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We prove a strong convergence theorem for a common fixed point of two sequences of strictly
pseudocontractive mappings in Hilbert spaces. We also provide some applications of the main
theorem to find a common element of the set of fixed points of a strict pseudocontraction and the
set of solutions of an equilibrium problem in Hilbert spaces. The results extend and improve the
recent ones announced by Marino and Xu (2007) and others.

1. Introduction

Let H be a real Hilbert space and C a nonempty closed convex subset of H. Let T : C → C
be a self-mapping of C. Recall that T is said to be a strict pseudocontraction if there exists a
constant 0 � k < 1 such that

∥
∥Tx − Ty

∥
∥
2 �

∥
∥x − y

∥
∥ + k

∥
∥(I − T)x − (I − T)y

∥
∥
2 (1.1)

for all x, y ∈ C. (We also say that T is a k-strict pseudocontraction if T satisfies (1.1)). We use
F(T) to denote the set of fixed points of T (i.e., F(T) = {x ∈ C : Tx = x}). Note that the class
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of strict pseudocontractions strictly includes the class of nonexpansive mappings which are
mappings T on C such that

∥
∥Tx − Ty

∥
∥ �

∥
∥x − y

∥
∥ (1.2)

for all x, y ∈ C. That is, T is nonexpansive if and only if T is a 0-strict pseudocontraction.
In 1953, Mann [1] introduced the following iterative scheme:

x0 ∈ C chosen arbitrarily,

xn+1 = αnxn + (1 − αn)Txn, n = 0, 1, 2, . . . ,
(1.3)

where the sequence {αn} is chosen in [0, 1]. Mann’s iteration process (1.3) has been
extensively investigated for nonexpansive mappings. One of the fundamental convergence
results was proved by Reich [2]. In an infinite-dimensional Hilbert space, theMann’s iteration
(1.3) can conclude only weak convergence [3, 4]. In 1967, Browder and Petryshyn [5]
established the first convergence result for a k-strict pseudocontraction in a real Hilbert
space. They proved weak and strong convergence theorems by using (1.3) with a constant
control sequence {αn} ≡ α for all n. However, this scheme has only weak convergence
even in a Hilbert space. Therefore, many authors try to modify the normal Mann’s
iteration process to have strong convergence; see, for example, [6–10] and the references
therein.

Attempts to modify (1.3) so that strong convergence is guaranteed have been made.
In 2003, Nakajo and Takahashi [9] proposed the following modification of (1.3) for a single
nonexpansive mapping T by using the hybrid projection method in a Hilbert space H

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn =
{

z ∈ C :
∥
∥z − yn

∥
∥ � ‖z − xn‖

}

,

Qn = {z ∈ C : 〈xn − z, x − xn〉 � 0},

xn+1 = PCn∩Qn(x), n = 0, 1, 2, . . . ,

(1.4)

where PC denotes the metric projection from H onto a closed convex subset C of H. They
proved that if the sequence {αn} is bounded above from one, then {xn} defined by (1.4)
converges strongly to PF(T)(x).
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In 2007, Marino and Xu [11] proved the following strong convergence theorem by
using the hybrid projection method for a strict pseudocontraction. They defined a sequence
as follows:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 � ‖xn − z‖2 + (1 − αn)(k − αn)‖xn − Txn‖2

}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 � 0},
xn+1 = PCn∩Qn(x0), n = 0, 1, 2, . . . ,

(1.5)

They proved that if 0 � αn < 1, then {xn} defined by (1.5) converges strongly to PF(T)(x0).
Motivated and inspired by the above-mentioned results, it is the purpose of this paper

to improve and generalize the algorithm (1.5) to the new general process of two sequences
of strictly pseudocontractive mappings in Hilbert spaces. Let C be a closed convex subset of
a Hilbert spaceH and Tn, Sn : C → C two sequences of strictly pseudocontractive mappings
such that

⋂∞
n=0 F(Tn) ∩

⋂∞
n=0 F(Sn)/= ∅. Define {xn} in the following ways:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)zn,

zn = βnTnxn +
(

1 − βn
)

