
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2010, Article ID 836347, 17 pages
doi:10.1155/2010/836347

Research Article
Integrodifferential Equations on Time Scales with
Henstock-Kurzweil-Pettis Delta Integrals

Aneta Sikorska-Nowak

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87,
61-614 Poznań, Poland
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We prove existence theorems for integro-differential equations xΔ(t) = f(t, x(t),
∫ t
0 k(t, s, x(s))Δs),

x(0) = x0, t ∈ Ia = [0, a] ∩ T , a ∈ R+, where T denotes a time scale (nonempty closed subset of
real numbers R), and Ia is a time scale interval. The functions f, k are weakly-weakly sequentially
continuous with values in a Banach space E, and the integral is taken in the sense of Henstock-
Kurzweil-Pettis delta integral. This integral generalizes the Henstock-Kurzweil delta integral
and the Pettis integral. Additionally, the functions f and k satisfy some boundary conditions
and conditions expressed in terms of measures of weak noncompactness. Moreover, we prove
Ambrosetti’s lemma.

1. Introduction

A time scale T is a nonempty closed subset of real numbers R, with the subspace topology
inherited from the standard topology of R.

The three most popular examples of calculus on time scales are differential calculus,
difference calculus, and quantum calculus (see Kac and Cheung [1]), that is, when T = R,
T = N, T = qN0 = {qt : t ∈ N0}, where q > 1.

Time scale (or a measure chain) was introduced by Hilger in his Ph.D. thesis in 1988,
[2]. Since the time Hilger formed the definitions of a derivative and integral on a time scale,
several authors have extended on various aspects of the theory [3–11]. Time scales have been
shown to be applicable to any field that can be described by means of discrete or continuous
models.

In this paper we consider an integrodifferential equation. As is known, ordinary
integrodifferential equations, an extreme case of integrodifferential equations on time scales
[12–21], find many applications in various mathematical problems; see Corduneanu’s book
[22] and references therein for details.
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In [23] the authors extend such results to the integrodifferential equations on time
scales and therefore obtained corresponding criteria which can be employed to study the
difference equation of Volterra type [21, 24], q-difference equations of Volterra type, and so
forth.

In [25] the authors proved a new comparison result and develop the monotone
iterative technique to show the existence of extremal solutions of the periodic boundary value
problems of nonlinear integrodifferential equation on time scales.

We extend this result by proving the existence of a pseudosolution of the problem

xΔ(t) = f

(

t, x(t),
∫ t

0
k(t, s, x(s))Δs

)

, t ∈ Ia = [0, a] ∩ T, a ∈ R+,

x(0) = x0,

(1.1)

where f : Ia × E × E → E, k : Ia × Ia × E → E, x : Ia → E, T denotes a time scale,
0 ∈ T, Ia denotes a time scale interval, (E, ‖·‖) is a Banach space, and xΔ denotes the pseudoΔ-
derivative of x.

We use a new (Henstock-Kurzweil-Pettis-Δ-integral), more general concept of integral
on time scales. This new integral generalizes the Henstock-Kurzweil delta integral, which has
been studied by Peterson and Thompson in [26], Avsec et al. in [27] and the Pettis integral
[28]. These integrals are important when we consider the weak topology on a Banach space.

The Henstock-Kurzweil delta integral contains the Riemann delta, Lebesgue delta and
Bochner delta integrals as special cases. These integrals will enable time scale researchers to
study more general dynamic equations. In [26] it is shown that there are highly oscillatory
functions that are not delta integrable on a time scale, but are Henstock-Kurzweil delta
integral.

Let us remark that the existence of the Henstock-Kurzweil integral over [a, b] implies
the existence of such integrals over all subintervals of [a, b] but not for all measurable subsets
of this interval, so the theory of such integrals on T does not follows from general theory on
R.

In [29] Cichoń introduce a definition of the Henstock-Kurzweil delta integral (HK-Δ-
integral) and HL delta integral (HL-Δ-integral) on Banach spaces for checking the existence
of solutions of differential (or dynamic) equations in Banach spaces. He presented also a new
definition of the Henstock-Kurzweil-Pettis delta integral on time scales.

The study for weak solutions of Cauchy differential equations in Banach spaces was
initiated by Szép [30] and theorems on the existence of weak solutions of this problem were
proved by Cramer et al. [31], Kubiaczyk [32], Kubiaczyk and Szufla [33], Mitchell and Smith
[34], Szufla [35], and Cichoń and Kubiaczyk [36]. There are also some existence theorems for
the Volterra and Urysohn integral equations [37] on time scales.

Similar methods for solving existence problems for difference equations in Banach
spaces equipped with its weak topology were studied, for instance, in [38–40]. In particular,
the importance of conditions expressed in terms of the weak topology was considered in [38].

Wewill unify both cases and using the weak topology, we will obtain the first result for
pseudosolutions of an integrodifferential dynamic problem. (This is new also for q-difference
equations.)

