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The necessary and sufficient conditions for Schur geometrical convexity of the four-parameter
means are given. This gives a unified treatment for Schur geometrical convexity of Stolarsky and
Gini means.

1. Introduction and Main Result

Let p, q ∈ R and a, b > 0. For a/= b the Stolarsky means are defined as

Sp,q(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q

p

ap − bp

aq − bq

)1/(p−q)
, pq

(
p − q

)
/= 0,

L1/p(ap, bp), p /= 0, q = 0,

L1/q(aq, bq), q /= 0, p = 0,

I1/p(ap, bp), p = q /= 0,

√
ab, p = q = 0,

(1.1)
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and Sp,q(a, a) = a (see [1]), where

L
(
x, y
)
=

⎧
⎨

⎩

x − y

lnx − lny
, x /=y,

x x = y,
(1.2)

I
(
x, y
)
=

⎧
⎪⎨

⎪⎩

(
xx

yy

)1/(x−y)
, x /=y,

x, x = y

(1.3)

are the logarithmic mean and identric (exponential) mean of positive numbers x and y,
respectively.

Another two-parameter family of means was introduced by Gini in [2]. That are
defined as

Gp,q(a, b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ap + bp

aq + bq

)1/(p−q)
, p /= q,

exp
(
ap lna + bp ln b

ap + bp

)

, p = q.

(1.4)

Stolarsky and Gini means both are contained in the so-called four-parameter means
[3], which are defined as follows.

Definition 1.1. Let (a, b) ∈ R+×R+ with a/= b and (p, q), (r, s) ∈ R×R. Then the four-parameter
homogeneous means denoted by F(p, q; r, s;a, b) are defined as follows:

F
(
p, q; r, s;a, b

)
=
(
L(apr, bpr)
L(aps, bps)

L(aqs, bqs)
L(aqr , bqr)

)1/(p−q)(r−s)
if pqrs

(
p − q

)
(r − s)/= 0, (1.5)

or

F
(
p, q; r, s;a, b

)
=
(
apr − bpr

aps − bps
aqs − bqs

aqr − bqr

)1/(p−q)(r−s)
if pqrs

(
p − q

)
(r − s)/= 0. (1.6)

If pqrs(p − q)(r − s) = 0, then F(p, q; r, s;a, b) are defined as their corresponding limits,
for example:

F
(
p, p; r, s;a, b

)
= lim

q→ p
F
(
p, q; r, s;a, b

)
=
(
I(apr, bpr)
I(aps, bps)

)1/p(r−s)
, if prs(r − s)/= 0, p = q,

F
(
p, 0; r, s;a, b

)
= lim

q→ 0
F
(
p, q; r, s;a, b

)
=
(
L(apr, bpr)
L(aps, bps)

)1/p(r−s)
, if prs(r − s)/= 0, q = 0,

F(0, 0; r, s;a, b) = lim
p→ 0

F
(
p, 0; r, s;a, b

)
= G(a, b), if rs(r − s)/= 0, p = q = 0,

(1.7)
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where L(x, y), I(x, y) denote logarithmic mean and identric (exponential)mean, respectively,
G(a, b) =

√
ab.

The Schur convexity of Sp,q(a, b) and Gp,q(a, b) on (0,∞) × (0,∞)with respect to (a, b)
was investigated by Qi et al. [4], Shi et al. [5], Li and Shi [6], and Chu and Zhang [7].
Until now, they have been perfectly solved by Chu and Zhang [7], Wang and Zhang [8],
respectively. Recently, Chu and Xia also proved the same result as Wang and Zhang [9].

The Schur convexity of Sp,q(a, b) and Gp,q(a, b) on [0,∞)× [0,∞) and (−∞, 0]× (−∞, 0]
with respect to (p, q) was investigated by Qi [10] and Sándor [11], respectively. Now Schur
convexity of a four-parameter homogeneous means family containing Stolarsky and Gini
means on (−∞,∞) × (−∞,∞)with respect to (p, q) has been perfectly solved by Yang [12].