Snxn,

Ĉn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 � ‖xn − z‖2 + (1 − αn)βn

(

kn
T − αn

)‖xn − Tnxn‖2

+(1 − αn)
(

1 − βn
)(

kn
S − αn

)‖xn − Snxn‖2 − (1 − αn)2βn
(

1 − βn
)‖Tnxn − Snxn‖2

}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 � 0},

xn+1 = PĈn∩Qn
(x0),

(1.6)

where {αn}, {βn} are sequences in [0, 1].
We prove that the algorithm (1.6) converges strongly to a common fixed point of two

sequences of strictly pseudocontractive mappings {Tn} and {Sn} provided that {Tn}, {Sn},
{αn} and {βn} satisfy some appropriate conditions, and then we apply the result for finding
a common element of the set of fixed points of a strict pseudocontraction and the set of
solutions of an equilibrium problem in Hilbert spaces. Our results extend and improve the
corresponding ones announced by Marino and Xu [11] and others.

Throughout the paper, we will use the following notation:

(i) → for strong convergence and ⇀ for weak convergence,

(ii) ωw(xn) = {x : ∃xnr ⇀ x} denotes the weak ω-limit set of {xn}.
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2. Preliminaries

This section collects some definitions and lemmas which will be used in the proofs for the
main results in the next section. Some of them are known; others are not hard to derive.

Lemma 2.1. LetH be a real Hilbert space. There holds the following identity:

(i) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉 for all x, y ∈ H.

(ii) ‖tx + (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x − y‖2 for all t ∈ [0, 1], for all x, y ∈ H.

Lemma 2.2. Let H be a real Hilbert space. Given a closed convex subset C ⊂ H and x, y, z ∈ H.
Given also a real number a ∈ R. The set

{

v ∈ C :
∥
∥y − v

∥
∥
2 � ‖x − v‖2 + 〈z, v〉 + a

}

(2.1)

is convex (and closed).

Recall that given a closed convex subset C of a real Hilbert space H, the nearest point
projection PC fromH onto C assigns to each x ∈ H its nearest point denoted by PCx which is
a unique point in C with the property

‖x − PCx‖ � ‖x − z‖ ∀z ∈ C. (2.2)

Lemma 2.3. Let C be a closed convex subset of real Hilbert space H. Given x ∈ H and z ∈ C. Then,
z = PCx if and only if there holds the relation

〈

x − z, z − y
〉

� 0 ∀y ∈ C. (2.3)

Lemma 2.4 (Martinez-Yanes and Xu [8]). Let C be a closed convex subset of real Hilbert spaceH.
Let {xn} be a sequence in H and u ∈ H. Let q = PCu. If {xn} is such that ωw(xn) ⊂ C and satisfies
the condition

‖xn − u‖ �
∥
∥u − q

∥
∥ ∀n. (2.4)

Then, xn → q.

Given a closed convex subset C of a real Hilbert space H and a mapping T : C → C.
Recall that T is said to be a quasistrict pseudocontraction if F(T) is nonempty and there exists
a constant 0 � k < 1 such that

∥
∥Tx − p

∥
∥
2 �

∥
∥x − p

∥
∥
2 + k‖x − Tx‖2 (2.5)

for all x ∈ C and p ∈ F(T).
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Proposition 2.5 (Marino and Xu [11, Proposition 2.1]). Assume C is a closed convex subset of a
Hilbert spaceH, and let T : C → C be a self-mapping of C.

(i) If T is a k-strict pseudocontraction, then T satisfies Lipschitz condition

∥
∥Tx − Ty

∥
∥ � 1 + k

1 − k

∥
∥x − y

∥
∥ ∀x, y ∈ C. (2.6)

(ii) If T is a k-strict pseudocontraction, then the mapping I − T is demiclosed (at 0). That is, if
{xn} is a sequence in C such that xn ⇀ x̂ and (I − T)xn → 0, then (I − T)x̂ = 0.

(iii) If T is a k-quasistrict pseudocontraction, then the fixed-point set F(T) of T is closed and
convex so that the projection PF(T) is well defined.

Lemma 2.6 (Plubtieng and Ungchittrakool [12, Lemma 3.1]). Let C be a nonempty subset of a
Banach space E and {Tn} a sequence of mappings from C into E. Suppose that for any bounded subset
B of C there exists continuous increasing function hB from R

+ into R
+ such that hB(0) = 0 and

lim
k,l→∞

ρkl = 0, (2.7)

where

ρkl := sup{hB(‖Tkz − Tlz‖) : z ∈ B} < ∞, (2.8)

for all k, l ∈ N. Then, for each x ∈ C, {Tnx} converges strongly to some point of E. Moreover, let T be
a mapping from C into E defined by

Tx = lim
n→∞

Tnx ∀x ∈ C. (2.9)

Then, limn→∞ sup{hB(‖Tz − Tnz‖) : z ∈ B} = 0.

