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The purpose of this paper is to establish the first and second fundamental theorems for an E-
valued meromorphic mapping from a generic domain D ⊂ C to an infinite dimensional complex
Banach space E with a Schauder basis. It is a continuation of the work of C. Hu and Q. Hu. For
f(z) defined in the disk, we will prove Chuang’s inequality, which is to compare the relationship
between T(r, f) and T(r, f ′). Consequently, we obtain that the order and the lower order of f(z)
and its derivative f ′(z) are the same.

1. Introduction

In 1980s, Ziegler [1] established Nevanlinna’s theory for the vector-valued meromorphic
functions in finite dimensional spaces. After Ziegler some works in finite dimensional spaces
were done in 1990s [2–4]. In 2006, C. Hu and Q. Hu [5] considered the case of infinite
dimensional spaces and they investigated the E-valued meromorphic mappings defined in
the disk Cr = {z : |z| < r}. In this article, by using Green function technique, we will consider
this theory defined in generic domain D ⊆ C (see Section 2). In Section 3, motivated by
the work of [6–8], we will prove Chuang’s inequality, which is to compare the relationship
between T(r, f) and T(r, f ′). Consequently, we obtain that the order and the lower order of
f(z) and its derivative f ′(z) are the same. This is an extension of an important result for
meromorphic functions.

2. First and Second Fundamental Theorem in Generic Domains

Let (E, ‖ · ‖) be a complex Banach space with a Schauder basis {ei} and the norm ‖ · ‖. Thus
an E-valued meromorphic mapping f(z) defined in a domainD ⊆ C can be written as f(z) =
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(f1(z), f2(z), . . . , fk(z), . . .). The elements of E are called vectors and are usually denoted by
letters from the alphabet: a,b, c,d, . . .. The symbol 0 denotes the zero vector of E. We denote
vector infinity, complex number infinity, and the norm infinity by ∞̂,∞, and +∞, respectively.
A vector-valued mapping is called holomorphic(meromorphic) if all fj(z) are holomorphic
(meromorphic). The jth derivative (j = 1, 2, . . .) and the integration of f(z) are defined by

f (j)(z) =
(

f
(j)
1 (z), f (j)

2 (z), . . . , f (j)
k (z), . . .

)

,

∫z

f(ζ)dζ =
(∫z

f1(ζ)dζ,
∫z

f2(ζ)dζ, . . . ,
∫z

fk(ζ)dζ, . . .
)

,

(2.1)

respectively. We assume that f (0)(z) = f(z). A point z0 ∈ D is called a “pole” or “∞̂-point” of
f(z) = (f1(z), . . . , fk(z), . . .) if z0 is a pole of at least one of the component functions fk(z) (k =
1, 2, . . .). We define ‖f(z0)‖ = +∞ when z0 is a pole. A point z0 ∈ D is called “zero” of f(z) if
all the component functions fk(z) (k = 1, 2, . . .) have zeros at z0.

Remark 2.1. The integrals are well defined because the set of singularities making ∞̂ − ∞̂
meaningless is zero measurable.

In order to make our statement clear, we first recall some knowledge of Green
functions.

Definition 2.2. Let D be a domain surrounded by finitely many piecewise analytic curves.
Then for any a ∈ D, there exists a Green function, denoted byGD(z, a), forDwith singularity
at a ∈ D which is uniquely determined by the following:

(1) GD(z, a) is harmonic in D \ {a};
(2) in a neighborhood of a, GD(z, a) = − log |z − a| +w(z, a) for some function w(z, a)

harmonic in D;

(3) GD(z, a) ≡ 0, on the boundary of D.

By ∂D we denote the boundary of D and �n the inner normal of ∂D with respect to
D. Using Green function we can establish the following general Poisson formula for the E-
valued meromorphic mapping, which is similar with [5, Lemma 2.2] (see [9, Theorem 2.1],
or [10, Theorem 2.1.1]). We do not give the details here.