Our result extends the existence of pseudosolutions not only to the discrete intervals
with uniform step size (hZ) but also to the discrete intervals with nonuniform step size (Kq).
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We note that (1.1) in its general form involves some different types of differential and
difference equations depending on the choice of the time scale T . For example:

(1) for T = R, we have σ(t) = t, μ(t) = 0, and xΔ(t) = x′(t), and (1.1) becomes the
Cauchy integrodifferential equation:

x′(t) = f

(

t, x(t),
∫ t

0
k(t, s, x(s))ds

)

, t ∈ R,

x(0) = x0;

(1.2)

(2) for T = N, we have σ(n) = n + 1, μ(n) = 1, and xΔ(n) = Δx(n) = x(n + 1) − x(n),
and (1.1) becomes the Cauchy problem:

Δx(t) = f

(

t, x(t),
∫ t

0
k(t, s, x(s))ds

)

, t ∈ N,

x(0) = x0.

(1.3)

We assume that the functions f, k are weakly-weakly sequentially continuous with values
in a Banach space and satisfy some regularity conditions expressed in terms of the De Blasi
measure of weak noncompactness. We introduce a weakly sequentially continuous operator
associated to an integral equation which is equivalent to (1.1). There exist many important
examples of mappings which are weakly sequentially continuous but not weakly continuous.
The relations between weakly sequentially continuous and weakly continuous mappings are
studied by Ball [41].

Adopting the fixed point theorem for weakly sequentially continuous mappings given
by Kubiaczyk [42] and the properties of measures of weak noncompactness, we are able to
study the existence results for problem (1.1)

2. Preliminaries

Let (E, ‖ · ‖) be a Banach space and let E∗ be the dual space. Moreover, let (C(Ia, E), ω)
denote the space of all continuous functions from Ia to E endowed with the topology
σ(C(Ia, E), C(Ia, E)

∗) and Crd(Ia, E) denotes the space of all rd-continuous functions from
the time scale interval Ia to E.

By μΔ we denote the Lebesgue measure on T . For a precise definition and basic
properties of this measure we refer the reader to [43].

We now gather some well-known definitions and results from the literature, which we
will use throughtout this paper.

Definition 2.1 (see [44]). A family F of functions F is said to be uniformly absolutely
continuous in the restricted sense on A ⊆ [a, b] or in short uniformly AC∗(A) if for every
ε > 0 there exists η > 0 such that for every F in F and for every finite or infinite sequence
of nonoverlapping intervals {[ai, bi]} with ai, bi ∈ A and satisfying

∑
i μΔ([ai, bi]) < η, one

has
∑

i ω(F, [ai, bi]) < ε where ω denotes the oscillation of F over [ai, bi] (i.e., ω(F, [ai, bi]) =
sup{|F(r) − F(s)| : r, s ∈ [ai, bi]}).



4 Abstract and Applied Analysis

A family F of functions F is said to be uniformly generalized absolutely continuous in
the restricted sense on [a, b] or uniformly ACG∗ if [a, b] is the union of a sequence of closed
sets Ai such that on each Ai the function F is uniformly AC∗(Ai).

Definition 2.2. A function f : Ia → E is said to be weakly continuous if it is continuous from
Ia to E endowed with its weak topology. A function g : E → E1, where E and E1 are Banach
spaces, is said to be weakly-weakly sequentially continuous if for each weakly convergent
sequence (xn) ⊂ E, the sequence (g(xn)) is weakly convergent in E1. If a sequence xn tends
weakly to x0 in E we will denote it by xn

ω→ x0.

Theorem 2.3 (see [42]). Let E be a metrizable locally convex topological vector space. Let D be a
closed convex subset of E, and let F be a weakly-weakly sequentially continuous map of D into itself.
If for some x ∈ D the implication

V = conv({x} ∪ F(V )) =⇒ V is relatively weakly compact, (2.1)

holds for every subset V of D, then F has a fixed point.

(I) To understand the so-called dynamic equations and follow this paper easily, we
present some preliminary definitions and notations of time scales which are very
common in the literature (see [3–5, 7–11] and references therein).

A time scale T is a nonempty closed subset of real numbers R, with the subspace
topology inherited from the standard topology of R. If a, b are points in T , then a time scale
interval I we denote by I = [a, b] = {t ∈ T : a ≤ t ≤ b} and Ia = {t ∈ T : 0 ≤ t ≤ a}. Other
types of intervals are approached similarly. By a subinterval Ib of Ia we mean the time scale
subinterval.

Definition 2.4. The forward jump operator σ : T → T and the backward jump operator ρ :
T → T are defined by σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}, respectively. We
put inf ∅ = sup T (i.e., σ(M) = M if T has a maximum M) and sup ∅ = inf T (i.e., ρ(m) = m
if T has a minimum m). The jump operators σ and ρ allow the classification of points in time
scale in the following way: t is called right dense, right scattered, left dense, left scattered,
dense and isolated if σ(t) = t, σ(t) > t, ρ(t) = t, ρ(t) < t, ρ(t) = t = σ(t) and ρ(t) < t < σ(t),
respectively.

Definition 2.5. One says that k : T → E is right-dense continuous (rd-continuous) if k is
continuous at every right-dense point t ∈ T and lims→ t−k(s) exists and is finite at every left-
dense point t ∈ T .