Lemma 2.7. Let H be a real Hilbert space, let C be a nonempty closed convex subset of H, and
let {Tn} be a sequence such that for each n, Tn is kn-strict pseudo contraction from C into H with
lim supn→∞k

n < 1 and

Tx = lim
n→∞

Tnx ∀x ∈ C. (2.10)

Then, F(T) is closed and convex so that the projection PF(T) is well defined.
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Proof. To see that F(T) is closed, assume that {pn} is a sequence in F(T) such that pn → p̂.
Since Tn is a kn-quasistrict pseudocontraction, we get, for each n,

‖Tp̂ − pn‖2 =
∥
∥Tp̂ − Tpn

∥
∥
2 =

∥
∥
∥
∥
lim
m→∞

Tmp̂ − lim
m→∞

Tmpn

∥
∥
∥
∥

2

= lim
m→∞

∥
∥Tmp̂ − Tmpn

∥
∥
2

� lim sup
m→∞

(∥
∥p̂ − pn

∥
∥
2 + km

∥
∥
(

p̂ − Tmp̂
) − (

pn − Tmpn
)∥
∥
2
)

�
∥
∥p̂ − pn

∥
∥
2 +

(

lim sup
m→∞

km

)(

lim sup
m→∞

∥
∥
(

p̂ − Tmp̂
) − (

pn − Tmpn
)∥
∥
2
)

=
∥
∥p̂ − pn

∥
∥
2 +

(

lim sup
m→∞

km

)∥
∥
∥
∥

(

p̂ − lim
m→∞

Tmp̂

)

−
(

pn − lim
m→∞

Tmpn

)∥
∥
∥
∥

2

=
∥
∥p̂ − pn

∥
∥
2 +

(

lim sup
m→∞

km

)
∥
∥p̂ − Tp̂

∥
∥
2
.

(2.11)

Taking the limit as n → ∞ yields ‖Tp̂ − p̂‖2 � κ‖p̂ − Tp̂‖2, where κ := lim supm→∞k
m. Since

0 � κ < 1, we have Tp̂ = p̂.

3. Main Result

In this section, we prove a strong convergence theorem by using the hybrid projectionmethod
(some authors call this the CQ method) for finding a common element of the set of fixed
points of two sequences of strictly pseudocontractive mappings in Hilbert spaces.

Theorem 3.1. LetC be a closed convex subset of a Hilbert spaceH. For each n, let Tn, Sn : C → C be
kn
T , k

n
S-strict pseudocontractions for some 0 � kn

T , k
n
S < 1 with lim supn→∞k

n
T , lim supn→∞k

n
S < 1,

respectively, and assume that
⋂∞

n=0 F(Tn) ∩
⋂∞

n=0 F(Sn)/= ∅. Let {xn}∞n=0 be the sequence generated by

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)zn,

zn = βnTnxn +
(

1 − βn
)

Snxn,

Ĉn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 � ‖xn − z‖2 + (1 − αn)βn

(

kn
T − αn

)‖xn − Tnxn‖2

+(1 − αn)
(

1 − βn
)(

kn
S − αn

)‖xn − Snxn‖2 − (1 − αn)2βn
(

1 − βn
)‖Tnxn − Snxn‖2

}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 � 0},

xn+1 = PĈn∩Qn
(x0).

(3.1)
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Assume that {αn} and {βn} are chosen so that 0 � αn < 1 and 0 < a � βn � b < 1 for all n. Suppose
that for any bounded subset B of C there exists an increasing, continuous, and convex function hB

from R
+ into R

+ such that hB(0) = 0, and

lim
k,l→∞

sup{hB(‖Tkz − Tlz‖) : z ∈ B} = 0 = lim
k,l→∞

sup{hB(‖Skz − Slz‖) : z ∈ B}. (3.2)

Let T, S : C → C such that Tx = limn→∞Tnx and Sx = limn→∞Snx for all x ∈ C, respectively,
and suppose that F(T) =

⋂∞
n=0 F(Tn) and F(S) =

⋂∞
n=0 F(Sn). Then, {xn} converges strongly to a

common fixed point q = PF(T)∩F(S)(x0).