Theorem 2.3. Let f : D(⊂ C) → E be an E-valued meromorphic mapping, which does not reduce to
the constant zero element 0 ∈ E. Then

log ‖f(z)‖ =
1
2π

∫

∂D

log ‖f(ζ)‖∂GD(ζ, z)
∂�n

ds −
∑

am∈D
GD(am, z)

+
∑

bn∈D
GD(bn, z) − 1

2π

∫

D

GD(ζ, z)Δ log ‖f(ζ)‖dx ∧ dy,

(2.2)

where ζ = x + iy, {am} are the zeros of f(z) and {bn} are the poles of f(z) according to their
multiplicities.
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Remark 2.4. A simple inspection to the C
2-valued case shows that log ‖f(z)‖ is not harmonic

for a holomorphic (or meromorphic) E-valued function. Therefore we have an additional
term in formula (2.2).

Following Theorem 2.3, we introduce some notations.

N
(

D, a, f
)

=
∑

bn∈D
GD(bn, a),

m
(

D, a, f
)

=
1
2π

∫

∂D

log+‖f(ζ)‖∂GD(ζ, a)
∂�n

ds,

V
(

D, a, f
)

=
1
2π

∫

D

G(ζ, a)Δ log ‖f(ζ)‖dx ∧ dy,

(2.3)

where a is a point in D and {bn} are the poles of f(z) in D appearing according to their
multiplicities, log+x = log max{x, 1}. Define

T
(

D, a, f
)

= m
(

D, a, f
)

+N
(

D, a, f
)

. (2.4)

T(D, a, f) is called the Nevanlinna characteristic function of f(z) with the center a ∈ D.
Next, we give the first (FFT) and the second (SFT) fundamental theorems for f(z).

Theorem 2.5 (FFT). Let f(z) be an E-valued meromorphic mapping on D. Then for a fixed vector
b ∈ E and for any a ∈ D such that f(a)/=b, one has

T

(

D, a,
1

f − b

)

= T
(

D, a, f
) − V

(

D, a, f − b
) − log ‖f(a) − b‖ + ε(b, D), (2.5)

where

|ε(b, D)| ≤
⎧

⎨

⎩

log+‖b‖ + log 2, b/= 0,

0, b = 0.
(2.6)

Proof. We can rewrite Theorem 2.3 as follows:

T
(

D, a, f
)

= T

(

D, a,
1
f

)

+ V
(

D, a, f
)

+ log ‖f(a)‖. (2.7)

Applying this formula to the function f(z) − b, we can prove the theorem.
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Theorem 2.6 (SFT). Let f(z) be an E-valued meromorphic mapping onD, let a[j](j = 1, 2, . . . , q) ∈
E
⋃{∞̂} be q distinct vectors, and let f(a)/= a[j]. Then,

(

q − 2
)

T
(

D, a, f
) ≤

q
∑

j=1

[

N
(

D, a, f = a[j]
)

+ V
(

D, a, f − a[j]
)]

− V
(

D, a, f ′) −N1
(

D, a, f
)

+ S
(

D, a, f
)

,

(2.8)

where

S
(

D, a, f
)

=
1
2π

∫

∂D

log+
⎡

⎣

q
∑

j=1

‖f ′(ζ)‖
‖f(ζ) − a[j]‖

⎤

⎦

∂GD(ζ, a)
∂�n

ds

− log ‖f ′(a)‖ + q log+
2q
δ

+
q
∑

i=1

log ‖f(a) − a[i]‖,

N1
(

D, a, f
)

= 2N
(

D, a, f
) −N

(

D, a, f ′) +N

(

D, a,
1
f ′

)

,

δ = min
i /= j

‖a[i] − a[j]‖ > 0.

(2.9)

Furthermore, one has the following form:

(

q − 2
)

T
(

D, a, f
) ≤

q
∑

j=1

[

N

(

D, a,
1

f − a[j]

)

+ V
(

D, a, f − a[j]
)

]

− V
(

D, a, f ′) + S
(

D, a, f
)

.