Definition 2.6. Fix t ∈ T . Let f : I → E. Then one defines the Δ-derivative fΔ(t) by

fΔ(t) = lim
s→ t

f(σ(t)) − f(s)
σ(t) − s

. (2.2)

Remark 2.7. The Δ-derivative satisfies

(1) fΔ = f ′ is the usual derivative if T = R,

(2) fΔ = Δf is the usual forward difference operator if T = Z,

(3) fΔ = Dqf is the q-derivative if T = qN0 = {qt : t ∈ N0}, q > 1.
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Hence, time scales allows us unify the treatment of differential and difference equations (and
many more time scales).

(II) We need to define some integrals which are important, when we consider the weak
topology on a Banach space E.

We will use the notation η(t) := σ(t) − t, where η is called the graininess function and
ϑ(t) := t − ρ(t), where ϑ is called the left-graininess function.

We say that δ = (δL, δR) is a Δ-gauge for time scale interval [a, b] provided δL(t) > 0
on (a, b], δR(t) > 0 on [a, b), δL ≥ 0, δR ≥ 0 and δR ≥ η(t) for all t ∈ [a, b).

We say that a partition D for a time scale interval [a, b] given by

D = {a = t0 ≤ ξ1 ≤ t1 ≤ · · · ≤ tn−1 ≤ ξn ≤ tn = b} (2.3)

with ti > ti−1 for 1 ≤ i ≤ n and ti, ξi ∈ T is δ-fine if

ξi − δL(ξi) ≤ ti−1 < ti ≤ ξi + δR(ξi) for 1 ≤ i ≤ n. (2.4)

Definition 2.8 (see [29]). A function f : [a, b] → E is Henstock-Kurzweil-Δ-integrable on
[a, b] (Δ-HK integrable in short) if there exists a function F : [a, b] → E, defined on the
subintervals of [a, b], satisfying the following property: given ε > 0 there exists a positive
function δ on [a, b] such that D = {[u, v], ξ} is δ-fine division of a [a, b], one has

∥∥∥∥∥

∑

D

f(ξ)(v − u) − (F(v) − F(u))

∥∥∥∥∥
< ε. (2.5)

Definition 2.9 (see [29]). A function f : [a, b] → E is Henstock-Lebesgue-Δ-integrable on
[a, b] (Δ-HL integrable in short) if there exists a function F : [a, b] → E, defined on the
subintervals of [a, b], satisfying the following property: given ε > 0 there exists a positive
function δ on [a, b] such that D = {[u, v], ξ} is δ-fine division of a [a, b], one has

∑

D

∥∥f(ξ)(v − u) − (F(v) − F(u))
∥∥ < ε. (2.6)

Remark 2.10. We note that, by the triangle inequality, if f is Δ-HL integrable it is also Δ-HK
integrable. In general, the converse is not true. For real-valued functions, the two integrals
are equivalent.

Definition 2.11 (see [28, 29]). The function f : Ia → E is Pettis-Δ-integrable ((P) integrable
for short) if

(1) ∀x∗ ∈ E∗, x∗f is Lebesgue-Δ-integrable on Ia,

(2) ∀A ⊂ I, ∃g ∈ E, ∀x∗ ∈ E∗, x∗g = (Δ − L)
∫
A x∗f(s)Δs.

Now, we present a new definition of the integral on time scales which is a generalization for
both the Pettis-Δ-integral and the Henstock-Kurzweil-Δ-integral.
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Definition 2.12 (see [29]). The function f : Ia → E is Henstock-Kurzweil-Pettis-Δ-integrable
(HKP-Δ-integrable for short) if

(1) ∀x∗ ∈ E∗, x∗f is Henstock-Kurzweil-Δ-integrable on Ia,

(2) ∀t ∈ Ia ∀x∗ ∈ E∗, x∗g(t) = (Δ-HK)
∫ t
0 x

∗f(s)Δs.

The function g will be called a primitive of f and by g(t) = (Δ-HKP)
∫ t
0 f(s)Δswewill denote

the Henstock-Kurzweil-Pettis-Δ-integral of f on the interval Ia.

In [29] the authors give examples of Henstock-Kurzweil-Pettis-Δ-integrable functions
which are not integrable in the sense of Pettis and Henstock-Kurzweil on time scales.

Theorem 2.13 (see [29] mean value theorem). For each Δ-subinterval [c, d] ⊂ [a, b], if the
integral (Δ-HKP)

∫d
c y(s)Δs exists, then one has

(Δ-HKP)
∫d

c

y(s)Δs ∈ μΔ([c, d]) · conv y([c, d]), (2.7)

where conv y([c, d]) denotes the close convex hull of the set y([c, d]).