Proof. It is not hard to check that Ĉn and Qn are closed and convex for all n (via Lemma 2.2
and the properties of the inner product). Then, if Ĉn ∩Qn is nonempty for all n, the sequence
{xn} is well defined. Now, we will show that

⋂∞
n=0 F(Tn) ∩

⋂∞
n=0 F(Sn) ⊂ Ĉn for all n. Let

p ∈ ⋂∞
n=0 F(Tn) ∩

⋂∞
n=0 F(Sn), we observe that

∥
∥zn − p

∥
∥
2 =

∥
∥βn

(

Tnxn − p
)

+
(

1 − βn
)(

Snxn − p
)∥
∥
2

= βn
∥
∥Tnxn − p

∥
∥
2 +

(

1 − βn
)∥
∥Snxn − p

∥
∥
2 − βn

(

1 − βn
)‖Tnxn − Snxn‖2

� βn
(∥
∥xn − p

∥
∥
2 + kn

T‖xn − Tnxn‖2
)

+
(

1 − βn
)(∥

∥xn − p
∥
∥
2 + kn

S‖xn − Snxn‖2
)

− βn
(

1 − βn
)‖Tnxn − Snxn‖2

=
∥
∥xn − p

∥
∥
2 + βnk

n
T‖xn − Tnxn‖2 +

(

1 − βn
)

kn
S‖xn − Snxn‖2

− βn
(

1 − βn
)‖Tnxn − Snxn‖2,

(3.3)

‖xn − zn‖2 =
∥
∥βn(xn − Tnxn) +

(

1 − βn
)

(xn − Snxn)
∥
∥
2

= βn‖xn − Tnxn‖2 +
(

1 − βn
)‖xn − Snxn‖2 − βn

(

1 − βn
)‖Tnxn − Snxn‖2.

(3.4)

By (3.3) and (3.4)we obtain

∥
∥yn − p

∥
∥
2 =

∥
∥αn

(

xn − p
)

+ (1 − αn)
(

zn − p
)∥
∥
2

= αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥zn − p

∥
∥
2 − αn(1 − αn)‖xn − zn‖2

�
∥
∥xn − p

∥
∥
2 + (1 − αn)βn

(

kn
T − αn

)‖xn − Tnxn‖2

+ (1 − αn)
(

1 − βn
)(

kn
S − αn

)‖xn − Snxn‖2

− (1 − αn)2βn
(

1 − βn
)‖Tnxn − Snxn‖2.

(3.5)



8 Abstract and Applied Analysis

Thus, we have F(T) ∩ F(S) ⊂ Ĉn for all n. Next, we will show that F(T) ∩ F(S) ⊂ Qn for all n.
If n = 0, then F(T)∩F(S) ⊂ C = Q0. Assume that F(T)∩F(S) ⊂ Qn. Since xn+1 is the projection
of x0 onto Ĉn ∩Qn, by Lemma 2.3 we have

〈xn+1 − z, x0 − xn+1〉 � 0 ∀z ∈ Ĉn ∩Qn. (3.6)

Noting that F(T)∩F(S) ⊂ Ĉn ∩Qn by the induction assumption, it implies that F(T)∩F(S) ⊂
Qn+1, thus by induction F(T)∩F(S) ⊂ Qn for all n. Hence, F(T)∩F(S) ⊂ Ĉn ∩Qn for all n. So,
{xn} is well defined.

Notice that the definition of Qn actually implies xn = PQn(x0). This together with the
fact F(T) ∩ F(S) ⊂ Qn further implies

‖xn − x0‖ �
∥
∥p − x0

∥
∥ ∀p ∈ F(T) ∩ F(S). (3.7)

In particular, {xn} is bounded and

‖xn − x0‖ �
∥
∥q − x0

∥
∥ ∀n, (3.8)

where q = PF(T)∩F(S)(x0).
The fact xn+1 ∈ Qn asserts that 〈xn+1−xn, xn−x0〉 � 0. This together with Lemma 2.1(i)

and Lemma 2.3 implies

‖xn+1 − xn‖2 = ‖(xn+1 − x0) − (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉

� ‖xn+1 − x0‖2 − ‖xn − x0‖2.