The Schur geometrical convexity was introduced by Zhang [13]. In [8, 14], Wand and
Zhang proved that Gp,q(a, b) is Schur geometrically convex (Schur geometrically concave)
on (0,∞) × (0,∞) with respect to (a, b) if p + q ≥ (≤)0. Chu et al. [15] pointed out that this
conclusion is also true for Sp,q(a, b). Shi et al. [5, 16], Li and Shi [6], and Gu and Shi [17] also
obtained similar results.

The purpose of this paper is to present the necessary and sufficient conditions for
Schur geometrical convexity of the four-parameter homogeneous means. This gives a unified
treatment for Schur geometrical convexity of Stolarsky and Gini means with respect to (a, b).

Our main result is as follows.

Theorem 1.2. For fixed (p, q), (r, s) ∈ R×R the four-parameter homogeneous means F(p, q; r, s;a, b)
are Schur geometrically convex (Schur geometrically concave) on (0,∞)×(0,∞)with respect to (a, b)
if and only if (p + q)(r + s) > (<)0.

2. Definitions and Lemmas

Definition 2.1 (see [18, 19]). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ R
n (n ≥ 2).

(i) x is said to by majorized by y (in symbol x ≺ y) if

k∑

i=1

x[i] ≤
k∑

i=1

y[i] for 1 ≤ k ≤ n − 1,
n∑

i=1

x[i] =
n∑

i=1

y[i], (2.1)

where x[1] ≥ x[2] · · · ≥ x[n] and y[1] ≥ y[2] · · · ≥ y[n] are rearrangements of x and y in
a decreasing order.

(ii) x ≥ ymeans xi ≥ yi for all i = 1, 2, . . . , n. LetΩ ⊂ R
n (n ≥ 2). The function φ : Ω → R

is said to be increasing if x ≥ y implies φ(x) ≥ φ(y). φ is said to be decreasing if and
only if −φ is increasing.

(iii) Ω ⊂ R
n is called a convex set if (αx1 + βy1, . . . , αxn + βyn) ∈ Ω for all x and y, where

α, β ∈ [0, 1] with α + β = 1.

(iv) Let Ω ⊂ R
n (n ≥ 2) be a set with nonempty interior. Then φ : Ω → R is said to be

Schur convex if x ≺ y on Ω implies φ(x) ≤ φ(y). φ is said to be Schur concave if −φ
is Schur convex.
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Definition 2.2 (see [13, 20]). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ R
n
+ (n ≥ 2).

Denote

ln x = (lnx1, lnx2, . . . , lnxn), ln y =
(
lny1, lny2, . . . , lnyn

)
. (2.2)

(i) Ω ⊂ R
n
+ is called a geometrically convex set if (xα

1y
β

1 , . . . , x
α
ny

β
n) ∈ Ω for all x and y,

where α, β ∈ [0, 1] with α + β = 1.

(ii) Let Ω ⊂ R
n
+ (n ≥ 2) be a set with nonempty interior. Then function φ : Ω → R+ is

said to be Schur geometrically convex on Ω if ln x ≺ ln y on Ω implies φ(x) ≤ φ(y).
φ is said to be Schur geometrically concave if −φ is Schur geometrically convex.

Definition 2.3 (see [18]). (i) Ω ⊂ R
n (n ≥ 2) is called symmetric set if x ∈ Ω implies Px ∈ Ω for

every n × n permutation matrix P .
(ii) The function φ : Ω → R is called symmetric if for every permutation matrix P ,

φ(Px) = φ(x) for all x ∈ Ω.