Theorem 2.14 (see [45]). Let fn, f : Ia → E and assume that fn : Ia → E are Δ-HKP integrable
on Ia. Let Fn be a primitive of fn. If one assumes that:

(1) ∀x∗ ∈ E∗, x∗fn(t) → x∗f(t)μΔ a.e. on Ia,

(2) for each x∗ ∈ E∗ the familyG = {x∗Fn : n = 1, 2, . . .} is uniformly ACG∗ on Ia (i.e., weakly
uniformly ACG∗ on Ia),

(3) for each x∗ ∈ E∗ the set G is equicontinuous on Ia,

then f is Δ-HKP integrable on Ia and
∫ t
0 fn(s)Δs tends weakly in E to

∫ t
0 f(s)Δs for each t ∈ Ia.

Theorem 2.15 (see [5] Gronwall’s inequality). Suppose that u, g, h ∈ Crd(Ia, E) and h ≥ 0. Then

u(t) ≤ g(t) +
∫ t

0
h(τ)u(τ)Δτ, for each t ∈ Ia (2.8)

implies that

u(t) ≤
(

g(t) +
∫ t

0
g(τ)h(τ)Δτ

)

exp

(∫ t

0
h(τ)Δτ

)

, for each t ∈ Ia. (2.9)

(III) The De Blasi measure of weak noncompactness is one of our fundamental tool in
this paper (see [46]).

Let A be a bounded nonempty subset of E.
The measure of weak noncompactness β(A) is defined by

β(A) = inf{t > 0 : there exists C ∈ Kω such that A ⊂ C + tB0}, (2.10)

where Kω is a set of weakly compact subsets of E and B0 is a norm unit ball in E.
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Some properties of the measure of weak noncompactness β(A) are known [46]:

(1) if A ⊂ B, then β(A) ≤ β(B);

(2) β(A) = β(Aw), where Aw denotes the weak closure of A;

(3) β(A) = 0 if and only if A is relatively weakly compact;

(4) β(A ∪ B) = max{β(A), β(B)};

(5) β(λA) = |λ|β(A), (λ ∈ R);

(6) β(A + B) ≤ β(A) + β(B);

(7) β(conv(A)) = β(conv(A)) = β(A), where conv(A) denotes the convex hull of A.

We will need the following lemmas.

Lemma 2.16 (see [47]). Let E1, E2 be bounded subsets of the Banach space E. If ‖E1‖ = sup{‖x‖ :
x ∈ E1} < 1, then

β(E1 + E2) ≤ β(E2) + ‖E1‖β(K(E2, 1)), (2.11)

where K(E2, 1) = {x : D(E2, x) < 1} and D(E2, x) = inf{‖x − y‖ : y ∈ E2}.

The lemma below is an adaptation of the corresponding result of Ambrosetti (see [48]).

Lemma 2.17. LetH ⊂ C(Ia, E) be a family of strongly equicontinuous functions. LetH(t) = {h(t) ∈
E, h ∈ H}, for t ∈ Ia and H(Ia) =

⋃
t∈Ia H(t). Then

βC(H) = sup
t∈Ia

β(H(t)) = β(H(Ia)), (2.12)

where βC(H) denotes the measure of weak noncompactness in C(Ia, E) and the function t �→ β(H(t))
is continuous.

Proof. (I) First we prove the equality: supt∈Iaβ(H(t)) = β(H(Ia)).
Since H(t) ⊂ H(Ia) by the first property of the measure of noncompactness β(H(t)) ≤

β(H(Ia)) and consequently

sup
t∈Ia

β(H(t)) ≤ β(H(Ia)). (2.13)

By strong equicontinuity of H we deduce that for ε > 0, there exists δ > 0 such that |t − s| <
δ ⇒ ‖u(t) − u(s)‖ < ε for t, s ∈ Ia and for all u ∈ H.
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We divide the interval Ia = {t ∈ T : 0 ≤ t ≤ a} in the following way: t0 = 0,

t1 = sup
s∈Ia

{s : s ≥ t0, s − t0 < δ},

t2 = sup
s∈Ia

{s : s ≥ t1, s − t1 < δ},

...

tn = sup
s∈Ia

{s : s ≥ tn−1, s − tn−1 < δ}.

(2.14)

Since T is closed, we have ti ∈ Ia. If some ti+1 = ti then ti+2 = inf{t ∈ T : t ≥ ti+1}.
As

u(t) = u(ti) + u(t) − u(ti) ∈ u(ti) + εK(0, 1), (2.15)

where K(0, 1) = {x : ‖x‖ < 1}, we have

u(t) ∈
n⋃

i=1

H(ti) + εK(0, 1), H(Ia) ⊂
n⋃

i=1

H(ti) + εK(0, 1). (2.16)

By the properties of the measure of weak noncompactness and Lemma 2.16, we obtain

β(H(Ia)) ≤ β

(
n⋃

i=1

H(ti)

)

+ ‖εK(0, 1)‖ · β
(

K

(
n⋃

i=1

H(ti), 1

))

< sup
ti∈Ia

β(H(ti)) + εβ(K(H(Ia), 1))

≤ sup
t∈Ia

β(H(t)) + εβ(K(H(Ia), 1)).