(2.10)

Proof. Set

F(ζ) =
q
∑

j=1

1
‖f(ζ) − a[j]‖ . (2.11)

According to the property of the logarithm function, we get

1
2π

∫

∂D

log+F(ζ)
∂GD(ζ, a)

∂�n
ds

≤ m

(

D, a,
1
f ′

)

+
1
2π

∫

∂D

log+
[

F(ζ)‖f ′(ζ)‖]∂GD(ζ, a)
∂�n

ds.

(2.12)

Denote δ = mini /= j‖a[i] − a[j]‖, and fix μ ∈ {1, 2, . . . , q}. Then we obtain

‖f(z) − a[v]‖ ≥ ‖a[μ] − a[v]‖ − ‖a[μ] − f(z)‖ >
3δ
4

(2.13)
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for μ/=v by

‖f(z) − a[μ]‖ <
δ

2q
≤ δ

4
. (2.14)

So either the set of points on ∂D which is determined by (2.14) is empty or any two of
some sets for different μ have intersection. In any case, on ∂D we have

1
2π

∫

∂D

log+F(ζ)
∂GD(ζ, a)

∂�n
ds ≥ 1

2π

q
∑

μ=1

∫

‖f−a[μ]‖<δ/2q
log+F(ζ)

∂GD(ζ, a)
∂�n

ds

≥ 1
2π

q
∑

μ=1

∫

‖f−a[μ]‖<δ/2q
log+

1
‖f(ζ) − a[μ]‖

∂GD(ζ, a)
∂�n

ds.

(2.15)

Since

1
2π

∫

‖f−a[μ]‖<δ/2q
log+

1
‖f(ζ) − a[μ]‖

∂GD(ζ, a)
∂�n

ds

= m
(

D, a, a[μ]
)

− 1
2π

∫

‖f−a[μ]‖>δ/2q
log+

1
‖f(ζ) − a[μ]‖

∂GD(ζ, a)
∂�n

ds

≥ m
(

D, a, a[μ]
)

− log+
2q
δ
,

(2.16)

it follows that

1
2π

∫

∂D

log+F(ζ)
∂GD(ζ, a)

∂�n
ds ≥

q
∑

μ=1

m
(

D, a, a[μ]
)

− q log+
2q
δ
. (2.17)

From (2.12), we get

m

(

D, a,
1
f ′

)

≥
q
∑

μ=1

m
(

D, a, a[μ]
)

− q log+
2q
δ

− 1
2π

∫

∂D

log+
[

F(ζ)‖f ′(ζ)‖]∂GD(ζ, a)
∂�n

ds.

(2.18)

Since f(z) is nonconstant vector, f ′(z) does not reduce to the constant zero element 0.
Applying FFT to f ′(z), we can obtain

T
(

D, a, f ′) = N

(

D, a,
1
f ′

)

+m

(

D, a,
1
f ′

)

+ V
(

D, a, f ′) + log ‖f ′(a)‖. (2.19)
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Using this formula, we have

T
(

D, a, f ′) ≥
q
∑

μ=1

m
(

D, a, a[μ]
)

− q log+
2q
δ

− 1
2π

∫

∂D

log+
[

F(ζ)‖f ′(ζ)‖]∂GD(ζ, a)
∂�n

ds

+N

(

D, a,
1
f ′

)

+ V
(

D, a, f ′) + log ‖f ′(a)‖.

(2.20)

On the other hand, we have

T
(

D, a, f ′) = m
(

D, a, f ′) +N
(

D, a, f ′)

≤ m
(

D, a, f
)

+N
(

D, a, f ′) +
1
2π

∫

∂D

log
‖f ′(ζ)‖
‖f(ζ)‖

∂GD(ζ, a)
∂�n

ds.
(2.21)

The two inequalities above give

q
∑

μ=1

m
(

D, a, a[μ]
)

+ V
(

D, a, f ′)

≤ m
(

D, a, f
)

+N
(

D, a, f ′) −N

(

D, a,
1
f ′

)

+
1
2π

∫

∂D

log+
[

F(ζ)‖f ′(ζ)‖]∂GD(ζ, a)
∂�n

ds +
1
2π

∫

∂D

log
‖f ′(ζ)‖
‖f(ζ)‖

∂GD(ζ, a)
∂�n

ds

− log ‖f ′(a)‖ + q log+
2q
δ
.

