∣

∫2π

0

(

F
(

f
))

r

(

eiθ
)

F(Kw)
(

eiθ
)dθ

2π
−
∫2π

0
F
(

f
)(

eiθ
)

F(Kw)
(

eiθ
)dθ

2π

∣
∣
∣
∣
∣

≤ ‖F(Kw)‖∞
∫2π

0

∣
∣
∣

(

F
(

fr
) − F

(

f
))(

eiθ
)∣
∣
∣
dθ

2π

≤ ‖F(Kw)‖∞
∥
∥
(

F
(

f
))

r − F(f)
∥
∥
1 −→ 0,

(3.5)
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as r → 1. So we obtain

f(w) = lim
r→ 1

fr(w)

= lim
r→ 1

∫2π

0
F
(

fr
)(

eiθ
)

F(Kw)
(

eiθ
)dθ

2π

=
∫2π

0
F
(

f
)(

eiθ
)

F(Kw)
(

eiθ
)dθ

2π
.

(3.6)

Hence

∣
∣f(w)

∣
∣ =

∣
∣
∣
∣
∣

∫2π

0
F
(

f
)(

eiθ
)

F(Kw)
(

eiθ
)dθ

2π

∣
∣
∣
∣
∣

≤ ‖F(Kw)‖∞
∫2π

0

∣
∣
∣F

(

f
)(

eiθ
)∣
∣
∣
dθ

2π

= ‖F(Kw)‖∞
∥
∥f

∥
∥
HF,1

(3.7)

for each f ∈ HF,1. Now let 1 ≤ p < 2. If f ∈ HF,p, then

∣
∣f(w)

∣
∣ ≤ ‖F(Kw)‖∞

∥
∥f

∥
∥
HF,1

≤ ‖F(Kw)‖∞
∥
∥f

∥
∥
HF,p

, (3.8)

so the result follows.

Suppose that w and F satisfy the hypotheses in the first line of Theorem 3.1. It is easy
to see that if ew is continuous on HF,2, then according to the proof of the previous theorem,
F(Kw) =

∑∞
j=0 F

−1(zj)(w)zj .
Now we give two examples for the preceding theorem.

Example 3.2. (a) Let w ∈ U and F(
∑∞

j=0 ajz
j) = a0 +

∑∞
j=1 jajz

j , where
∑∞

j=0 ajz
j ∈ H(U).

It is easy to see that
∑∞

j=0 F
−1(zj)(w)zj = 1 +

∑∞
j=1((w)j/j)zj ∈ H∞ and for each f ∈ HF,1,

F(fr) = (F(f))r . Therefore, by Theorem 3.1, ew is continuous on HF,p for each 1 ≤ p < ∞.
(b) Let p ≥ 2 and F(

∑∞
j=0 ajz

j) =
∑∞

j=0 bjz
j such that (b0, b1, . . . , bn) is a permutation of

(a0, a1, . . . , an) for some n ∈ N and bk = ak for k > n. Then by Theorem 3.1, for each point w
in the open unit disk, ew is continuous on HF,p. Also if p = 2 and S is the above permutation,
then

F(Kw) =
∞∑

j=0

F−1(zj)(w)zj =
∞∑

j=0
(w)S

−1(j)zj . (3.9)

Therefore, Kw(z) =
∑∞

j=0(w)S
−1(j)zS

−1(j).

There is a Banach spaceHF,p such that it does not satisfy the conditions of Theorem 3.1,
but for each w ∈ U, ew is continuous on HF,p. For example, let 1 ≤ p < ∞, g(z) = 1/2 − z,
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and F(f) = fg for each f ∈ H(U). Then 1 is not in RF and F((1)r)/≡ (F(1))r . By the following
theorem, we see that although the hypotheses of Theorem 3.1 do not hold, ew is continuous
onHF,p for each w ∈ U.

Theorem 3.3. Let 1 ≤ p < ∞, w ∈ U, h ∈ H(U), h/≡ 0, and for each f ∈ H(U), F(f) = fh. Then
ew is continuous on HF,p.