(2.17)

Since the above inequality holds, for any ε > 0, we have

β(H(Ia)) ≤ sup
t∈Ia

β(H(t)). (2.18)

Hence, from (2.13) and (2.18), we conclude that β(H(Ia)) = supt∈Iaβ(H(t)).
(II) The proof of the equality βC(H) = supt∈Iaβ(H(t)) is similar to the proof of Lemma

2.1 of Ambrosetti (see [48]), where we choose points ti as in part (I) of our proof.
(III) Now we prove that the function t �→ β(H(t)) is continuous.
Let v(t) = β(H(t)) because H(t) ⊂ H(t)−̇H(s)+̇H(s) ⊂ H(t)−̇H(s) + H(s), where

H(t)−̇H(s)+̇H(s) = {y(t) : y(t) = y(t) − y(s) + y(s) : y ∈ H} and the sum is taken in the
Minkowski sense.

By the property (vi) of the measure of weak noncompactness, we have

β(H(t)) ≤ β(H(t)−̇H(s)) + β(H(s)). (2.19)
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This implies that

∣
∣β(H(t)) − β(H(s))

∣
∣ ≤ β(H(t)−̇H(s)) ≤ δ(H(t)−̇H(s))

= sup
x,y∈H

{∥∥(x(t) − x(s)) − (y(t) − y(s)
)∥∥}

≤ sup
x,y∈H

{‖x(t) − x(s)‖ + ∥∥y(t) − y(s)
∥
∥}.

(2.20)

By equicontinuity of H we obtain the continuity of v(t).

3. Main Results

Now, we will consider equivalently integral problem

x(t) = x0 +
∫ t

0
f

(
z, x(z),

∫z

0
k(z, s, x(s))Δs

)
Δz, t ∈ Ia = [0, a] ∩ T (3.1)

where f : Ia × E × E → E, k : Ia × Ia × E → E, x : Ia → E, T denotes a time scale, 0 ∈ T , Ia
denotes a time scale interval, (E, ‖ · ‖) is a Banach space, and integrals are taken in the sense
of Δ-HKP integrals.

Fix x∗ ∈ E∗and consider the problem

(x∗x)Δ = x∗
(

f

(

t, x(t),
∫ t

0
k(t, s, x(s))

)

Δs

)

. (3.2)

Let us introduce a definition.

Definition 3.1. Let F : I → E and let A ⊂ I. The function f : A → E is a pseudoΔ-derivative
of F on A if for each x∗ ∈ E∗ the real-valued function x∗F is Δ-differentiable μΔ almost
everywhere on A and (x∗F)Δ = x∗f μΔ almost everywhere on A.

Regarding the above definition it is clear that the left-hand side of (3.2) can be
rewritten to the form x∗(xΔ), where xΔ denotes the pseudoΔ-derivative.

To obtain the existence result for our problem it is necessary to define a notion of a
solution.

Definition 3.2. A function x : Ia → E is said to be a pseudosolution of the problem (1.1) if it
satisfies the following conditions:

(1) x(·) is ACG∗ function,

(2) x(0) = x0,

(3) for each x∗ ∈ E∗ there exists a set A(x∗) with μΔ measure zero, such that for each
t /∈A(x∗),

(x∗x)Δ(t) = x∗
(

f

(

t, x(t),
∫ t

0
k(t, s, x(s))Δs

))

. (3.3)
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A continuous function x : Ia → E is said to be a solution of the problem (3.1) if it satisfies

x(t) = x0 +
∫ t

0
f

(
z, x(z),

∫z

0
k(z, s, x(s))Δs

)
Δz, for every t ∈ Ia. (3.4)

Because we consider a new type of integral and a new type of solutions is necessary to
prove that each solution x of problem (1.1) is the solution of problem (3.1).

Let x is a continuous solution of (3.1). Fix x∗ ∈ E∗. By definition, x is ACG∗ function
and x(0) = x0. Since, for each x∗ ∈ E∗ and μΔ a.e t ∈ Ia, (x∗x(t))Δ = x∗(xΔ(t)) =
x∗(f(t, x(t),

∫ t
0 k(t, s, x(s))Δs)) and the last is Δ-HK integrable, so is differentiable μΔ a.e.

Moreover,
∫ t
0 x

∗(f(z, x(z),
∫z
0 k(z, s, x(s)Δs))Δz =

∫ t
0(x

∗x(s))ΔΔs = x∗(x(t) − x0). Thus
x(t) satisfies (3.1).

Now assume that y is ACG∗ function and y(0) = x0. By the definition of Δ-HKP
integrals there exists an ACG∗ function G such that G(0) = x0 and

x∗
(
GΔ(t)

)
= x∗

(

f

(

t, y(t),
∫ t

0
k
(
t, s, y(s)

)
Δs

))

μΔ a.e. (3.5)

Hence

x∗(y(t)
)
= x0 +

∫ t

0
x∗
(
f

(
z, y(z),

∫z

0
k
(
z, s, y(s)

)
Δs

)
Δz

)

= x0 +
∫ t

0
x∗
(
GΔ
)
(s)Δs = x0 + x∗(G(t)) − x∗(G(0)) = x∗(G(t)).

(3.6)

We obtain y = G, μΔ-a.e. and then yΔ(t) = f(t, y(t),
∫ t
0 k(t, s, y(s))Δs).