Lemma 2.4 (see [18, 19]). Let Ω ⊂ R
n be a symmetric set with nonempty interior Ω0 and φ : Ω →

R be continuous on Ω and differentiable in Ω0. Then φ is Schur convex (Schur concave) on Ω if and
only if φ is symmetric on Ω and

(x1 − x2)
(

∂φ

∂x1
− ∂φ

∂x2

)

≥ (≤)0 (2.3)

holds for any x = (x1, x2, . . . , xn) ∈ Ω0.

Lemma 2.5 (see [13, Theorem1.4, page 108]). Let Ω ⊂ R
n
+ be a symmetric set with a nonempty

interior geometrically convex set Ω0. Let φ : Ω → R+ be continuous on Ω and differentiable in Ω0.
Then φ is Schur geometrically convex (Schur geometrically concave) onΩ if and only if φ is symmetric
on Ω and

(lnx1 − lnx2)
(

x1
∂φ

∂x1
− x2

∂φ

∂x2

)

≥ (≤)0 (2.4)

holds for any x = (x1, x2, . . . , xn) ∈ Ω0.

3. Schur Geometrical Convexity of Two-Parameter
Homogeneous Functions

Themore general form of two-parameter homogeneousmeans is the so-called two-parameter
homogenous functions first introduced by Yang [21]. For conveniences, we record it as
follows.

Definition 3.1. Assume that f : R+ × R+ → R+ ∪ {0} is n-order homogeneous, continuous and
exists first partial derivatives and (a, b) ∈ R+ × R+, (p, q) ∈ R × R.
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If f(x, y) > 0 for (x, y) ∈ R+ × R+ \ {(x, x) : x ∈ R+} and f(x, x) = 0 for all x ∈ R+,
then define

Hf

(
p, q;a, b

)
=
(
f(ap, bp)
f(aq, bq)

)1(p−q)
if p /= q, pq /= 0,

Hf

(
p, p;a, b

)
= lim

q→ p
Hf

(
p, q;a, b

)
= Gf,p(a, b) if p = q /= 0,

(3.1)

where

Gf,p(a, b) = G
1/p
f (ap, bp), Gf

(
x, y
)
= exp

(
xfx
(
x, y
)
lnx + yfy

(
x, y
)
lny

f
(
x, y
)

)

, (3.2)

fx(x, y) and fy(x, y) denote first-order partial derivatives with respect to first and second
component of f(x, y), respectively.

If f(x, y) > 0 for all (x, y) ∈ R+ × R+, then define further

Hf

(
p, 0;a, b

)
=
(
f(ap, bp)
f(1, 1)

)1/p

if p /= 0, q = 0;

Hf

(
0, q;a, b

)
=
(
f(aq, bq)
f(1, 1)

)1/q

if p = 0, q /= 0;

Hf(0, 0;a, b) = afx(1,1)/f(1,1)bfy(1,1)/f(1,1) if p = q = 0.

(3.3)

Since f(x, y) is a homogeneous function,Hf(p, q;a, b) is also one and called a homogeneous
function with parameters p and q and simply denoted by Hf(p, q) or Hf sometimes.

Concerning the monotonicity and log-convexity of two-parameter homogeneous
functions, there have been some literatures such as [3, 21, 22], which yield some new and
interesting inequalities for means.

The two-parameter homogeneous functions Hf(p, q;a, b) have some well properties
(see [21–23]) such as the following lemma.

Lemma 3.2 (see [23]). Let f : R+ × R+ → R+ be a homogenous and differentiable function and

T(t) = T(t;a, b) := ln f
(
at, bt

)
, (t;a, b) ∈ R × R+ × R+. (3.4)

Then we have

∂T(t;a, b)
∂t

=
atfx

(
at, bt

)
lna + btfy

(
at, bt

)
ln b

f(at, bt)
, (3.5)

lnHf

(
p, q;a, b

)
=
∫1

0

∂T
(
tp + (1 − t)q;a, b

)

∂t
dt. (3.6)

Next we give another property.



6 Abstract and Applied Analysis

Lemma 3.3. Let f : R+ × R+ → R+ be a homogenous and m-time differentiable function. Then
Hf(p, q;a, b) ∈ Cm−1(R × R × R+ × R+).