Proof. We break the proof into two parts.
(1) Let h(w)/= 0. If |w| < r < 1 and Γr is the circle of radius r with center at the origin,

then the Cauchy formula shows that for any f inHF,p,

f(w)h(w) =
1

2πi

∫

Γr

f(ζ)h(ζ)
ζ −w

dζ

=
1

2πi

∫2π

0

f
(

reiθ
)

h
(

reiθ
)

reiθ −w
rieiθdθ

=
∫2π

0
f
(

reiθ
)

h
(

reiθ
) r

r −we−iθ
dθ

2π
.

(3.10)

It follows that

∣
∣f(w)

∣
∣|h(w)| ≤ ∥

∥(fh)r
∥
∥
p

∥
∥
∥
∥

r

r −we−iθ

∥
∥
∥
∥
q

, (3.11)

where 1/p + 1/q = 1. Now if r tends to 1, |r/(r −we−iθ)| converges uniformly to the bounded
function |1 −weiθ|−1 and ‖(fh)r‖p ≤ ‖fh‖p. Hence there is anM < ∞ such that

∣
∣f(w)

∣
∣ ≤ M

|h(w)|
∥
∥f

∥
∥
HF,p

, (3.12)

and the result follows.
(2) Let h(w) = 0. Then h(z) = (z −w)mh0(z), where m ∈ N, h0 ∈ H(U), and h0(w)/= 0.

Let F1(f) = fh0 for each f ∈ H(U), it is easy to see that HF,p ⊆ HF1,p. Then by the preceding
part, there is a constant 0 < C < ∞ such that

∣
∣f(w)

∣
∣
p ≤ C

∥
∥fh0

∥
∥
p

p = C

∫2π

0

∣
∣
∣f
(

eiθ
)∣
∣
∣

p∣
∣
∣h0

(

eiθ
)∣
∣
∣

p
∣
∣eiθ −w

∣
∣
mp

∣
∣eiθ −w

∣
∣
mp

dθ

2π

≤ C

(1 − |w|)mp

∫2π

0

∣
∣
∣f
(

eiθ
)

h
(

eiθ
)∣
∣
∣

p dθ

2π

=
C

(1 − |w|)mp

∥
∥f

∥
∥
p

HF,p

(3.13)

for each f ∈ HF,p. So ew is continuous on HF,p.
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There is an example of HF,p such that HF,2 is not a Hilbert space and ew is continuous
for some w ∈ U.

Example 3.4. Let p = 2 and F(
∑∞

j=0 ajz
j) =

∑∞
j=0(aj/2j)zj , where

∑∞
j=0 ajz

j ∈ H(U). We can
show that for each w ∈ (1/2)U, ew is continuous on HF,2. Suppose f(z) =

∑∞
j=0 ajz

j ∈ HF,2,
we have

∣
∣f(w)

∣
∣ =

∣
∣
∣
∣
∣
∣

∞∑

j=0

ajw
j

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∞∑

j=0

aj

2j
(2w)j

∣
∣
∣
∣
∣
∣

≤
⎛

⎝

∞∑

j=0

∣
∣
∣
∣

aj

2j

∣
∣
∣
∣

2
⎞

⎠

1/2⎛

⎝

∞∑

j=0

∣
∣
∣(2w)j

∣
∣
∣

2

⎞

⎠

1/2

=
∥
∥f

∥
∥
HF,2

⎛

⎝

∞∑

j=0
|2w|2j

⎞

⎠

1/2

,

(3.14)

as desired. Also it is easy to see that ew is continuous onHF,p for each p > 2 and w ∈ (1/2)U.

4. Continuity of the Composition Operators on HF,p

In the most important classical spaces, all analytic maps of the unit disk into itself induce
bounded composition operators, but there are analytic self-maps of the unit disk which do
not give bounded composition operators on some generalized Hardy spaces.