(2.22)

That is to say,

q
∑

μ=1

m
(

D, a, a[μ]
)

+ V
(

D, a, f ′)

≤ m
(

D, a, f
)

+N
(

D, a, f ′) −N

(

D, a,
1
f ′

)

+ S
(

D, a, f
)

.

(2.23)

Adding
∑q

μ=1 N(D, a, f = a[μ]) to the above inequality and applying FFT, we can formulate

(

q − 1
)

T
(

D, a, f
)

< N
(

D, a, f
)

+
q
∑

j=1

[

N
(

D, a, f = a[j]
)

+ V
(

D, a, f − a[j]
)]

−N1
(

D, a, f
)

+ S
(

D, a, f
)

,

(2.24)
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where

S
(

D, a, f
)

=
1
2π

∫

∂D

log+
⎡

⎣

q
∑

j=0

‖f ′(ζ)‖
‖f(ζ) − a[j]‖

⎤

⎦

∂GD(ζ, a)
∂�n

ds

− log ‖f ′(a)‖ + q log+
2q
δ

+
q
∑

i=0

log ‖f(a) − a[i]‖, a[0] = 0.

(2.25)

Since N(D, a, f) ≤ T(D, a, f), (2.24) can be written as

(

q − 2
)

T
(

D, a, f
)

<
q
∑

j=1

[

N
(

D, a, f = a[j]
)

+ V
(

D, a, f − a[j]
)]

−N1
(

D, a, f
)

+ S
(

D, a, f
)

.

(2.26)

If {a[j]} contains ∞̂, (2.26) also holds. Let a[q+1] = ∞̂, and substitute qwith q+1; then we have
(2.26), where a[q] = ∞̂, and

S
(

D, a, f
)

=
1
2π

∫

∂D

log+
⎡

⎣

q−1
∑

j=0

‖f ′(ζ)‖
‖f(ζ) − a[j]‖

⎤

⎦

∂GD(ζ, a)
∂�n

ds

− log ‖f ′(a)‖ + q log+
2q
δ

+
q−1
∑

i=0

log ‖f(a) − a[i]‖.

(2.27)

Next we establish Hiong King-Lai’s inequality for f(z).

Theorem 2.7. Let f(z) be an E-valued meromorphic mapping on D, l ∈ D, let a,b, c ∈ E be three
finite vectors, and let b/= 0, c/= 0,b/= c, f (k)(l)/= 0,b, c. Then one has

T
(

D, l, f
)

< N
(

D, l, f = a
)

+N
(

D, l, f (k) = b
)

+N
(

D, l, f (k) = c
)

+ V
(

D, l, f (k)
)

+ V
(

D, l, f (k) − b
)

+ V
(

D, l, f (k) − c
)

−N

(

D, l,
1

f (k+1)

)

+ S
(

D, l, f (k)
)

.

(2.28)

Proof. First, we have

1
2π

∫

∂D

log+
∥

∥

∥

∥

1
f(ζ) − a

∥

∥

∥

∥

∂GD(ζ, l)
∂�n

ds

≤ 1
2π

∫

∂D

log+
∥

∥

∥

∥

∥

1
f (k)(ζ)

∥

∥

∥

∥

∥

∂GD(ζ, l)
∂�n

ds +
1
2π

∫

∂D

log+
∥

∥

∥

∥

∥

f (k)(ζ)
f(ζ) − a

∥

∥

∥

∥

∥

∂GD(ζ, l)
∂�n

ds.