Proof. Since f(x, y) has continuous partial derivatives ofm order with respect to x, y on R+ ×
R+, the integrand in (3.6) has continuous partial derivatives of m − 1 order with respect to
p, q, a, b on R × R × R+ × R+, that is Hf(p, q;a, b) ∈ Cm−1(R × R × R+ × R+).

For the Schur geometrical convexity, we have the following result.

Theorem 3.4. Assume that f : R+ × R+ → R+ is a symmetric, n-order homogeneous, continuous,
and three-time differentiable function. If for any (x, y) ∈ R+ × R+ with x /=y

N(x, y) = (x − y
)
(

x
(
ln f
)

x − y
(
ln f
)

y − 2xyI ln
(
x

y

))

> (<)0, where I =
(
ln f
)

xy,

(3.7)

thenHf(p, q;a, b) is Schur geometrically convex on (0,∞)× (0,∞) with respect to (a, b) if and only
if p + q > (<)0 and Schur geometrically concave if and only if p + q < (>)0.

Proof. (1) In the case of p /= q. We have

lnHf

(
p, q;a, b

)
=

ln f(ap, bp) − ln f(aq, bq)
p − q

. (3.8)

Some simple partial derivative computations yield

∂ lnHf

∂a
=

1
Hf

∂Hf

∂a
=

1
p − q

(
pap−1fx(ap, bp)

f(ap, bp)
− qaq−1fx(aq, bq)

f(aq, bq)

)

,

∂ lnHf

∂b
=

1
Hf

∂Hf

∂b
=

1
p − q

(
pbp−1fy(ap, bp)

f(ap, bp)
− qbq−1fy(aq, bq)

f(aq, bq)

)

,

(3.9)

hence,

1
Hf

(

a
∂Hf

∂a
− b

∂Hf

∂b

)

=
g
(
p
) − g

(
q
)

p − q
, (3.10)

where

g(t) =
tatfx

(
at, bt

)

f(at, bt)
− tbtfy

(
at, bt

)

f(at, bt)
. (3.11)

It is easy to verify that g(t) is even on (−∞,∞). In fact, since f(x, y) is n-order homogeneous
and symmetric, for arbitrary λ > 0, we have

f
(
λx, λy

)
= λnf

(
x, y
)
, fx

(
λx, λy

)
= λn−1fx

(
x, y
)
, fy

(
λx, λy

)
= λn−1fy

(
x, y
)
,

f
(
x, y
)
= f
(
y, x
)
, fx

(
x, y
)
= fy

(
y, x
)
, fy

(
x, y
)
= fx

(
y, x
)
.

(3.12)
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Thus,

g(−t) = −ta−tfx
(
a−t, b−t

)

f(a−t, b−t)
− −tb−tfy

(
a−t, b−t

)

f(a−t, b−t)

=
−ta−t(atbt

)−(n−1)
fx
(
bt, at

)

(atbt)−nf(bt, at)
− −tbt(atbt

)−(n−1)
fy
(
bt, at

)

(atbt)−nf(bt, at)

= − tb
tfy
(
at, bt

)

f(at, bt)
+
tatfx

(
at, bt

)

f(at, bt)
= g(t).

(3.13)

Let at = x, bt = y. Then

g ′(t) = x
(
ln f
)

x + t

((
xfx
(
x, y
)

f
(
x, y
)

)

x

dx

dt
+
(
xfx(x, y)
f(x, y)

)

y

dy

dt

)

− y
(
ln f
)

y − t

⎛

⎝

(
yfy(x, y)
f(x, y)

)

x

dx

dt
+

(
yfy(x, y)
f(x, y)

)

y

dy

dt

⎞

⎠

= x
(
ln f
)

x + t

(

x

(
xfx(x, y)
f(x, y)

)

x

lna + y

(
xfx(x, y)
f(x, y)

)

y

ln b

)

− y
(
ln f
)

y − t

⎛

⎝x

(
yfy(x, y)
f(x, y)

)

x

lna + y

(
yfy(x, y)
f(x, y)

)

y

ln b

⎞

⎠.