Example 4.1. (a) Suppose that ϕ(z) = z2 and for each f ∈ H(U), F(f) = fg, where g(z) = 1−z.
Let fj(z) = 1 + z + z2 + · · · + zj for each j ∈ N ∪ {0}. Then fj ∈ HF,2. We see that

∥
∥Cz2(fj)

∥
∥
2
HF,2

=
∥
∥
∥fj(z2)g(z)

∥
∥
∥

2

2
=
∥
∥
∥(1 + z2 + · · · + z2j)(1 − z)

∥
∥
∥

2

2
= 2j + 2,

∥
∥fj

∥
∥
2
HF,2

=
∥
∥fjg

∥
∥
2
2 =

∥
∥
∥1 − zj+1

∥
∥
∥

2

2
= 2.

(4.1)

So ‖Cz2‖2 ≥ j + 1 and Cz2 is not bounded on HF,2.
(b) Let F(

∑∞
j=0 ajz

j) =
∑∞

j=0 ajβ(j)zj , where
∑∞

j=0 ajz
j ∈ H(U) and {β(j)} is given in

[2, Example 3.4]. If ϕ(z) = z2, then in [2, Example 3.4] shows that Cϕ is not bounded onHF,2.

In this section, we investigate the continuity of the composition operator on some
spaces HF,p in terms of a Carleson measure criterion. This criterion has been used to
characterize the boundedness and the compactness of the composition operators in different
papers (see, e.g., [16, 30]).

Definition 4.2. A positive measure μ on U is called a Carleson measure (in U) if there is a
constant K < ∞ such that μ(S(b, h)) < Kh for all b ∈ ∂U and 0 < h < 1, where S(b, h) = {z ∈
U : |z − b| < h}.



10 Abstract and Applied Analysis

Proposition 4.3. Let 1 ≤ p < ∞ and P ⊆ RF . If μ is a finite, positive Borel measure on U, then the
following conditions are equivalent.

(a) μ is a Carleson measure inU.

(b) There is a constant C < ∞ such that

∫

U

∣
∣F

(

f
)∣
∣
p
dμ ≤ C

∥
∥f

∥
∥
p

HF,p
(4.2)

for all f inHF,p.

Proof. By [2, Theorem 2.33], (a)⇒(b) is clear. Now we prove that (b) implies (a). For each
p0 ∈ P , there is a qp0 ∈ HF,p such that F(qp0) = p0 and

∫

U

∣
∣p0

∣
∣
p
dμ ≤ C

∥
∥p0

∥
∥
p

p. (4.3)

If g ∈ Hp, then there is a sequence {pn} in P such that ‖pn − g‖p → 0 as n → ∞. So

∥
∥pn

∥
∥
p

p −→ ∥
∥g

∥
∥
p

p, as n −→ ∞. (4.4)

By (4.3), we obtain

∫

U

∣
∣pn

∣
∣
p
dμ ≤ C

∥
∥pn

∥
∥
p

p (4.5)

for each n ∈ N. The right-hand side of (4.5) is bounded, hence there is a subsequence {pnk}
such that

∫

U|pnk |pdμ converges. Since point evaluations at the points of U are all continuous
on Hp, the Principle of Uniform Boundedness implies that {pnk} converges to g uniformly
on compact subsets of U. In particular, for each 0 < r < 1, the convergence is uniform on rU.
Therefore, for each 0 < r < 1,

∫

rU|pnk |pdμ → ∫

rU|g|pdμ as k → ∞. Since {∫U|pnk |pdμ} is a
bounded sequence, there is an M > 0 such that

∫

rU|g|pdμ ≤ M for each 0 < r < 1. Hence
∫

U|g|pdμ ≤ M and g ∈ Lp(μ). Now let {rm} be an increasing sequence which converges
to 1 and let ε > 0. By [31, page 32], there is an integer m0 such that

∫

A|g|pdμ < ε, where
A = U − rm0U. Let B = rm0U. Then by [31, page 73], we have lim supk→∞

∫

A|pnk |pdμ ≤ ε.
So there is a K0 such that for each k > K0,

∫

A|pnk |pdμ ≤ ε. Again apply [31, page 32] for
|pn1 |p, |pn2 |p, . . . , |pnK0

|p. Therefore, there are m1, m2, . . . , mK0 such that

∫

U−rmkU

∣
∣pnk

∣
∣
p
dμ ≤ ε (4.6)
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for each 1 ≤ k ≤ K0. Let m′ = max{m0, m1, . . . , mK0}. Therefore, for each m > m′ and k ∈ N,
∫