(3.9)

It turns out that

‖xn+1 − xn‖ −→ 0. (3.10)

By the fact xn+1 ∈ Ĉn, we get

∥
∥xn+1 − yn

∥
∥
2 � ‖xn+1 − xn‖2 + (1 − αn)βn

(

kn
T − αn

)‖xn − Tnxn‖2

+ (1 − αn)
(

1 − βn
)(

kn
S − αn

)‖xn − Snxn‖2

− (1 − αn)2βn
(

1 − βn
)‖Tnxn − Snxn‖2.

(3.11)
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Observe that

∥
∥xn+1 − yn

∥
∥
2 = ‖αn(xn+1 − xn) + (1 − αn)(xn − zn)‖2

= αn‖xn+1 − xn‖2 + (1 − αn)‖xn+1 − zn‖2 − αn(1 − αn)‖xn − zn‖2,

‖xn+1 − zn‖2 =
∥
∥βn(xn+1 − Tnxn) +

(

1 − βn
)

(xn+1 − Snxn)
∥
∥
2

= βn‖xn+1 − Tnxn‖2 +
(

1 − βn
)‖xn+1 − Snxn‖2 − βn

(

1 − βn
)‖Tnxn − Snxn‖2.

(3.12)

With simple calculation by using (3.12) and (3.4), we have

∥
∥xn+1 − yn

∥
∥
2 = αn‖xn+1 − xn‖2 + (1 − αn)βn‖xn+1 − Tnxn‖2

+ (1 − αn)
(

1 − βn
)‖xn+1 − Snxn‖2 − αn(1 − αn)βn‖xn − Tnxn‖2

− αn(1 − αn)
(

1 − βn
)‖xn − Snxn‖2 − (1 − αn)2βn

(

1 − βn
)‖Tnxn − Snxn‖2.

(3.13)

So, when we combine (3.11) and (3.13) and compute, we obtain

(1 − αn)βn‖xn+1 − Tnxn‖2 + (1 − αn)
(

1 − βn
)‖xn+1 − Snxn‖2

� (1 − αn)‖xn+1 − xn‖2 + (1 − αn)βnkn
T‖xn − Tnxn‖2 + (1 − αn)

(

1 − βn
)

kn
S‖xn − Snxn‖2.

(3.14)

Since αn < 1 for all n, we have

βn‖xn+1 − Tnxn‖2 +
(

1 − βn
)‖xn+1 − Snxn‖2

� ‖xn+1 − xn‖2 + βnk
n
T‖xn − Tnxn‖2 +

(

1 − βn
)

kn
S‖xn − Snxn‖2.

(3.15)

Notice that

‖xn+1 − Tnxn‖2 = ‖(xn+1 − xn) + (xn − Tnxn)‖2

= ‖xn+1 − xn‖2 + 2〈xn+1 − xn, xn − Tnxn〉 + ‖xn − Tnxn‖2,
(3.16)

‖xn+1 − Snxn‖2 = ‖(xn+1 − xn) + (xn − Snxn)‖2

= ‖xn+1 − xn‖2 + 2〈xn+1 − xn, xn − Snxn〉 + ‖xn − Snxn‖2.
(3.17)

By (3.15), (3.16), and (3.17), we have

βn
(

1 − kn
T

)‖xn − Tnxn‖2 +
(

1 − βn
)(

1 − kn
S

)‖xn − Snxn‖2

� −2βn〈xn+1 − xn, xn − Tnxn〉 − 2
(

1 − βn
)〈xn+1 − xn, xn − Snxn〉.

(3.18)
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Since {xn}, {Tnxn}, and {Snxn} are bounded, 0 < a � βn � b < 1 for all n and lim supn→∞k
n
T ,

lim supn→∞k
n
S < 1, it follows from (3.10) and (3.18) that

lim
n→∞

‖xn − Tnxn‖ = 0 = lim
n→∞

‖xn − Snxn‖. (3.19)

Since {xn} is bounded, there exists a bounded subset B of C such that {xn} ⊂ B. From
Lemma 2.6, we are able to set Tx = limm→∞Tmx for all x ∈ C, and then observe that

1
2
‖xn − Txn‖ � 1

2
‖xn − Tnxn‖ + 1

2
‖Tnxn − Txn‖. (3.20)

Since hB is an increasing, continuous, and convex function from R
+ into R

+ such that hB(0) =
0, we discover that

hB

(
1
2
‖xn − Txn‖

)

� 1
2
hB(‖xn − Tnxn‖) + 1

2
hB(‖Tnxn − Txn‖)

� 1
2
hB(‖xn − Tnxn‖) + 1

2
sup{hB(‖Tnz − Tz‖) : z ∈ B}.