(2.29)
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Applying FFT to f(z) and f (k)(z), respectively, we have

1
2π

∫

∂D

log+
∥

∥

∥

∥

1
f(ζ) − a

∥

∥

∥

∥

∂GD(ζ, l)
∂�n

ds

= T
(

D, l, f
) −N

(

D, l, f = a
) − V

(

D, l, f − a
) − log ‖f(l) − a‖ + ε(a, D),

1
2π

∫

∂D

log+
∥

∥

∥

∥

∥

1
f (k)(ζ)

∥

∥

∥

∥

∥

∂GD(ζ, l)
∂�n

ds

= T
(

D, l, f (k)
)

−N

(

D, l,
1

f (k)

)

− V
(

D, l, f (k)
)

− log ‖f (k)(l)‖.

(2.30)

Thus we have

T
(

D, l, f
) ≤ T

(

D, l, f (k)
)

+N
(

D, l, f = a
)

+ V
(

D, l, f − a
)

−N

(

D, l,
1

f (k)

)

− V
(

D, l, f (k)
)

+ log
‖f(l) − a‖
‖f (k)(l)‖ − ε(a, D).

(2.31)

Applying SFT to f (k) with 0,b, c, we have

T
(

D, l, f (k)
)

≤ N

(

D, l,
1

f (k)

)

+N
(

D, l, f (k) = b
)

+N
(

D, l, f (k) = c
)

−N
(

D, l, f (k+1)
)

+ V
(

D, l, f (k)
)

+ V
(

D, l, f (k) − b
)

+ V
(

D, l, f (k) − c
)

− V
(

D, l, f (k+1)
)

+ S
(

D, l, f (k)
)

.

(2.32)

Combining (2.31) with (2.32), we have

T
(

D, l, f
) ≤ N

(

D, l, f = a
)

+N
(

D, l, f (k) = b
)

+N
(

D, l, f (k) = c
)

−N
(

D, l, f (k+1)
)

+ V
(

D, l, f − a
)

+ V
(

D, l, f (k) − b
)

+ V
(

D, l, f (k) − c
)

− V
(

D, l, f (k+1)
)

+ S
(

D, l, f (k)
)

.

(2.33)
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3. The Vector-Valued Mapping and Its Derivative

In this section, we will discuss the value distribution theory of f(z) defined in the disk Cr =
{z : |z| < r}. We will prove Chuang’s inequality. According to (2.3), we have the following
terms:

m
(

r, f
)

=
1
2π

∫2π

0
log+‖f

(

reiθ
)

‖dθ,

N
(

r, f
)

=
∫ r

0

n
(

t, f
) − n
(

0, f
)

t
dt + n

(

0, f
)

log r,

V
(

r, f
)

=
1
2π

∫

Cr

log
∣

∣

∣

∣

r

ζ

∣

∣

∣

∣

Δ log ‖f(ζ)‖dx ∧ dy, ζ = x + iy,

T
(

r, f
)

= m
(

r, f
)

+N
(

r, f
)

,

(3.1)

where n(r, f) denotes the number of poles of f(z) in {z : |z| < r}. The order and the lower
order of an E-valued meromorphic mapping f(z) are defined by

λ
(

f
)

= lim sup
r→∞

log T
(

r, f
)

log r
,

μ
(

f
)

= lim inf
r→∞

log T
(

r, f
)

log r
.

(3.2)

The following lemma is well known.

Lemma 3.1 (see [11, Boutroux-Cartan Theorem]). Let {aj}nj=1 be n complex numbers. Then the
set of the point z satisfying

n
∏

j=1

∣

∣z − aj

∣

∣ < hn (3.3)

can be contained in several disks, denoted by (γ); the total sum of its radius does not exceed 2eh.

