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In some interesting applications in control and system theory, linear descriptor (singular) matrix
differential equations of higher order with time-invariant coefficients and (non-) consistent initial
conditions have been used. In this paper, we provide a study for the solution properties of a more
general class of the Apostol-Kolodner-type equations with consistent and nonconsistent initial
conditions.

1. Introduction

Linear Time-Invariant (LTI) (i.e., with constant matrix coefficients) descriptor matrix
differential systems of type (1.1) with several kinds of inputs

FX(r)(t) = AX(t) + BU(t), (1.1)

where F,A ∈ M(n × m; F), B ∈ M(n × μ; F), and U ∈ C∞(F,M(μ × m; F)), often appear
in control and system theory. For instance, (1.1) identifies and models effectively many
physical, engineering, mechanical, as well as financial phenomena. For instance, we can
provide in economy, the well-known, famous input-output Leontief model and its several
important extensions, advice [1, 2]. Moreover, in the beginning of this introductive section,
we should point out that singular perturbations arise often in systems whose dynamics
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have sufficiently separate slow and fast parts. Now by considering the classical proportional
feedback controller

U(t) = − ˜FX(t), (1.2)

we can obtain (1.3), where G = A − B ˜F.
Our long-term purpose is to study the solution of LTI descriptor matrix differential

systems of higher order (1.1) into the mainstream of matrix pencil theory, that is,

FX(r)(t) = GX(t), (1.3)

where, for (1.1), (1.2), and (1.3), rth is the order of the systems, F,G ∈ M(n × m; F) (where
matrix F is singular), and X ∈ C∞(F,M(m × l; F) (note that F can be either R or C). For the
sake of simplicity we set in the sequelMn =M(n × n; F) andMn,m =M(n ×m; F).

Matrix pencil theory has been extensively used for the study of LTI descriptor
differential equations of first order; see, for instance, [3–6]. Systems of type (1.3) are more
general, including the special case when F = In, where In is the identity matrix ofMn, since
the well-known class of higher order linear matrix differential of Apostol-type equations is derived
straightforwardly; see [7–10]. In the same way, system (1.1) might be considered as the more
general class of higher order linear descriptor matrix differential equations of Apostol-Kolodner type,
since Kolodner has also studied such systems in nondescriptor form; see also [8].

Recently, in [5], the regular case of higher order linear descriptor matrix differential
equations of Apostol-Kolodner type has been investigated. The regular case is simpler,
since it considers square matrix coefficients and the Weierstrass canonical form has been
applied. Actually, the recent work is a nonstraight generalization of [5]. Analytically, in this
article, we study the linear descriptor matrix differential equations of higher order whose
coefficients are rectangular constant matrices, that is, the singular case is examined. Adopting
several different methods for computing the matrix powers and exponential, new formulas
representing auxiliary results are obtained. This allows us to prove properties of a large class
of linear matrix differential equations of higher order; in particular results of Apostol and
Kolodner are recovered; see also [5, 8].

Finally, it should be mentioned that in the classical theory of linear (descriptor)
differential systems, see, for instance, [1, 2, 11–13], one of the important features is that not
every initial condition X0 admits a functional solution. Thus, we shall call X0 a consistent
initial condition for (1.3) at to if there is a solution for (1.3), which is defined on some interval
[to, to + γ], γ > 0 such that X(to) = X0.

On the other hand, it is not rare to appear in some practical significant applications
that the assumption of the initial conditions for (1.3) can be nonconsistent, that is, X(to)/=X0.

2. Mathematical Background and Notations

In this preliminary section, some well-known concepts and definitions for matrix pencils are
introduced. This discussion is highly important, in order to understand better the results of
Section 3.
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Definition 2.1. Given F,G ∈ Mnm and an indeterminate s ∈ F, the matrix pencil sF−G is called
regular when m = n and det(sF −G)/= 0 (where 0 is the zero element ofM(1,F)). In any other
case, the pencil is called singular.

In this paper, as we are going to see in the next paragraph, we consider the case that the
pencil is singular. The next definition is very important, since the notion of strict equivalence
between two pencils is presented.