(3.21)

By Lemma 2.6 and the continuity of hB, we have limn→∞ hB((1/2)‖xn − Txn‖) = 0. And then
the properties of hB yield

lim
n→∞

‖xn − Txn‖ = 0. (3.22)

By the same argument, we have

lim
n→∞

‖xn − Sxn‖ = 0. (3.23)

Now Proposition 2.5 guarantees that ωw(xn) ⊂ F(T) ∩ F(S). This fact, the inequality (3.8),
and Lemma 2.4 ensure the strong convergence of {xn} to q = PF(T)∩F(S)(x0).

If Tn = T and Sn = S for all n, then kn
T = kT and kn

S = kS for all n. So, Theorem 3.1
reduces to the following corollary.
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Corollary 3.2. Let C be a closed convex subset of a Hilbert space H. Let T, S : C → C be kT , kS-
strict pseudocontractions for some 0 � kT , kS < 1, respectively, and assume that F(T)∩F(S)/= ∅. Let
{xn}∞n=0 be the sequence generated by

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)zn,

zn = βnTxn +
(

1 − βn
)

Sxn,

Ĉn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 � ‖xn − z‖2 + (1 − αn)βn(kT − αn)‖xn − Txn‖2

+(1 − αn)
(

1 − βn
)

(kS − αn)‖xn − Sxn‖2 − (1 − αn)2βn
(

1 − βn
)‖Txn − Sxn‖2

}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 � 0},
xn+1 = PĈn∩Qn

(x0),

(3.24)

where {αn} and {βn} be as in Theorem 3.1. Then, {xn} converges strongly to a common fixed point
q = PF(T)∩F(S)(x0).

In particular, if T = S, then zn = Txn and

Ĉn =
{

z ∈ C :
∥
∥yn − p

∥
∥
2 �

∥
∥xn − p

∥
∥
2 + (1 − αn)βn(kT − αn)‖xn − Txn‖2

+(1 − αn)
(

1 − βn
)

(kT − αn)‖xn − Txn‖2 − (1 − αn)2βn
(

1 − βn
)‖Txn − Txn‖2

}

= Cn.

(3.25)

So, Corollary 3.2 reduces to the following corollary.

Corollary 3.3 (Marino and Xu [11, Theorem 4.1]). Let C be a closed convex subset of a Hilbert
space H. Let T : C → C be a k-strict pseudocontraction for some 0 � k < 1, and assume that the
fixed-point set F(T)/= ∅. Let {xn}∞n=0 be the sequence generated by

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 � ‖xn − z‖2 + (1 − αn)(k − αn)‖xn − Txn‖2

}

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 � 0},
xn+1 = PCn∩Qn(x0).

(3.26)

Assume that the control sequence {αn}∞n=0 is chosen so that 0 � αn < 1 for all n. Then, {xn} converges
strongly to a fixed-point q = PF(T)(x0).

If Tn = T for all n and {Sn} is a sequences of nonexpansive mappings, then kn
T = k and

kn
S = 0 for all n. So, Theorem 3.1 reduces to the following corollary.
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Corollary 3.4. Let C be a closed convex subset of a Hilbert space H. Let T : C → C be a k-strict
pseudocontraction for some 0 � k < 1, for each n and Sn : C → C a nonexpansive mapping, and
assume that F(T) ∩⋂∞

n=0 F(Sn)/= ∅. Let {xn}∞n=0 be the sequence generated by

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)zn,

zn = βnTxn +
(

1 − βn
)

Snxn,

Ĉn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 � ‖xn − z‖2 + (1 − αn)βn(k − αn)‖xn − Txn‖2

−αn(1 − αn)
(

1 − βn
)‖xn − Snxn‖2 − (1 − αn)2βn

(

1 − βn
)‖Txn − Snxn‖2

}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 � 0},
xn+1 = PĈn∩Qn

(x0),

(3.27)

where {αn} and {βn} be as in Theorem 3.1. Suppose that for any bounded subset B of C there exists
an increasing, continuous, and convex function hB from R

+ into R
+ such that hB(0) = 0, and

lim
k,l→∞

sup{hB(‖Skz − Slz‖) : z ∈ B} = 0. (3.28)

Let S : C → C be such that Sx = limn→∞ Snx for all x ∈ C, and suppose F(S) =
⋂∞

n=0 F(Sn). Then,
{xn} converges strongly to a common fixed point q = PF(T)∩F(S)(x0).