Let

B =
{
x ∈ E : ‖x‖ ≤ ‖x0‖ + p, p > 0

}
,

B̃ =
{
x ∈ (C(Ia, E), ω) : x(0) = x0, ‖x‖ ≤ ‖x0‖ + p, p > 0

}
.

(3.7)

Moreover, let F(x)(t) = x0 +
∫ t
0 f(z, x(z),

∫z
0 k(z, s, x(s))Δs)Δz, t ∈ Ia, K = {F(x) : x ∈ B̃},

K1 = {∫z0 k(z, s, x(s))Δs : z ∈ It = [0, t] ∩ T, t ∈ Ia, x ∈ B̃}.

Theorem 3.3. Assume, that for each uniformly ACG∗ function x : Ia → E the functions:
k(·, s, x(s)), f(·, x(·), ∫ (·)0 k(·, s, x(s))Δs) are Δ-HKP integrable, f and k are weakly-weakly
sequentially continuous functions. Suppose that there exist constants d1, d2, d3 > 0 such that

β
(
f(I ×A × C)

) ≤ d1 · β(A) + d2 · β(C), (3.8)

for each subset A, C of B, I ⊂ Ia,

β(k(I × I ×X)) ≤ d3 · β(X) (3.9)



Abstract and Applied Analysis 11

for each subset X of B, I ⊂ Ia, where f(I ×A × C) = {f(t, x1, x2) : (t, x1, x2) ∈ I ×A × C}, k(I ×
I ×X) = {k(t, s, x) : (t, s, x) ∈ I × I ×X}.

Moreover, let K and K1 be equicontinuous, equibounded and uniformly ACG∗ on Ia. Then
there exists a pseudosolution of the problem (1.1) on Ic, for some c ∈ T, 0 < c ≤ a and 0 < c · d1 + c2 ·
d2 · d3 < 1.

Proof. Fix an arbitrary p ≥ 0. Recall, that a set K of continuous functions F(x) ∈ K defined
on a time scale interval Ia is equicontinuous on Ia if for each ε > 0 there exists δ > 0 such that
‖F(x)(t) − F(x)(τ)‖ < ε for all x ∈ B̃ whenever |t − τ | < δ, t, τ ∈ Ia, for each F(x) ∈ K. Thus,
for each ε > 0 there exists δ > 0 such that ‖ ∫ tτ f(z, x(z),

∫z
0 k(z, s, x(s))Δs)Δz‖ < ε for all x ∈ B̃

whenever |t − τ | < δ and t, τ ∈ Ia. As a result, there exists a number c, 0 < c ≤ a such that

∥
∥
∥
∥
∥

∫ t

0
f

(
z, x(z),

∫z

0
k(z, s, x(s))Δs

)
Δz

∥
∥
∥
∥
∥
≤ p, t ∈ Ic, x ∈ B̃. (3.10)

We will show that the operator F is well defined and maps B̃ into B̃.
To see this note for any x∗ ∈ E∗, such that ‖x∗‖ ≤ 1, for any x ∈ B̃ and t ∈ Ic we have

|x∗F(x)(t)| ≤ |x∗x0| +
∣∣∣∣∣
x∗
∫ t

0
f

(
z, x(z),

∫z

0
k(z, s, x(s))ds

)
Δz

∣∣∣∣∣

≤ ‖x∗‖‖x0‖ + ‖x∗‖
∥∥∥∥∥

∫ t

0
f

(
z, x(z),

∫z

0
k(z, s, x(s))ds

)
Δz

∥∥∥∥∥
≤ ‖x0‖ + p,

(3.11)

so

sup{|x∗F(x)(t)| : x∗ ∈ E∗, ‖x∗‖ ≤ 1} ≤ ‖x0‖ + p (3.12)

and as a result

‖F(x)(t)‖ ≤ ‖x0‖ + p. (3.13)

Thus F(x)(t) ∈ B̃.
We will show, that the operator F is weakly-weakly sequentially continuous. By

Lemma 9 of [34] a sequence xn(·) is weakly convergent in C(Ic, E) to x(·) if and only if
xn(t) tends weakly to x(t) for each t ∈ Ic, so if xn

ω→ x in C(Ic, E) then k(t, s, xn(s))
ω→

k(t, s, x(s)) in E for t ∈ Ic and by Theorem 2.14 (see our assumptions on K1) we have
limn→∞

∫ t
0 k(z, s, xn(s))ds =

∫ t
0 k(z, s, x(s))ds weakly in E, for each t ∈ Ic. Moreover, because

f is weakly-weakly sequentially continuous, we have

f

(

t, xn(t),
∫ t

0
k(t, s, xn(s))Δs

)
ω−→ f

(

t, x(t),
∫ t

0
k(t, s, x(s))Δs

)

(3.14)
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in E, for each t ∈ Ic. Thus Theorem 2.14 (see our assumptions on K) implies F(xn)(t) →
F(x)(t) weakly in E for each t ∈ Ic so Lemma 9 of [34] guarantees that F(xn) → F(x) in
C(Ic, E) with its weak topology.