Definition 2.2. The pencil sF −G is said to be strictly equivalent to the pencil s ˜F − ˜G if and only
if there exist nonsingular P ∈ Mn and Q ∈ Mm such that

P(sF −G)Q = s ˜F − ˜G. (2.1)

The characterization of singular pencils requires the definition of additional sets of
invariants known as the minimal indices.

Let us assume that r = rankF(s)(sF − G), where F(s) denotes the field of rational
functions in s having coefficients in the field F. The equations

(sF −G)x(s) = 0, ψT (s)(sF −G) = 0T (2.2)

have nonzero solutions x(s) and ψ(s) which are vectors in the rational vector spaces

Nright(s) �Nright(sF −G), Nleft(s) �Nleft(sF −G), (2.3)

respectively, where

Nright(s) �
{

x(s) ∈ F(s)m : (sF −G)x(s) = 0n
}

,

Nleft(s) =
{

ψ(s) ∈ F(s)n : ψT (s)(sF −G) = 0Tm
}

.
(2.4)

The sets of the minimal degrees {vi, 1 ≤ i ≤ m−r} and {uj, 1 ≤ j ≤ n−r} are known as column
minimal indices (c.m.i.) and row minimal indices (r.m.i.) of sF −G, respectively. Furthermore, if
r = rankF(s)(sF −G), it is evident such that

r =
m−r
∑

i=g+1

vi +
n−r
∑

j=h+1

uj + rank
F(s)

(sFw −Gw), (2.5)

where sFw −Gw is the complex Weierstrass canonical form; see [3].
Let B1, B2, ..., Bn be elements ofMn.
The direct sum of them denoted by B1 ⊕ B2 ⊕ · · · ⊕ Bn is the block diag{B1, B2, . . . , Bn}.

Thus, there exists P ∈ Mm and Q ∈ Mn such that the complex Kronecker form sFk − Gk

of the singular pencil sF −G is defined as follows:

sFk −Gk � Oh,g ⊕ sΛv − λv ⊕ sΛT
u − λTu ⊕ sIp − Jp ⊕ sHq − Iq, (2.6)

where v =
∑m−r

i=g+1 vi, u =
∑n−r

j=h+1 uj , p =
∑κ

j=1 pj , and q =
∑σ

j=1 qj (see below). In more details,
the following are given.
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(S1) Matrix Oh,g is uniquely defined by the sets {0, 0, . . . , 0}
︸ ︷︷ ︸

g

and {0, 0, . . . , 0}
︸ ︷︷ ︸

h

of zero

column and row minimal indices, respectively.
(S2) The second normal block sΛv − λv is uniquely defined by the set of nonzero column

minimal indices (a new arrangement of the indices of v must be noted in order to simplify the
notation) {vg+1 ≤ · · · ≤ vm−r} of sF −Q and has the form

sΛv − λv � sΛvg+1 − λvg+1 ⊕ · · · ⊕ sΛvi − λvi ⊕ · · · ⊕ sΛvm−r − λvm−r , (2.7)

where Λvi = [Ivi
...0] ∈ Mvi,vi+1, λvi = [Hvi

...εvi] ∈ Mvi,vi+1 for every i = g + 1, g + 2, ..., m − r, and
Ivi and Hvi denote the vi × vi identity and the nilpotent (with index of nilpotency vi) matrix,
respectively. 0 and εvi = [0 · · · 0 1]T are the zero column and the column with element 1
at the viplace, respectively.

(S3) The third normal block sΛT
u − λTu is uniquely determined by the set of nonzero row

minimal indices (a new arrangement of the indices of u must be noted in order to simplify the
notation) {uh+1 ≤ · · · ≤ un−r} of sF −G and has the form

sΛT
u − λTu � sΛT

uh+1
− λTuh+1

⊕ · · · ⊕ sΛT
uj − λ

T
uj ⊕ · · · ⊕ sΛ

T
un−r − λ

T
un−r , (2.8)

where ΛT
uj =

⎡

⎣

eTuj

···
Huj

⎤

⎦ ∈ Muj+1,uj , λ
T
uj =

⎡

⎣

0T

···
Iuj

⎤

⎦ ∈ Muj+1,uj for every j = h + 1, h + 2, . . . , m − r,

and Iuj and Huj denote the uj ×uj identity and nilpotent (with index of nilpotency uj) matrix,
respectively. 0 and euj = [1 · · · 0 0]T are the zero column and the column with element 1
at the first place, respectively.