(3.14)

Note xfx(x, y)/f(x, y) and yfy(x, y)/f(x, y) both are 0-order homogeneous with respect to
x and y, then

x

(
xfx(x, y)
f(x, y)

)

x

+ y

(
xfx(x, y)
f(x, y)

)

y

= 0,

x

(
yfy(x, y)
f(x, y)

)

x

+ y

(
yfy(x, y)
f(x, y)

)

y

= 0,

(3.15)

and then

x

(
xfx(x, y)
f(x, y)

)

x

= −y
(
xfx(x, y)
f(x, y)

)

y

= −xyI,

y

(
yfy(x, y)
f(x, y)

)

y

= −x
(

yfy(x, y)
f(x, y)

)

x

= −xyI.
(3.16)
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Therefore,

g ′(t) = x
(
ln f
)

x + txyI(ln b − lna) − y
(
ln f
)

y − txyI(lna − ln b)

= x
(
ln f
)

x − y
(
ln f
)

y − 2txyI(lna − ln b)

= x
(
ln f
)

x − y
(
ln f
)

y − 2xyI ln
(
x

y

)

=
N(x, y)

x − y
for x /=y.

(3.17)

By the mean values theorem, there is a ξ between |p| and |q| such that

g
(
p
) − g

(
q
)

p − q
=
g
(∣
∣p
∣
∣
) − g

(∣
∣q
∣
∣
)

p − q
=

∣
∣p
∣
∣ − ∣∣q∣∣
p − q

g ′(ξ)=
p + q
∣
∣p
∣
∣+
∣
∣q
∣
∣
g ′(ξ)=

p + q
∣
∣p
∣
∣+
∣
∣q
∣
∣

N(x, y)

x − y
, for x /=y,

(3.18)

where x = aξ, y = bξ. Thus we have

(lna − ln b)

(

a
∂Hf

∂a
− b

∂Hf

∂b

)

= Hf
p + q
∣
∣p
∣
∣ +
∣
∣q
∣
∣
ln
(a

b

)N(x, y)

x − y

= Hf
p + q
∣
∣p
∣
∣ +
∣
∣q
∣
∣

N(x, y)

ξ

lnx − lny
x − y

=

⎧
⎨

⎩

> 0 if p + q > (<)0,

< 0 if p + q < (>)0.

(3.19)

By Lemma 2.5, our required result is derived immediately.
(2) In the case of p = q /= 0. By Lemma 3.3 together with (3.10) and (3.17), we have

1
Hf

(
p, p
)

(

a
∂Hf

(
p, p
)

∂a
− b

∂Hf

(
p, p
)

∂b

)

= lim
q→ p

1
Hf

(
p, q
)

(

a
∂Hf

(
p, q
)

∂a
− b

∂Hf

(
p, q
)

∂b

)

= lim
q→ p

g
(
p
) − g

(
q
)

p − q
= g ′(p

)
=

N(x, y)

x − y
,

(3.20)
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where x = ap, y = bp. Hence we have

(lna − ln b)

(

a
∂Hf

(
p, p
)

∂a
− b

∂Hf

(
p, p
)

∂b

)

= Hf

(
p, p
)
(lna − ln b)

N(x, y)

x − y

= p−1Hf

(
p, p
)N(x, y) lnx − lny

x − y

=

⎧
⎨

⎩

> 0 if p > (<)0,

< 0 if p < (>)0.

(3.21)

By Lemma 2.5, the required result holds.
(3) In the case of p = q = 0. By Lemma 3.3 and (3.20), we have

1
Hf(0, 0)

(

a
∂Hf(0, 0)

∂a
− b

∂Hf(0, 0)
∂b

)

= lim
p→ 0

(

a
∂Hf

(
p, p
)

∂a
− b

∂Hf

(
p, p
)

∂b

)

= lim
p→ 0

g ′(p
)
.