Suppose that V ⊂ B̃ satisfies the condition V = conv({x}∪F(V )). We will prove that V
is relatively weakly compact and so (2.1) is satisfied. Since V ⊂ B̃, F(V ) ⊂ K. Then V ⊂ V =
conv({x} ∪ F(V )) is equicontinuous. By Lemma 2.17, t �→ v(t) = β(V (t)) is continuous on Ic.

For fixed t ∈ Ic we divide the interval [0, t] intom parts in the following way t0 = 0,

t1 = sup
s∈Ia

{s : s ≥ t0, s − t0 < δ},

t2 = sup
s∈Ia

{s : s ≥ t1, s − t1 < δ},

...

tn = sup
s∈Ia

{s : s ≥ tn−1, s − tn−1 < δ}.

(3.15)

Since T is closed, we have ti ∈ Ia. If some ti+1 = ti then ti+2 = inf{t ∈ T : t ≥ ti+1}.
For fixed z ∈ [0, t] we divide the interval [0, z] intom parts: z0 = 0,

z1 = sup
s∈[0,t]

{s : s ≥ z0, s − z0 < δ},

z2 = sup
s∈[0,t]

{s : s ≥ z1, s − z1 < δ},

...

zn = sup
s∈[0,t]

{s : s ≥ zn−1, s − zn−1 < δ} such that μΔ
(
Ij
)
=

jz

m
,

(3.16)

j = 0, 1, . . . , m, Ij = [zj , zj+1].
Let V ([zj , zj+1]) = {u(s) : u ∈ V, zj ≤ s ≤ zj+1, j = 0, 1, . . . , m − 1}. By Lemma 2.17 and

the continuity of v there exists sj ∈ Ij = [zj , zj+1], such that

β
(
V
([
zj , zj+1

]))
= sup

{
β(V (s)) : zj ≤ s ≤ zj+1

}
:= v
(
sj
)
. (3.17)

By Theorem 2.13 and the properties of the Δ-HKP integral we have for x ∈ V that

F(x)(t) = x0 +
m−1∑

i=0

∫

Ji

f

⎛

⎝z, x(z),
m−1∑

j=0

∫

Ij

k(z, s, x(s))Δs

⎞

⎠Δz

∈ x0 +
m−1∑

i=0

μΔ(Ji)convf

⎛

⎝Ji, V (Ji),
m−1∑

j=0

(
zj+1 − zj

)
convk

(
Ij , Ij , V

(
Ij
))
⎞

⎠,

(3.18)

where Ji = [ti, ti+1], i = 0, 1, . . . , m − 1.
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Using (3.8), (3.9) and properties of the measure of noncompactness we obtain

β(F(V )(t)) ≤
m−1∑

i=0

μΔ(Ji)β

⎛

⎝f

⎛

⎝Ji, V (Ji),
m−1∑

j=0

μΔ
(
Ij
)
convk

(
Ij , Ij , V

(
Ij
))
⎞

⎠

⎞

⎠

≤
m−1∑

i=0

μΔ(Ji)β

⎛

⎝f

⎛

⎝Ji, V (Ji),
m−1∑

j=0

μΔ
(
Ij
)
convk

(
Ij , Ij , V

(
Ij
))
⎞

⎠

⎞

⎠

≤
m−1∑

i=1

μΔ(Ji) · d1 · β(V (Ji)) +
m−1∑

i=1

μΔ(Ji) · d2 · β
⎛

⎝
m−1∑

j=0

μΔ
(
Ij
) · convk (Ij , Ij , V

(
Ij
))
⎞

⎠

≤
m−1∑

i=1

μΔ(Ji) · d1 · β(V (Ic)) +
m−1∑

i=1

μΔ(Ji) · d2 ·
m−1∑

j=0

μΔ
(
Ij
) · β(k(Ij , Ij , V

(
Ij
)))

≤ β(V (Ic)) · d1 · c +
m−1∑

i=1

μΔ(Ji) · d2 ·
m−1∑

j=0

μΔ
(
Ij
) · d3 · β

(
V
(
Ij
))

≤ β(V (Ic)) · d1 · c + β(V (Ic)) · d2 · d3 · c2 = β(V (Ic))
(
d1 · c + d2 · d3 · c2

)
.

(3.19)

Since V = conv({x} ∪ F(V )), β(V (t)) = β(conv({x} ∪ F(V (t)))) so β(V (t)) ≤ β(V (Ic))(d1 · c +
d2 · d3 · c2), for t ∈ Ic.

Using Lemma 2.17 we obtain

β(V (Ic)) ≤ β(V (Ic))
(
d1 · c + d2 · d3 · c2

)
. (3.20)

Since 0 < c · d1 + c2 · d2 · d3 < 1 we obtain v(t) = β(V (t)) = 0 for t ∈ Ic.

Using Ascoli‘s theorem we have that V is relatively weakly compact.
By Theorem 2.3 the operator F has a fixed point. This means that there exists a

pseudosolution of the problem (1.1).