U−rmU|pnk |pdμ ≤ ε. So by [32, Theorem 19.10], we have

lim
k→∞

∫

U

∣
∣pnk

∣
∣
p
dμ = lim

k→∞
lim
m→∞

∫

rmU

∣
∣pnk

∣
∣
p
dμ

= lim
m→∞

lim
k→∞

∫

rmU

∣
∣pnk

∣
∣
p
dμ

= lim
m→∞

∫

rmU

∣
∣g
∣
∣
p
dμ

=
∫

U

∣
∣g
∣
∣
p
dμ.

(4.7)

So by the preceding relation and (4.4) and (4.5), we have

∫

U

∣
∣g
∣
∣
p
dμ ≤ C

∥
∥g

∥
∥
p

p (4.8)

for every g ∈ Hp. Thus the result follows from [2, Theorem 2.33].

Definition 4.4. For b on the unit circle and 0 < h < 1, let

S(b, h) =
{

z ∈ U : |z − b| < h
}

. (4.9)

From now on, unless otherwise stated, we assume that HF,p is a Banach space.

Proposition 4.5. Let 1 ≤ p < ∞ and P ⊆ RF . If μ is a finite, positive Borel measure on U, then the
following conditions are equivalent.

(a) There is a constant K < ∞ such that μ(S(b, h)) < Kh for all b ∈ ∂U and 0 < h < 1.

(b) There is a constant C < ∞ such that

∫

U

∣
∣F

(

f
)∣
∣
p
dμ ≤ C

∥
∥f

∥
∥
p

HF,p
(4.10)

for all f ∈ HF,p.

Proof. The implication (a)⇒(b) follows by Proposition 4.3 and is exactly the same as the proof
of [2, Theorem 2.35(1)⇒(2)]. For the other direction, by Theorem 2.2,Hp ⊆ RF . Hence for each
g ∈ Hp, we have

∫

U

∣
∣g
∣
∣
p
dμ ≤ C

∥
∥g

∥
∥
p

p. (4.11)

Then the result follows from [2, Theorem 2.35(2)⇒(1)].
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In the following theorem, we use the techniques used in [2, Theorem 3.12 part (1)].

Theorem 4.6. Suppose 1 ≤ p < ∞, ϕ and ϕ0 are analytic self-maps of U. Let P ⊆ RF and for each
f ∈ HF,p, F(f ◦ ϕ) = F(f) ◦ ϕ0. Then Cϕ is a bounded operator on HF,p if and only if μ(S(ζ, h)) =
©(h) for all ζ in ∂U and 0 < h < 1, where μ(E) = σ((ϕ∗

0)
−1(E)), σ is normalized Lebesgue measure

on the unit circle, and E is a subset of the closed diskU.

Proof. Let f ∈ HF,p. By [2, Theorem 2.25] and [33, page 163], we obtain

∫

∂U

∣
∣
(

F
(

f ◦ ϕ))∗∣∣pdσ =
∫

∂U

∣
∣
(

F
(

f
) ◦ ϕ0

)∗∣
∣
p
dσ

=
∫

∂U

∣
∣
(

F
(

f
))∗ ◦ ϕ∗

0

∣
∣
p
dσ

=
∫

U

∣
∣
(

F
(

f
))∗∣

∣
p
dμ.

(4.12)

So the result follows from Proposition 4.5.

Remark 4.7. If p, ϕ, ϕ0 and F satisfy the hypotheses in Theorem 4.6, then by [2, Theorem 3.12,
part (1)], Cϕ is a bounded operator on HF,p if and only if Cϕ0 is a bounded operator on Hp.
Since we know that the composition operators are always bounded on each of the Hardy
spaces Hp, Cϕ is a bounded operator onHF,p.

5. Compactness of the Composition Operators on HF,p

In this section, we investigate the compactness of the composition operators onHF,p.
The idea of the proof of the following theorem is similar to the proof of Proposition

3.11 in [2]. A detailed proof of another similar result can be found, for example, in [18].