(3.22)

However,

g ′(0)=
(

x
(
ln f
)

x − y
(
ln f
)

y − 2xyI ln
(
x

y

))∣
∣
∣
∣
x=1,y=1

= 1 · fx(1, 1)
f(1, 1)

− 1 · fy(1, 1)
f(1, 1)

− 2 · 1 · 1 · I(1, 1) · ln
(
1
1

)

= 0,

(3.23)

where fx(1, 1) = fy(1, 1) due to the symmetry of f(x, y). Thus

(lna − ln b)

(

a
∂Hf

(
p, p
)

∂a
− b

∂Hf

(
p, p
)

∂b

)

= 0. (3.24)

Summarizing the above three cases, this proof of Theorem 3.4 is complete.
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4. Proof of Main Result

Establishing the Theorem 3.4, we are in a position to prove main result.

Proof of Theorem 1.2. It follows from [3, Section 1], that F(p, q; r, s;a, b) = HHL(p, q;a, b),
where HL = HL(r, s) = HL(r, s;x, y) = Sr,s(x, y) is symmetric with respect to x and y. From
Lemma 3.3, it follows that HL = HL(r, s;x, y) ∈ C∞(R × R × R+ × R+). Thus we have

(lnHL(r, r))x = lim
s→ r

(lnHL(r, s))x, (4.1)

(lnHL(r, r))y = lim
s→ r

(lnHL(r, s))y, (4.2)

(lnHL(r, r))xy = lim
s→ r

(lnHL(r, s))xy, (4.3)

(lnHL(r, 0))x = lim
s→ 0

(lnHL(r, s))x, (4.4)

(lnHL(r, 0))y = lim
s→ 0

(lnHL(r, s))y, (4.5)

(lnHL(r, 0))xy = lim
s→ r

(lnHL(r, s))xy, (4.6)

(lnHL(0, 0))x = lim
r→ 0

(lnHL(r, r))x, (4.7)

(lnHL(0, 0))y = lim
r→ 0

(lnHL(r, r))y, (4.8)

(lnHL(0, 0))xy = lim
r→ 0

(lnHL(r, r))xy. (4.9)

(1) In the case of rs(r − s)/= 0.

Simple partial derivative calculations yield

lnHL =
1

r − s

(
ln|s| + ln

∣
∣xr − yr

∣
∣ − ln|r| − ln

∣
∣xs − ys

∣
∣
)
,

(lnHL)x =
1

r − s

(
rxr−1

xr − yr
− sxs−1

xs − ys

)

,

(lnHL)y =
1

r − s

(
−ryr−1

xr − yr
+

sys−1

xs − ys

)

,

I = (lnHL)xy =
1

xy(r − s)

(
r2xryr

(
xr − yr

)2 − s2xsys

(
xs − ys

)2

)

.

(4.10)
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Hence,

N(x, y) = (x − y
)
(

x(lnHL)x − y(lnHL)y − 2xyI ln
(
x

y

))

=
x − y

r − s

(
r
(
xr + yr

)

xr − yr
− 2r2xryr ln

(
x/y

)

(
xr − yr

)2

)

− x − y

r − s

(
s
(
xs + ys

)

xs − ys
− 2s2xsys ln

(
x/y

)

(
xs − ys

)2

)

=
(
x − y

)P(r) − P(s)
r − s

,

(4.11)

where

P(t) = t

(
xt + yt

xt − yt
− 2xtyt ln

(
xt/yt

)

(
xt − yt

)2

)

. (4.12)

It is easy to check that P(t) is even and increasing (decreasing) on (0,∞) if x > (<)y. Indeed,

P(−t) = −t
(

x−t + y−t

x−t − y−t −
2x−ty−t ln

(
x−t/y−t)