The next lemma is a special case of Theorem 2.3.
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Lemma 3.2 (see [5]). Let f : Cr → E be an E-valued meromorphic mapping, which does not reduce
to the constant zero element 0 ∈ E. Then, for a z ∈ Cr , one has

log ‖f(z)‖ =
1
2π

∫2π

0
log ‖f

(

reiθ
)

‖ r2 − t2

r2 − 2rt cos
(

θ − φ
)

+ t2
dφ

−
∑

zj (0)∈Cr

log

∣

∣

∣

∣

∣

r2 − zj(0)z

r
(

z − zj(0)
)

∣

∣

∣

∣

∣

+
∑

zj (∞̂)∈Cr

log

∣

∣

∣

∣

∣

r2 − zj(∞̂)z

r
(

z − zj(∞̂)
)

∣

∣

∣

∣

∣

− 1
2π

∫

Cr

log

∣

∣

∣

∣

∣

r2 − ξz

r(z − ξ)

∣

∣

∣

∣

∣

Δ log
∥

∥f(ξ)
∥

∥dx ∧ dy.

(3.4)

Here zj(0) and zj(∞̂) are all the zeros and poles counting their multiplies of f in D.

In order to obtain the relationship between T(r, f) and T(r, f ′), we should first
establish the following two lemmas.

Lemma 3.3. Let f : C → E be a nonzero E-valued meromorphic mapping, and f(0)/= ∞̂. If R and
R′ are two positive numbers, and R < R′, then there exists a θ0 ∈ [0, 2π), such that for any 0 ≤ r ≤ R
one has

log+‖f
(

reiθ0
)

‖ ≤ R′ + R

R′ − R
m
(

R′, f
)

+ n
(

R′, f
)

log 4 +N
(

R′, f
)

. (3.5)

Proof. For z = reiθ, 0 ≤ r ≤ R. By Lemma 3.2 we have

log ‖f(z)‖ ≤ 1
2π

∫2π

0
log ‖f

(

R′eiθ
)

‖ R
′2 − r2

R′2 − 2R′r cos
(

θ − φ
)

+ r2
dφ

+
n
∑

j=1

log

∣

∣

∣

∣

∣

R
′2 − bjz

R′(z − bj
)

∣

∣

∣

∣

∣

,

(3.6)

where {bj}nj=1 are the poles of f(z) in |z| ≤ R′. Then

log+‖f(z)‖ ≤ R′ + r

R′ − r
m
(

R′, f
)

+
n
∑

j=1

log
2R′
∣

∣z − bj
∣

∣

≤ R′ + r

R′ − r
m
(

R′, f
)

+ log
(2R′)n

∏n
j=1

∣

∣z − bj
∣

∣

.

(3.7)

Writing bj = |bj |eiφj , we have

∣

∣

∣reiθ−
∣

∣

∣bj
∣

∣

∣eiφj

∣

∣

∣ ≥
∣

∣bj‖ sin
(

θ − φj

)∣

∣. (3.8)
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Thus

n
∏

j=1

∣

∣z − bj
∣

∣ ≥
⎛

⎝

n
∏

j=1

∣

∣bj
∣

∣

⎞

⎠

⎛

⎝

n
∏

j=1

∣

∣sin
(

θ − φj

)∣

∣

⎞

⎠. (3.9)

However,

∫π

0
log

∣

∣

∣

∣

∣

∣

n
∏

j=1

∣

∣

∣

∣

∣

∣

sin
(

θ − φj

) | dθ = n

∫π

0
log|sin θ|dθ = −nπ log 2. (3.10)

Hence there exists a real number θ0 such that

∣

∣

∣

∣

∣

∣

n
∏

j=1

sin
(

θ0 − φj

)

∣

∣

∣

∣

∣

∣

>
1
2n

. (3.11)

Combining (3.7) and (3.9)with (3.11), we have

log+‖f
(

reiθ0
)

‖ ≤ R′ + R

R′ − R
m
(

R′, f
)

+ n log 4 +
n
∑

j=1

log
R′
∣

∣bj
∣

∣

≤ R′ + R

R′ − R
m
(

R′, f
)

+ n log 4 +N
(

R′, f
)

.