Theorem 5.1. Suppose 1 ≤ p < ∞ and for eachw ∈ U, ew is continuous. Also if fn → f as n → ∞
uniformly on compact subsets of U, then F(fn) → F(f) in H(U) as n → ∞. Then the following
conditions are equivalent.

(a) Cϕ is compact onHF,p.

(b) If {fn} is a bounded sequence in HF,p and fn → 0 as n → ∞ uniformly on compact
subsets of U, then ‖fn ◦ ϕ‖HF,p

→ 0 as n → ∞.

Proof. The implication (a)⇒(b) follows exactly as the proof of [2, Theorem 3.11].
Now we show that (b)⇒(a). Let {fn} be a bounded sequence in HF,p. Since ew is

continuous for each w ∈ U, {fn} is a normal family. So there is a function f ∈ H(U) and
a subsequence {fnk} such that fnk → f as k → ∞ uniformly on compact subsets ofU. Hence
F(fnk) → F(f) in H(U) as k → ∞. It is easy to see that f ∈ HF,p. Therefore, {fnk − f} is a
bounded sequence in HF,p such that it converges uniformly to 0 on compact subsets of U. By
the hypotheses, we conclude that fnk ◦ ϕ → f ◦ ϕ in HF,p as k → ∞. Thus Cϕ is a compact
operator.
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Corollary 5.2. Let 1 ≤ p < ∞, g ∈ Hp, g /≡ 0, and F(f) = fg for each f ∈ H(U). Let ϕ be an
analytic self-map of U and ϕ(U) ⊆ U. Then Cϕ is a compact operator on HF,p.

In the rest of this section, we investigate the relation between compactness of Cϕ on
HF,p and Hp.

Theorem 5.3. Let p, ϕ0, ϕ, F, and μ satisfy the hypotheses in Theorem 4.6. Then Cϕ is compact on
HF,p if and only if μ(S(ζ, h)) = ◦(h) as h → 0 uniformly in ζ in ∂U.

Proof. Let μ(S(ζ, h)) = ◦(h) as h → 0 uniformly in ζ in ∂U and {fn} be a bounded sequence
in HF,p. Then by [2, Theorem 3.12, part (2)], there is a subsequence {F(fnk)} such that
{Cϕ0(F(fnk))} converges in Hp. Since F(fnk ◦ ϕ) = F(fnk) ◦ ϕ0, {fnk ◦ ϕ} converges in HF,p.
Therefore, Cϕ is a compact operator on HF,p.

Conversely, let {fn} be a bounded sequence in Hp. By Theorem 2.2, Hp ⊆ RF , so there
is a sequence {gn} in HF,p such that F(gn) = fn. Since Cϕ is compact on HF,p, we may extract
a subsequence {gnk} such that {Cϕ(gnk)} converges in HF,p. So Cϕ0 is a compact operator on
Hp and [2, Theorem 3.12, part (2)] implies the result.

Remark 5.4. If p, ϕ, ϕ0, and F satisfy the hypotheses in Theorem 5.3, then by [2, Theorem 3.12,
part (2)], Cϕ is a compact operator on HF,p if and only if Cϕ0 is a compact operator on Hp.

Now we present an example for Remarks 4.7 and 5.4.

Example 5.5. Let p = 2, ϕ0(z) = ϕ(z) = z2, and F(Σ∞
j=0ajz

j) =
∑∞

j=0 ajcjz
j , where Σ∞

j=0ajz
j ∈

H(U) and for every odd positive integer j and every n ∈ N, c2nj = cj = 1/j and c0 = 1. It is
easy to see that by Remark 4.7, Cϕ is a bounded operator on HF,2 and by Remark 5.4 and [2,
Corollary 3.14] Cϕ is not a compact operator on HF,2.
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[14] S. Li and S. Stević, “Weighted composition operators from H∞ to the Bloch space on the polydisc,”
Abstract and Applied Analysis, vol. 2007, Article ID 48478, 13 pages, 2007.
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