(
x−t − y−t)2

)

= P(t). (4.13)

With (x/y)t = u, then t = lnu/ ln(x/y), and then P(t) can be written as

P(t) =
1

ln
(
x/y

)

(
u + 1
u − 1

lnu − 2u ln2u

(u − 1)2

)

. (4.14)

Direct computation yields

P ′(t) =
1

ln
(
x/y

)

(
u + 1
u − 1

lnu − 2u ln2u

(u − 1)2

)′
du

dt

= u

(

(u + 1)
(u − 1)/u − lnu

(u − 1)2
+

lnu
u − 1

− 2 ln2u

(u − 1)2
− 4u

lnu
u − 1

(u − 1)/u − lnu

(u − 1)2

)

(u − 1)/ lnu = L
(u + 1)L2 − 6uL + 2u(u + 1)

(u − 1)L2

=
2L(((u + 1)/2)L − u) + 4u((u + 1)/2 − L)

(u − 1)L2
.

(4.15)
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From

u + 1
2

L − u =
u2 − 1
ln u2

−
√
u2 > 0,

L − u + 1
2

< 0,

(4.16)

it follows that P ′(t) > 0 if u − 1 > 0, that is, x > y and P ′(t) < 0 if x < y. Namely,

(
x − y

)
P ′(t) > 0 for t > 0 with x /=y. (4.17)

By the mean values theorem, there is a η between |r| and |s| such that

P(|r|) − P(|s|) = (|r| − |s|)P ′(η
)
, (4.18)

and then

N(x, y) = (x − y
)P(r) − P(s)

r − s
=
(
x − y

) r + s

|r| + |s|
P(|r|) − P(|s|)

|r| − |s|

=
r + s

|r| + |s| ·
(
x − y

)
P ′(η

)

=

⎧
⎨

⎩

> 0 if r + s > 0,

< 0 if r + s < 0.

(4.19)

Using Theorem 3.4, for fixed (p, q), (r, s) ∈ R × R with rs(r − s)/= 0, the four-parameter
homogeneous means F(p, q; r, s;a, b) are Schur geometrically convex on (0,∞) × (0,∞) with
respect to (a, b) if and only if (p + q)(r + s) > 0 and Schur geometrically concave if and only if
(p + q)(r + s) < 0.

(2) In the case of s = 0, r /= 0.

From (4.11) together with (4.4)–(4.6) and (4.19), there is a η1 between 0 and |r| such that

N(x, y) = (x − y
)
(

x(lnHL(r, 0))x − y(lnHL(r, 0))y − 2xy(lnHL(r, 0))xy ln
(
x

y

))

= lim
s→ 0

(
(
x − y

)
(

x(lnHL(r, s))x − y(lnHL(r, s))y − 2xy(lnHL(r, s))xy ln
(
x

y

)))

= lim
s→ 0

(
x − y

)P(r) − P(s)
r − s

= lim
s→ 0

r + s

|r| + |s| · lims→ 0

(
x − y

)
P ′(η1

)

=

⎧
⎨

⎩

> 0 if r > 0,

< 0 if r < 0,

(
by (4.17)

)
.

(4.20)
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(3) In the case of r = 0, s /= 0.

Since HL(r, s;x, y) is symmetric with respect to r and s, it follows from case 2 that

N(x, y) = (x − y
)
(

x(lnHL(0, s))x − y(lnHL(0, s))y − 2xy(lnHL(r, s))xy ln
(
x

y

))

=

⎧
⎨

⎩

> 0 if s > 0,

< 0 if s < 0.

(4.21)

(4) In the case of r = s /= 0.