(3.12)

Lemma 3.4. Let f : C → E be a nonzero E-valued meromorphic mapping, and let R < R′ < R′′ be
three positive numbers. Then there exists a positive number R ≤ ρ ≤ R′, and for |z| = ρ, one has

log+‖f(z)‖ ≤ R′′ + R′

R′′ − R′m
(

R′′, f
)

+ n
(

R′′, f
)

log
8eR′′

R′ − R
. (3.13)

Proof. Let {bj}nj=1 be the poles of f(z) in |z| ≤ R′′. By Boutroux-Cartan Theorem, we have

n
∏

j=1

∣

∣z − bj
∣

∣ ≥
(

R′ − R

4e

)n

, (3.14)

except for some points contained in a pack of disks whose radius does not exceed (R′ −R)/2.
Then there exists a circle {z : |z| = ρ} such that R ≤ ρ ≤ R′ and {|z| = ρ}⋂(γ) = ∅.
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Thus (3.14) holds on {|z| = ρ}. For any z ∈ {z : |z| = ρ}, we have

log+‖f
(

reiθ0
)

‖ ≤ R′′ + ρ

R′′ − ρ
m
(

R′′, f
)

+
n
∑

j=1

log

∣

∣

∣

∣

∣

R′′2 − bjz

R′′(z − bj
)

∣

∣

∣

∣

∣

≤ R′′ + R′

R′′ − R′m
(

R′′, f
)

+ n log
8eR′′

R′ − R
.

(3.15)

Now we are in the position to establish the following Chuang’s inequality.

Theorem 3.5. Let f : C → E be a nonzero E-valued meromorphic mapping and f(0)/= ∞̂. Then for
τ > 1 and 0 < r < R, one has

T
(

r, f
)

< CτT
(

τr, f ′) + log+τr + 4 + log+‖f(0)‖, (3.16)

where Cτ is a positive constant.

Proof. Take a σ such that σ3 = τ and denote r1 = σr, r2 = σr1, r3 = σr2. Applying Lemma 3.3
to f ′(z), we can find a real number θ0 such that 0 ≤ t ≤ r1, and we have

log+‖f ′
(

teiθ0
)

‖ ≤ r2 + r1
r2 − r1

m
(

r2, f
′) + n

(

r2, f
′) log 4 +N

(

r2, f
′). (3.17)

In view of Lemma 3.4, for a fixed ρ ∈ [r, r1] we have

log+‖f ′(z)‖ ≤ r2 + r1
r2 − r1

m
(

r2, f
′) + n

(

r2, f
′) log

8er2
r1 − r

, (3.18)

on {z : |z| = ρ}.
From the origin along the segment arg z = θ0 to ρeiθ0 , and along {z : |z| = ρ} turn a

rotation to ρeiθ0 . We denote this curve by L, and its length is (2π + 1)ρ.
We notice that ϕ(z) = ‖f(z)‖ is continuous on L. As in [5], En is an n-dimensional

projective space of E with a basis {ei}ni=1. The projection operator Pn : E → En is a realization
of En associated to the basis and Pn(f(z)) = (f1(z), f2(z), . . . , fn(z)). We have Pn(f ′(z)) =
(Pn(f(z)))

′ =
∑n

i=1 f
′
i(z)ei and Pn(f(z)) = Pn(f(0)) +

∑n
i=1(
∫z

0 f
′
i(ζ)dζ)ei. Therefore, since En is
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finite dimensional, there exists K > 0 (appearing in the inequality ‖ · ‖1 ≤ K‖ · ‖2, where ‖ · ‖1
and ‖ · ‖2 are any two norms on En) such that

