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Under a reasonable assumption, we derive an analytical approach that verifies uniqueness of the
optimal solution for stochastic inventory models with defective items. Our approach implies a
robust method to find the optimal solution.

1. Introduction

Wu and Ouyang [1] considered the imperfect production of the supplier and/or damage in
delivery so that an arrival order lot may contain defective items. They extended the inventory
model presented by Paknejad et al. [2] with constant lead time and fixed defective rate in
an order lot to stochastic inventory models with crashable lead time and a random number
of defective items. Wu and Ouyang [1] assumed that the purchasers inspect all the items
they have ordered. Inspection is proposed to be nondestructive and error-free. All defective
items are detected and will be returned to the vendor at the time of delivery of the next lot.
The inventory model is continuously reviewed and an order of size, Q, is made whenever
the inventory level falls to the reorder point r. In essence, Wu and Ouyang [1] applied
the minimax approach for the stochastic inventory models with distribution-free demand
to derive a mixture inventory model with back orders and lost sales in which an arrival order
lot may contain defective items and the number of defective items is a random variable.
The decision variables include the order quantity, the reorder point, and the lead time. Wu
and Ouyang [1] developed two inventory models: for the first model the lead time demand
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follows a normal distribution, and for the second model, the distribution of the lead time
demand is unknown except for the finite first and second moments. Because the information
about the form of the probability distribution of lead time demand is often limited in practice,
we consider in this paper only the secondmodel ofWu andOuyang [1] in which theminimax
approach proposed by Moon and Gallego [3] is applied. Wu and Ouyang [1] claimed that
they proposed an algorithm procedure to obtain the optimal ordering strategy. However, we
have found and shown that the iterative method they employed in the attempt to minimize
the average cost may not be able to locate or guarantee the optimal solution. For rectification
and improvement, the aim of this study is to develop an analytical approach to find an upper
bound and a lower bound for the order quantity. Our approach will ensure the uniqueness for
the optimal solution. The same problem as Wu and Ouyang [1] is examined to demonstrate
our proposed approach.

2. Review of Previous Results

To be compatible with the results of Wu and Ouyang [1], we use the same notation and
assumptions as them. For the distribution-freemodel, we directly quote the objective function
of Wu and Ouyang [1]
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for L ∈ [Li, Li−1], where EACu(Q, k, L) is the least upper bound of EAC(Q, k, L). Wu and
Ouyang derived that EACu(Q, k, L) is a concave function on [Li, Li−1] so the minimum must
occur at boundary point Li or Li−1. To simplify the expression, we use L instead of Li or Li−1.
For EACu(Q, k, L), they computed the first partial derivative with respect to Q and k, from
(∂/∂Q)(EACu(Q, k, L)) = 0 and (∂/∂k)(EACu(Q, k, L)) = 0 to imply that
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where δ = 1 − 2E(p) + E(p2) + 2(h′/h)E(p(1 − p)), and
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Wu and Ouyang [1] stated that the optimal solution can be obtained by the iterative method.
Nevertheless, we point out that two sequences, generated by Wu and Ouyang [1], are not
guaranteed to converge. On the other hand, even when the sequence converges, the reason
why the limit is the optimal solution is not discussed or verified. In Section 3, we will develop
an approach to show that there is an optimal order quantity under a reasonable assumption,
based on which the feasible domain with an upper bound and a lower bound can be derived.

3. Our Revision

We simplify the expression in (2.2) and (2.3) as follows:
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If we observe the left hand side of (3.4), then k is a safe factor with k ≥ 0. We try to locate
interior solution for the first partial derivatives system, so we only consider k > 0. It turns out
that an upper bound for the lot size, Q, is derived
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If we flip over and take square and then minus one on both side of (3.4), it yields that
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According to (3.5), the relation, α4 − βα3Q > 0, holds such that (3.6) is well defined and based
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Table 1: The ratio of α4/(1 + β)α3
√
α1 + α2.

L = L0 L = L1 L = L2 L = L3

β = 0 18.855 20.090 21.856 22.962
β = 0.5 9.675 10.264 11.073 11.513
β = 0.8 6.211 6.552 6.994 7.180
β = 1 4.174 4.369 4.600 4.648

Based on (3.7), we derive that
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Using (3.7) and (3.8), equation (3.1) turns into

Q2 = α1 + α2

√
α3Q
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. (3.9)

From (3.9), we obtain the lower bound

Q >
√
α1. (3.10)

Equation (3.5) yields
√
α3Q/(α4 − βα3Q) < 1, and therefore we have (3.11) owing to (3.9)

Q <
√
α1 + α2. (3.11)

Next, we will compare the two upper bounds α4/(1 + β)α3 from (3.5) and
√
α1 + α2 from

(3.11). We use the same data as that in Wu and Ouyang [1]. We compute the two upper
bounds for different values of β and Li, and then list the ratio of α4/(1 + β)α3 over

√
α1 + α2

in Table 1.
From Table 1, it is clear that α4/(1+ β)α3 >

√
α1 + α2. Hence, by (3.5), (3.10) and (3.11),

and our comparison in Table 1, we conclude that the feasible domain for the lot size, Q, is

√
α1 < Q <

√
α1 + α2. (3.12)

We now solve (3.9) under the restriction of (3.12) by assuming the auxiliary function,

f(Q) =
(
Q2 − α1

)√
α4 − βα3Q − α2

√
α3Q. (3.13)
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It follows that
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From (3.5), we see that
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Together with (3.12), it yields that
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)
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By combining the results of (3.14) through (3.16), we obtain

f ′′(Q) > 0. (3.17)

Therefore, f(Q) is a convex function. The auxiliary function can be rewritten as
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Next, we will show that f(
√
α1 + α2) > 0. If Q =

√
α1 + α2, based on Table 1, the following

expression can be derived,
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Hence, if Q =
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From f(
√
α1) = −α2

√√
α1α3 < 0 to f(

√
α1 + α2) > 0, f(Q) is a convex function. We may

separate the graph of f(Q) into two parts. On the left wing, f(Q) decreases to its minimum.
On the right wing, f(Q) increases from its minimum. Accordingly, we divide the problem
into two cases.
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Table 2: Our minimum solution for Li with i = 0, 1, 2, 3.