(S4-S5) The forth and the fifth normal matrix block is the complex Weierstrass form
sFw −Gw of the singular pencil sF −G which is defined by

sFw −Qw � sIp − Jp ⊕ sHq − Iq, (2.9)

where the first normal Jordan-type element is uniquely defined by the set of finite elementary
divisors (f.e.d.)

(s − a1)p1 , . . . , (s − aκ)pκ ,
κ
∑

j=1

pj = p (2.10)

of sF −G and has the form

sIp − Jp � sIp1 − Jp1(a1) ⊕ · · · ⊕ sIpκ − Jpκ(aκ). (2.11)
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And also the q blocks of the second uniquely defined block sHq − Iq correspond to the infinite
elementary divisors (i.e.d.)

ŝq1 , . . . , ŝqσ ,
σ
∑

j=1

qj = q (2.12)

of sF −G and have the form

sHq − Iq � sHq1 − Iq1 ⊕ · · · ⊕ sHqσ − Iqσ . (2.13)

Thus Hq is a nilpotent element ofMn with index q̃ = max{qj : j = 1, 2, . . . , σ}, where

H
q̃
q = O, (2.14)

and Ipj , Jpj (aj),Hqj are the matrices

Ipj =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ Mpj , Jpj
(

aj
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

aj 1 0 · · · 0

0 aj 1 · · · 0

...
...

. . .
...

...

0 0 0 aj 1

0 0 0 0 aj

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ Mpj ,

Hqj =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .
...

...

0 0 0 0 1

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ Mqj .

(2.15)

In the last part of this introductive section, some elements for the analytic computation
of eA(t−to), t ∈ [to,∞) are provided. To perform this computation, many theoretical and
numerical methods have been developed.

Thus, the interested reader might consult papers in [1, 2, 7–10, 14–16], and the
references therein. In order to obtain more analytic formulas, the following known results
should be mentioned.

Lemma 2.3 (see [15]).

e
Jpj (aj )(t−to) = [dk1k2]pj , (2.16)
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where

dk1k2 =

⎧

⎪

⎨

⎪

⎩

eaj (t−to)
(t − to)k2−k1

(k2 − k1)!
, 1 ≤ k1 ≤ k2 ≤ pj ,

0, otherwise.
(2.17)

Another expression for the exponential matrix of Jordan block, see (2.18), is provided
by the following lemma.

Lemma 2.4 (see [15]).

e
Jpj (aj )(t−to) =

pj−1
∑

i=0

fi(t − to)
[

Jpj
(

aj
)

]i
, (2.18)

where the fk(t − to),s satisfy the following system of pj equations:

pj−1
∑

i=k

(

i

k

)

ai−kj fi(t − to) =
(t − to)k

k!
eaj t, k = 1, 2, ..., pj ,

[

Jpj
(

aj
)

]i
=

[

β
(i)
k1k2

]

pj
, for 1 ≤ k1, k2 ≤ pj ,

(2.19)

where β(i)
k1k2

=
(

i

k2−k1

)

a
i−(k2−k1)
j .

3. Solution Space for Consistent Initial Conditions

In this section, the main results for consistent initial conditions are analytically presented
for the singular case. The whole discussion extends the existing literature; see, for instance
[8]. Now, in order to obtain a solution, we deal with consistent initial value problem. More
analytically, we consider the system

FX(r)(t) = GX(t), (3.1)

with known

X(to), X′(to), . . . , X(r−1)(to), (3.2)

where F,G ∈ Mn,m (where matrix F is singular), and X ∈ C∞(F,Mm,l).
From the singularity of srF −G, there exist nonsingular matrices P ∈ Mn and Q ∈ Mm

such that (see also Section 2)

PFQ = Fk = Oh,g ⊕Λv ⊕ΛT
u ⊕ Ip ⊕Hq,

PGQ = Gk = Oh,g ⊕ λv ⊕ λTu ⊕ Jp ⊕ Iq,
(3.3)
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where Λv,λv, ΛT
u , λTu , Ip, Jp,Hq, and Iq are given by