From (4.11) together with (4.1)–(4.3), we have

N(x, y) = (x − y
)
(

x(lnHL(r, r))x − y(lnHL(r, r))y − 2xy(lnHL(r, r))xy ln
(
x

y

))

= lim
s→ r

(
(
x − y

)
(

x(lnHL(r, s))x − y(lnHL(r, s))y − 2xy(lnHL(r, s))xy ln
(
x

y

)))

=
(
x − y

)
lim
s→ r

P(r) − P(s)
r − s

=
(
x − y

)
P ′(r)

=

⎧
⎨

⎩

> 0 if r > 0,

< 0 if r < 0.

(
by (4.17)

)

(4.22)

(5) In the case of r = s = 0.

From (4.22) together with (4.7)–(4.9), we have

N(x, y) = (x − y
)
(

x(lnHL(0, 0))x − y(lnHL(0, 0))y − 2xy(lnHL(0, 0))xy ln
(
x

y

))

= lim
r→ 0

(
(
x − y

)
(

x(lnHL(r, r))x − y(lnHL(r, r))y − 2xy(lnHL(r, r))xy ln
(
x

y

)))

=
(
x − y

)
lim
r→ 0

P ′(r).

(4.23)

But by (4.15) and some limit computations, we obtain

lim
t→ 0

P ′(t)(x/y)t = u lim
u→ 1

u

(

(u + 1)
(u − 1)/u − lnu

(u − 1)2
+

lnu
u − 1

− 2 ln2u

(u − 1)2

− 4u
lnu
u − 1

(u − 1)/u − lnu

(u − 1)2

)

= 0,

(4.24)

which implies N(x, y) = 0.
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Summarizing the above five cases, our required results are derived.
This proof ends.

5. Other Corollaries

The four-parameter homogeneous means F(p, q; r, s;a, b) also contain many other two-
parameter means, for instance, for the identric (exponential) mean defined by (1.3), its two-
parameter means are defined as follows [21, Example 2.3]:

HI

(
p, q;a, b

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
I(ap, bp)
I(aq, bq)

)1/(p−q)
, p /= q, pq /= 0,

GI,p(a, b), p = q /= 0,

I1/p(ap, bp), p /= 0, q = 0,

I1/q(aq, bq), p = 0, q /= 0,

G(a, b), p = q = 0,

(5.1)

where GI,p(a, b) = Y 1/p(ap, bp) := Yp(a, b), Y (a, b) = Ie1−G
2/L2

.
By [3], we see that

HI

(
p, q;a, b

)
= F
(
p, q; 1, 1;a, b

)
. (5.2)

And then according to Theorem 1.2, we have the following corollary.

Corollary 5.1. For fixed (p, q) ∈ R × R, the two-parameter identric (exponential) means HI(p, q;
a, b) are Schur geometrically convex on (0,∞) × (0,∞) with respect to (a, b) if and only if p + q > 0
and Schur geometrically concave if and only if p + q < 0.

As another example, for Heronian mean defined by

He =
a +

√
ab + b

3
, (5.3)

its two-parameter means are defined as follows:

HHe
(
p, q;a, b

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎝

ap +
(√

ab
)p

+ bp

aq +
(√

ab
)q

+ bq

⎞

⎟
⎠

1/(p−q)

, p /= q, pq /= 0,

a(ap+(
√
ab)

p
/2)/(ap+(

√
ab)

p
+bp)b((

√
ab)

p
/2+bp)/(ap+(

√
ab)

p
+bp), p = q /= 0,

He1/p(ap, bp), p /= 0, q = 0,

He1/q(aq, bq), p = 0, q /= 0,

G(a, b), p = q = 0.

(5.4)
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By [3], we see that

HHe

(
p, q; a, b

)
= F
(
p, q; 3/2, 1/2;a, b

)
. (5.5)

And then according to Theorem 1.2, we have the following corollary.

Corollary 5.2. For fixed (p, q) ∈ R × R, the two-parameter Heronian means HHe(p, q;a, b) are
Schur geometrically convex on (0,∞)× (0,∞) with respect to (a, b) if and only if p+q > 0 and Schur
geometrically concave if and only if p + q < 0.
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