β i Li Qi ki EACu(Qi, ki, Li)

0

0 8 193.975460 3.028636 6439.612786
1 6 185.764855 3.098322 6128.294847
2 4 178.358645 3.165197 5793.589860
3 3 179.736103 3.152452 5697.410674

0.5

0 8 179.636047 2.430715 5894.226414
1 6 173.251839 2.479599 5647.166278
2 4 168.167444 2.520443 5394.230294
3 3 171.139009 2.496358 5353.564526

0.8

0 8 168.715543 1.939091 5463.904571
1 6 163.754138 1.973400 5268.847034
2 4 160.468314 1.996945 5081.775547
3 3 164.670385 1.966953 5085.625751

1.0

0 8 159.607557 1.486658 5086.909364
1 6 155.853649 1.510064 4938.486078
2 4 154.088812 1.521335 4810.142818
3 3 159.331609 1.488353 4853.426462

For the first case,
√
α1 is on the left wing, so that from f(

√
α1) < 0, f(Q) continuously

decreases to its minimum, say f(Qmin), with f(Qmin) < 0 and then f(Q) changes, to increase.
Therefore, there is a unique point, say Q∗, that satisfies

f(Q∗) = 0 (3.21)

with
√
α1 ≤ Qmin < Q∗ <

√
α1 + α2.

For the second case,
√
α1 is on the right wing, with Qmin ≤ √

α1 so that f(Q) increases
from f(

√
α1) < 0 to f(

√
α1 + α2) > 0 such that there is a unique point, (we still) say Q∗, that

satisfies

f(Q∗) = 0, (3.22)

with Qmin ≤ √
α1 < Q∗ <

√
α1 + α2.

We are handling a minimum problem that is bounded below by zero so that the
existence of the optimal solution is trivial.

Under our assumption, α4 >
√
α1 + α2(1 + β)α3, we have shown that there is a unique

solution,Q∗ from (3.21) or (3.22), respectively, for the first derivative system such thatQ∗ and
k(Q∗), derived by (3.7), are the optimal quantity and the minimum solution for the stochastic
inventory model, respectively.

4. Numerical Examples

In order to demonstrate that our approach can derive the minimum solution, we refer to
the previous example and list our computed results in Table 2. Qi is the unique solution for
f(Q) = 0 of (3.13). ki and EACu(Qi, ki, Li) are derived by (3.7) and (2.1), respectively.
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Table 3: The comparison between Wu and Ouyang [1] and ours.

Wu and Ouyang ([1]) Our results
β Q EACu(Q, k, L) Q EACu(Q, k, L)
0 183 5697.95 179.74 5697.41
0.5 174 5354.01 171.14 5353.56
0.8 163 5082.14 160.47 5081.78
1.0 157 4810.65 154.09 4810.14

Table 4: The iterative method of Wu and Ouyang [1].

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
Qn 315.62 194.45 181.25 179.90 179.75 179.74
kn 2.2916 3.0248 3.1386 3.1510 3.1523 3.1524

From Table 2, we know the minimum for each backordered rate, and then we list the
comparison between our findings and that of Wu and Ouyang [1] in Table 3.

By comparing the third and the fifth column of Table 3, it shows that our findings are
slightly better than those of Wu and Ouyang [1]. Moreover, we try to consider the iterative
method, which is the solution algorithm of Wu and Ouyang [1]. In (2.2), Q is an explicit
function of k. By plugging, into a value of k, we derive the corresponding value of Q.

However, in (2.3), k is expressed as an implicit function of Q. When we plug into a
value ofQ, then (2.3) only derives the value of

√
1 + k2/(

√
1 + k2 − k). Hence, we will not use

(2.3). Instead, we apply the equivalent relation in (3.7). Consequently, we consider (2.2) and
(3.7) in studying the iterative algorithm of Wu and Ouyang [1].

With k0 = 0 (proposed by them), and for example, β = 0 and i = 3, it yields that

Qn+1 =
[
θ1 + θ2

(√
1 + k2

n − kn

)]1/2
,

kn+1 =
1 − θ3Qn

2
√
θ3Qn

,

(4.1)

with θ1 = (2D/hδ)(A+
∑3

j=1 cj(bj−aj)), θ2 = (Dσ/hδ)(π+π0)
√
L3, and θ3 = h(1−E(p))/D(π+

π0). The computation results for two sequences (Qn) and (kn) are listed in Table 4.
From Table 4, we see that by iterative algorithm proposed by Wu and Ouyang [1], for

β = 0 and lead time, L3, Wu and Ouyang [1] should derive that k∗ = 3.15 and Q∗ = 179.74.
However, they derived that Q∗ = 183. It may indicate that the iterative method with two
generated sequences may be too complex to execute, such that our approach provides an
improvement to locate the optimal solution.
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