4. Equilibrium Problem

In this section, we have an application of the main result for finding a common element of
the set of fixed points of a strict pseudocontraction and the set of solutions of an equilibrium
problem.

Let H be a real Hilbert space, and let C be a nonempty closed convex subset ofH. Let
ϕ be a bifunction of C×C into R, where R is the set of real numbers. The equilibrium problem
for ϕ : C × C → R is to find x ∈ C such that

ϕ
(

x, y
)

� 0 ∀y ∈ C. (4.1)

The set of solution of (4.1) is denoted by EP(ϕ)(= {x ∈ C : ϕ(x, y) � 0 for all y ∈ C}). Many
problems in physics, optimization, and economics reduce to find some elements of EP(ϕ).



Abstract and Applied Analysis 13

For solving the equilibrium problem for a bifunction ϕ : C×C → R, let us assume that
ϕ satisfies the following conditions:

(A1) ϕ(x, x) = 0 for all x ∈ C;

(A2) ϕ is monotone, that is, ϕ(x, y) + ϕ(y, x) � 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

ϕ
(

tz + (1 − t)x, y
)

� ϕ
(

x, y
)

; (4.2)

(A4) for each x ∈ C, y �→ ϕ(x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [13].

Lemma 4.1 (Blum and Oettli [13]). Let C be a nonempty closed convex subset of H, and let ϕ be a
bifunction of C × C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such
that

ϕ
(

z, y
)

+
1
r

〈

y − z, z − x
〉

� 0 ∀y ∈ C. (4.3)

The following lemma was also given in [14].

Lemma 4.2 (Combettes and Hirstoaga [14]). Assume that ϕ : C × C → R satisfies (A1)–(A4).
For r > 0 and x ∈ H, define a mapping Sr : H → C as follows:

Sr(x) =
{

z ∈ C : ϕ
(

z, y
)

+
1
r

〈

y − z, z − x
〉

� 0, ∀y ∈ C

}

(4.4)

for all z ∈ H. Then, the following hold:

(1) Sr is single-valued;

(2) Sr is firmly nonexpansive, that is, for any x, y ∈ H, ‖Srx − Sry‖2 � 〈Srx − Sry, x − y〉;

(3) F(Sr) = EP(ϕ);

(4) EP(ϕ) is closed and convex.

The following corollary is an application of Corollary 3.4 in the case of finding a
common element of the set of fixed points of a strict pseudocontraction and the set of
solutions of an equilibrium problem.

Corollary 4.3. Let C be a closed convex subset of a Hilbert space H. Let T : C → C be a k-strict
pseudocontraction for some 0 � k < 1 and ϕ a bifunction from C × C into R satisfying (A1)–(A4).
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Suppose that F(T) ∩ EP(ϕ)/= ∅. Let {xn}∞n=0 be the sequence generated by

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)zn,

zn = βnTxn +
(

1 − βn
)

un,

un ∈ C such that ϕ
(

un, y
)

+
1
rn

〈

y − un, un − xn

〉

� 0, ∀y ∈ C,

Ĉn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 � ‖xn − z‖2 + (1 − αn)βn(k − αn)‖xn − Txn‖2

−αn(1 − αn)
(

1 − βn
)‖xn − un‖2 − (1 − αn)2βn

(

1 − βn
)‖Txn − un‖2

}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 � 0},
xn+1 = PĈn∩Qn

(x0),

(4.5)

where {αn} and {βn} be as in Theorem 3.1 and {rn}∞n=0 is chosen so that {rn} ⊂ (0,∞)with infnrn > 0
and

∑∞
n=0 |rn+1−rn| < ∞. Then, {xn} converges strongly to a common fixed point q = PF(T)∩EP(ϕ)(x0).