‖Pn

(

f(z)
)‖ ≤ ‖Pn

(

f(0)
)‖ +
∥

∥

∥

∥

∥

n
∑

i=1

(∫z

0
f ′
i(ξ)dξ

)

ei

∥

∥

∥

∥

∥

≤ ‖Pn

(

f(0)
)‖ + 1

K

(

n
∑

i=1

∣

∣

∣

∣

∫z

0
f ′
i(ξ)dξ

∣

∣

∣

∣

2
)1/2

≤ ‖Pn

(

f(0)
)‖ + 1

K

(

n
∑

i=1

max
ξεL

∣

∣f ′
i(ξ)
∣

∣

2

)1/2

(2π + 1)ρ

≤ ‖Pn

(

f(0)
)‖ + K′

K
Mn(2π + 1)ρ,

(3.19)

where Mn = maxz∈L‖Pn(f ′(z))‖. Thus, we have

‖Pn

(

f(z)
)‖ ≤ ‖Pn

(

f(0)
)‖ +Mn(2π + 1)ρ +O(1), |z| = ρ. (3.20)

In virtue of [6–8], every meromorphic mapping f(z) with values in a Banach space E
with a Schauder basis and the projections Pn(f) are convergent in its natural topology; that
is, they converge uniformly to f in any compact subsetW of C \ Pf (Pf being the set of poles
the f in C). Thus for n large enough, we have

‖Pn

(

f(z)
)‖ = ‖f(z)‖ +O(1), for any z ∈ W ⊆ C \ Pf . (3.21)

A similar argument to f ′(z) implies that for n large enough

‖Pn

(

f ′(z)
)‖ = ‖f ′(z)‖ +O(1), Mn ≤ M +O(1) for any z ∈ W ⊆ C \ Pf ′ , (3.22)

where M = maxz∈L‖f ′(z)‖.
Combining (3.20), (3.21), and (3.22) and the fact that the compact set {z : |z| = ρ} ⊆

L ⊆ C \ Pf , we get

‖f(z)‖ ≤ ‖f(0)‖ +M(2π + 1)ρ +O(1). (3.23)

Then

log+‖f(z)‖ ≤ log+‖f(0)‖ + log+M + log+ρ + log 8eπ +O(1). (3.24)
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In virtue of (3.13) and (3.17), we have

log+M ≤ r2 + r1
r2 − r1

m
(

r2, f
′) + n

(

r2, f
′) log

8er2
r1 − r

+N
(

r2, f
′)

≤
{

log(8er2/(r1 − r))
log(r3/r2)

+
r2 + r1
r2 − r1

}

T
(

r3, f
′) = C′

τT
(

r3, f
′).

(3.25)

Therefore,

m
(

ρ, f
)

< C′
τT
(

r3, f
′) + log+(τr) + 4 + log+‖f(0)‖. (3.26)

Thus we have

T
(

r, f
) ≤ T

(

ρ, f
)

<
(

C′
τ + 1
)

T
(

r3, f
′) + log+(τr) + 4 + log+‖f(0)‖

= CτT
(

τr, f ′) + log+(τr) + 4 + log+‖f(0)‖.
(3.27)

The following result says that we can also control the T(r, f ′) by T(r, f).

Theorem 3.6. Let f(z)(z ∈ C) be a nonconstant E-valued meromorphic mapping. Then one has

T
(

r, f ′) ≤ 2T
(

r, f
)

+O
(

log r + log+T
(

r, f
))

. (3.28)

Proof. One has

T
(

r, f ′) = m
(

r, f ′) +N
(

r, f ′)

≤ m
(

r, f
)

+N
(

r, f ′) +
1
2π

∫2π

0
log+

‖f ′(reiφ
)‖

‖f(reiφ)‖ dφ

= m
(

r, f
)

+N
(

r, f
)

+N
(

r, f
)

+
1
2π

∫2π

0
log+

‖f ′(reiφ
)‖

‖f(reiφ)‖ dφ

≤ 2T
(

r, f
)

+
1
2π

∫2π

0
log+

‖f ′(reiφ
)‖

‖f(reiφ)‖ dφ

= 2T
(

r, f
)

+O
(

log r + log+T
(

r, f
))

.

(3.29)

From Theorems 3.5 and 3.6, we have the following.

Corollary 3.7. For a nonconstant E-valued meromorphic mapping f(z)(z ∈ C), One has λ(f) =
λ(f ′), μ(f) = μ(f ′).
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