Theorem 3.4. Assume, that for each uniformly ACG∗ function x : Ia → E, the functions
k(·, s, x(s)), f(·, x(·), ∫ (·)0 k(·, s, x(s))ds) are Δ-HKP integrable and k, f are weakly-weakly sequen-
tially continuous. Suppose that there exists a constant d > 0 and a continuous function c1 : Ia → R+

such that

β
(
f(I,A,C)

) ≤ d · β(C), for each A,C ⊂ B, I ⊂ Ia,

β(k(I, I, X)) ≤ sup
s∈I

c1(s)β(X), for each X ⊂ B, I ⊂ Ia,
(3.21)
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where

f(I,A,C) =
{
f(t, x1, x2) : (t, x1, x2) ∈ I ×A × C

}
,

k(I, I, X) = {k(t, s, x) : (t, s, x) ∈ I × I ×X}.
(3.22)

Moreover, let K and K1 be equicontinuous and uniformly ACG∗ on Ia. Then there exists a pseudo
solution of the problem (1.1) on Ic, for some c ∈ T, 0 < c ≤ a.

Proof. The first part of the proof is the same as that of the proof of the previous theorem. It
remains to show the relative compactness of V , where V is defined in Theorem 3.3. In this
case notice for t ∈ Ic and zj as in Theorem 3.3 we have

β(V (t)) ≤
m−1∑

i=0

μΔ(Ji) · d · β
⎛

⎝
m−1∑

j=0

μΔ
(
Ij
) · convk(Ij , Ij , V

(
Ij
))
⎞

⎠

≤
m−1∑

i=0

μΔ(Ji) · d ·
m−1∑

j=0

μΔ
(
Ij
) · β(k(Ij , Ij , V

(
Ij
)))

≤
m−1∑

i=0

μΔ(Ji) · d ·
m−1∑

j=0

μΔ
(
Ij
) · sup

s∈Ij
c1(s)β

(
V
(
Ij
))
.

(3.23)

Let sups∈Ij c1(s) = c1(pj), pj ∈ Ij . Then

β(V (t)) ≤ c · d ·
m−1∑

j=0

μΔ
(
Ij
) · c1

(
pj
)
v
(
sj
)

= c · d
⎛

⎝
m−1∑

j=0

μΔ
(
Ij
) · c1

(
pj
)
v
(
pj
)
+

m−1∑

j=0

μΔ
(
Ij
)(
c1
(
pj
)(
v
(
sj
) − v

(
pj
)))
⎞

⎠.

(3.24)

Fix ε > 0. From the equicontinuity of V wemay choosem large enough so that v(sj)−v(pj) < ε
and so

β(V (t)) ≤ c · d
⎛

⎝
m−1∑

j=0

μΔ
(
Ij
) · c1

(
pj
)
v
(
pj
)
+

m−1∑

j=0

z

m
c1
(
pj
) · ε
⎞

⎠

≤ c · d
⎛

⎝
m−1∑

j−0
μΔ
(
Ij
)
c1
(
pj
)
v
(
pj
)
+ z · ε · max

0≤k≤m−1
c1
(
pk
)
⎞

⎠.

(3.25)

Since ε > 0 is arbitrary small and z · max0≤k≤m−1c1(pk) is bounded, we have that z · ε ·
max0≤k≤m−1c1(pk) is arbitrary small. Therefore

v(t) = β(V (t)) ≤ c · d ·
∫ t

0
c1(s)v(s)Δs, t ∈ Ic. (3.26)
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Thus, by Gronwall’s inequality for Δ-integrals [5] we have that

v(t) = β(V (t)) = 0, for t ∈ Ic. (3.27)

Using Ascoli‘s theorem we deduce that V is relatively weakly compact.

By Theorem 2.14 the operator F has a fixed point. This means that there exists a pseudo
solution of the problem (1.1).

Remark 3.5. The conditions in Theorems 3.3 and 3.4 can be also generalized to the Sadovskii
condition [28], the Szufla condition [49], and the others and β can be replaced by some
axiomatic measure of weak noncompactness.

References

[1] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, NY USA, 2002.
[2] S. Hilger, Ein Maβkettenkalkül mit Anvendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität

at Würzburg, Würzburg, Germany, 1988.
[3] R. P. Agarwal and M. Bohner, “Basic calculus on time scales and some of its applications,” Results in

Mathematics, vol. 35, no. 1-2, pp. 3–22, 1999.
[4] R. Agarwal, M. Bohner, and A. Peterson, “Inequalities on time scales: a survey,” Mathematical

Inequalities & Applications, vol. 4, no. 4, pp. 535–557, 2001.
[5] E. Akin-Bohner, M. Bohner, and F. Akin, “Pachpate inequalities on time scale,” Journal of Inequalities

in Pure and Applied Mathematics, vol. 6, no. 1, article no. 6, 2005.
[6] B. Aulbach and S. Hilger, “Linear dynamic processes with inhomogeneous time scale,” in Nonlinear

Dynamics and Quantum Dynamical Systems, vol. 59, pp. 9–20, Akademie, Berlin, Germany, 1990.
[7] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USa, 2001.
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