Proof. Obviously, un = Srnxn, where Srn are mappings as in Lemma 4.2. Next, we want to
show that for any bounded subset B of C there exists an increasing, continuous, and convex
function hB(= (·)2) from R

+ into R
+ such that hB(0) = 0, and

lim
k,l→∞

sup{hB(‖Srkv − Srlv‖) : v ∈ B} = 0. (4.6)

Let B be a bounded subset of C. For each v ∈ B, let vn = Srnv. Then, by Lemma 4.2, we have

ϕ
(

vl, y
)

+
1
rl

〈

y − vl, vl − v
〉

� 0 ∀y ∈ C, (4.7)

ϕ
(

vk, y
)

+
1
rk

〈

y − vk, vk − v
〉

� 0 ∀y ∈ C. (4.8)

Put y = vk in (4.7) and y = vl in (4.8), we have

ϕ(vl, vk) +
1
rl
〈vk − vl, vl − v〉 � 0, ϕ(vk, vl) +

1
rk
〈vl − vk, vk − v〉 � 0. (4.9)

So, from (A2), we have 〈vk − vl, (vl − v)/rl − (vk − v)/rk〉 � 0 and hence 〈vk − vl, vl − v −
(rl/rk)(vk − v)〉 � 0. Thus,

〈vk − vl, vl − vk〉 +
〈

vk − vl,

(

1 − rl
rk

)

(vk − v)
〉

� 0. (4.10)
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Let b := infnrn. Thus, we have

(‖Srkv − Srlv‖)2 = 〈vk − vl, vk − vl〉

�
〈

vk − vl,

(

1 − rl
rk

)

(vk − v)
〉

� ‖vk − vl‖1
b
|rk − rl|‖vk − v‖

=
1
b
‖Srkv − Srlv‖‖Srkv − v‖|rk − rl|

� 4
b

∥
∥v − p

∥
∥|rk − rl| where p ∈ EP

(

ϕ
)

� 4
b
M|rk − rl| where M := sup

{∥
∥v − p

∥
∥ : v ∈ B

}

.

(4.11)

Put k > l. Observe that

(‖Srkv − Srlv‖)2 � 4
b
M|rk − rl| � 4

b
M

k−1∑

n=l

|rn+1 − rn| � 4
b
M

∞∑

n=l

|rn+1 − rn| < ∞, (4.12)

for all v ∈ B, and then

ρkl = sup
{

(‖Srkv − Srlv‖)2 : v ∈ B
}

� 4
b
M

∞∑

n=l

|rn+1 − rn| < ∞. (4.13)

Let l → ∞, we have limk,l→∞ ρkl = 0. Then, by Lemma 2.6, we can define a mapping S by

Sx = lim
n→∞

Srnx ∀x ∈ C. (4.14)

Next, we will show that

F(S) =
∞⋂

n=0

F(Srn) = EP
(

ϕ
)

. (4.15)

Since {rn} ⊂ (0,∞), infn rn > 0 and (4.14), it is easy to see that

EP
(

ϕ
)

=
∞⋂

n=0

F(Srn) ⊂ F(S). (4.16)

Let p ∈ F(S). By the definition of Sr , we have

ϕ
(

Srnp, y
)

+
1
rn

〈

y − Srnp, Srnp − p
〉

� 0 ∀y ∈ C. (4.17)
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By (A2), we have

1
rn

〈

y − Srnp, Srnp − p
〉

� ϕ
(

y, Srnp
) ∀y ∈ C. (4.18)

From (4.14) and the lower semicontinuity of ϕ(y, ·), we have 0 � ϕ(y, p) for all y ∈ C. Let
y ∈ C and set xt = ty + (1 − t)p, for t ∈ (0, 1]. Then, we have

0 = ϕ(xt, xt) � tϕ
(

xt, y
)

+ (1 − t)ϕ
(

xt, p
)

� tϕ
(

xt, y
)

. (4.19)

So ϕ(xt, y) � 0. Letting t ↓ 0 and using (A3), we get ϕ(p, y) � 0 for all y ∈ C, and hence
p ∈ EP(ϕ) =

⋂∞
n=1 F(Srn). Hence, we have (4.15). Then, applying Corollary 3.4, xn → q =

PF(T)∩EP(ϕ)(x0).
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