Λv = Λvg+1 ⊕ · · · ⊕Λvi ⊕ · · · ⊕Λvm−r ,

λv � λvg+1 ⊕ · · · ⊕ λvi ⊕ · · · ⊕ λvm−r ,

ΛT
u � ΛT

uh+1
⊕ · · · ⊕ΛT

uj ⊕ · · · ⊕Λ
T
un−r ,

λTu � λTuh+1
⊕ · · · ⊕ λTuj ⊕ · · · ⊕ λ

T
un−r ,

Ip = Ip1 ⊕ · · · ⊕ Ipκ ,

Jp = Jp1(a1) ⊕ · · · ⊕ Jpκ(aκ),

Hq � Hq1 ⊕ · · · ⊕Hqσ ,

Iq = Iq1 ⊕ · · · ⊕ Iqσ .

(3.4)

By using the Kronecker canonical form, we might rewrite system (1.3), as the following
lemma denotes.

Lemma 3.1. System (1.3) may be divided into five subsystems:

Oh,gY
(r)
g (t) = Oh,gYg(t), (3.5)

ΛvY
(r)
v (t) = λvYv(t), (3.6)

ΛT
uY

(r)
u (t) = λTuYu(t), (3.7)

the so-called slow subsystem

Y
(r)
p (t) = JpYp(t), (3.8)

and the relative fast subsystem

HqY
(r)
q (t) = Yq(t). (3.9)

Proof. Consider the transformation

X(t) = QY (t), (3.10)

where Q ∈ Mm and Y ∈ C∞(F,Mm,l). Substituting the previous expression into (1.3), we
obtain

FQY (r)(t) = GQY (t). (3.11)
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Whereby, multiplying by P , we arrive at

FkY
(r)(t) = GkY (t). (3.12)

Moreover, we can write Y (t) as

Y (t) =
[

YT
g (t) YT

v (t) YT
u (t) YT

p (t) YT
q (t)

]T
∈ Mm,l, (3.13)

where Yg(t) ∈ C∞(F,Mg,l), Yv(t) ∈ C∞(F,Mv,l), Yv(t) ∈ C∞(F,Mu,l), Yp(t) ∈ C∞(F,Mp,l),
and Yq(t) ∈ C∞(F,Mq,l). Note that g is the number of zero column entries, v =

∑m−r
i=g+1 vi,

u =
∑n−r

j=h+1 uj , p =
∑κ

j=1 pj , and q =
∑σ

j=1 qj .
And taking into account the above expressions, we arrive easily at (3.5)–(3.9).

Proposition 3.2. For system (3.5), the elements of the matrix Yg(t) ∈ C∞(F,M(g × l; F)) can be
chosen arbitrarily.

Proof. Since Oh,g , it is profound that any g-column vector can be chosen.

Proposition 3.3. The analytic solution of system

ΛviY
(r)
vi (t) = λviYvi(t) (3.14)

is given by the expression

Yvi(t) =
[

Y 1(t) Y 2(t) · · · Y l(t)
]

=
[

yλ,j(t)
]

λ=1,2,...,vi

j=1,2,...,l

, (3.15)

where

yλ,j(t) =
∫

· · ·
∫

yλ+1,j(t)dt · · ·dt
︸ ︷︷ ︸

r-times

+
r

∑

ξ=1

cλ,r−ξ+1
tξ−1

(ξ − 1)!
, (3.16)

where yλ+1,j(t) is an arbitrary function, for every λ = 1, 2, . . . , vi, i = g + 1, . . . , m − r, and j =
1, 2, . . . , l. (Note that cλ,r−ξ+1 should be uniquely determined via the given initial conditions.)

Proof. System (3.14) is rewritten as

[

Ivi
... 0

]

Y
(r)
vι (t) =

[

Hvi

... εvi

]

Yvι(t), (3.17)

for every i = g + 1, g + 2, . . . , m − r. Now, we denote

Yvi(t) =

⎡

⎣

Ψvi(t)

y
1
(t)

⎤

⎦, (3.18)
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where Ψvi(t) ∈ Mvil, Ψvi(t) = [Y 1(t) Y 2(t) · · · Y l(t)] with Yj(t) =

[y1,j(t) y2,j(t) · · · yvi,j(t)]
T , and y

1
(t) ∈ M1l (vector, 1 × l).

Thus,

[

Ivi
... 0

]

⎡

⎣

Ψ(r)
vi (t)

y(r)
1
(t)

⎤

⎦ =
[

Hvi

... εvi

]

⎡

⎣

Ψvi(t)

y
1
(t)

⎤

⎦, (3.19)

or, equivalently, we obtain

Ψ(r)
vi (t) = HviΨvi(t) + εviy1

(t). (3.20)

Note that εviy1
(t) is a matrix with vi × vi-elements as follows

εviy1
(t) =

[

˜Y 1(t) ˜Y 2(t) · · · ˜Y l(t)
]

�

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ovi−1,l

yvi+1,1(t) yvi+1,2(t) · · · yvi,+1l(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3.21)

where ˜Yj(t) = [0 0 · · · yvi+1,j(t)]
T , for j = 1, 2, . . . , l.

Consequently, (3.20) is rewritten as follows:

[

Y
(r)
1 (t) Y

(r)
2 (t) · · · Y (r)

l (t)
]

=
[

HviY 1(t) HviY 2(t) · · · HviY l(t)
]

+
[

˜Y 1(t) ˜Y 2(t) · · · ˜Y l(t)
]

,

(3.22)

or, equivalently,

Y
(r)
j (t) = HviY j(t) + ˜Yj(t), (3.23)

and eventually, as a scalar system, we obtain

y
(r)
1,j (t) = y2,j(t), y

(r)
2,j (t) = y3,j(t), . . . ,

y
(r)
vi−1,j(t) = yvi,j(t), y

(r)
vi,j

(t) = yvi+1,j(t).
(3.24)

Denote that element yvi+1,j(t) is an arbitrary function; then the solution is given
iteratively, as follows.
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Firstly, we take the equation y(r)
vi,j

(t) = yvi+1,j(t) for every j = 1, 2, . . . , l,

y
(r−1)
vi,j

(t) =
∫

yvi+1,j(t)dt + cvi,1, . . . ,

yvi,j(t) =
∫

· · ·
∫

yvi+1,j(t)dt · · ·dt
︸ ︷︷ ︸

r-times

+
r

∑

ξ=1

cvi,r−ξ+1
tξ−1

(ξ − 1)!
.

(3.25)

We continue the procedure, for y(r)
vi−1,j(t) = yvi,j(t), and so forth. Thus, we finally obtain (3.15).

With the following remark, we obtain the solution of subsystem (3.6).

Remark 3.4. The solution of subsystem (3.6) is given by

Yv(t) = Yvg+1(t) ⊕ · · · ⊕ Yvi(t) ⊕ · · · ⊕ Yvm−r (t), (3.26)

where the results of Proposition 3.3 are also considered.

Remark 3.5. Considering the solution (3.14), and therefore the system (3.6), it should be
pointed out that the solution is not unique, since the last component of the solution vector is
chosen arbitrary. Moreover, it is worth to be emphasized here that the solution of the singular
system (1.3) is not unique.

Proposition 3.6. The system

ΛT
uj Y

(r)
uj (t) = λ

T
ujYuj (t) (3.27)

has only the zero solution.

Proof. Consider that system (3.27) can be rewritten as follows:

⎡

⎢

⎢

⎣

eTuj

· · ·
Huj

⎤

⎥

⎥

⎦

Y
(r)
uj (t) =

⎡

⎢

⎢

⎣

0T

· · ·
Iuj

⎤

⎥

⎥

⎦

Yuj (t) (3.28)

for every j = h + 1, h + 2, . . . , m − r.
Afterwards, we obtain straightforwardly the following system:

⎡

⎣

eTujY
(r)
uj (t)

HujY
(r)
uj (t)

⎤

⎦ =

[

0T

Yuj (t)

]

⇐⇒

⎧

⎨

⎩

eTuj Y
(r)
uj (t) = 0T ,

HujY
(r)
uj (t) = Yuj (t).

(3.29)
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Now, by successively taking rth derivatives with respect to t on both sides of

HujY
(r)
uj (t) = Yuj (t), (3.30)

and left multiplying by the matrix Huj , uj − 1 times (where uj is the index of the nilpotent
matrix Huj , i.e., H

uj
uj = O), we obtain the following equations:

H2
uj Y

(2r)
uj (t) = HujY

(r)
uj (t), . . . ,H

uj
uj Y

(ujr)
uj (t) = H

uj−1
uj Y

((uj−1)r)
uj (t). (3.31)

Thus, we conclude to the following expression:

Yuj (t) = HujY
(r)
uj (t) = H

2
uj Y

(2r)
uj (t) = · · · = Huj

uj Y
(ujr)
uj (t) = O. (3.32)

Remark 3.7. Consequently, the subsystem (3.7) has also the zero solution.

Proposition 3.8 (see [5]). (a) The analytic solution of the so-called slow subsystem (3.8) is given by

Yp(t) = LR
κ
⊕
j=1

r−1
⊕
k=0

eJjk(λjk)(t−to)R−1Z(to), (3.33)

where L = [Ip O · · · O] ∈ Mp,pr; R ∈ Mpr such that J = R−1AR.
Note that J ∈ Mpr is the Jordan Canonical form of matrix

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

O Ip O · · · O

O O Ip · · · O

...
...

...
. . .

...

O O O · · · Ip
Jp O O · · · O

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.34)

and Z(to) = [YT
p (to) Y ′Tp (to) · · · Y

(r−1)
p

T
(to)]

T

∈ Mpr,l.
The eigenvalues of the matrix A are given by

λjk = r

√

∣

∣aj
∣

∣

(

cos
2kπ + ϕj

r
+ z sin

2kπ + ϕj
r

)

, (3.35)

where aj = |aj |(cosϕj + z sinϕj) (aj finite elementary divisors) and z2 = −1 for every j = 1, 2, . . . , κ
and k = 0, 1, 2, . . . , r − 1.

(b) However, the relative fast subsystem (3.9) has only the zero solution.
It is worth to say that the results of Ben Taher and Rachidi [14] can be compared with the

results of Proposition 3.8, which has been discussed extensively in [5].
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Remark 3.9. The characteristic polynomial of A is ϕ(λ) =
∏κ

j=1(λ
r − aj)pj , with ai /=aj for i /= j

and
∑κ

j=1 pj = p. Without loss of generality, we define that

d1 = τ1, d2 = τ2, . . . , dl = τl, and dl+1 < τl+1, . . . , dκ < τκ, (3.36)

where dj, τj , j = 1, 2, . . . , κ, are the geometric and algebraic multiplicities of the given
eigenvalues aj , respectively.

(i) Consequently, when dj = τj , then

Jjk
(

λjκ
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

λjk

λjk

. . .

λjk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ Mτj (3.37)

is also a diagonal matrix with diagonal elements of the eigenvalue λjk, for j = 1, . . . , l.
(ii) When dj < τj , then

Jjk,zj =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

λjk 1

λjk 1

λjk
. . .

. . . 1

λjk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ Mzj (3.38)

for j = l + 1, l + 2, . . . , κ, and zj = 1, 2, . . . , dj .
Hence, the set of consistent initial conditions for system

FkY
(r)(t) = GkY (t) (3.39)

has the following form:

Y (k)(to) =
{

[

Y
(k)T
g (to) Y

(k)T
v (to) O

T
u Y

(k)T
p (to) O

T
q

]T
; k = 0, . . . , r − 1

}

. (3.40)

In more details, since we have considered (3.14) and we can denote

Q =
[

Qn,g Qn,v Qn,u Qn,p Qn,q

]

, (3.41)
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then we can derive the following expression:

X(to) =
[

Qn,g Qn,v Qn,u Qn,p Qn,q

]

[

YT
g (to) YT

v (to) O
T
u YT

p (to) O
T
q

]T

= Qn,gYg(to) +Qn,vYv(to) +Qn,pYp(to).
(3.42)

Then, the set of consistent initial conditions for (1.3) is given by

{

Qn,gYg(to) +Qn,vYv(to) +Qn,pYp(to)Qn,gY
′
g(to) +Qn,vY

′
v(to) +Qn,pY

′
p(to) · · ·

Qn,gY
(r−1)
g (to) +Qn,vY

(r−1)
v (to) +Qn,pY

(r−1)
p (to)

}

.

(3.43)

Now, taking into consideration (3.2) and (3.43), we conclude to

X(to) = Qn,gYg(to) +Qn,vYv(to) +Qn,pYp(to),

X′(to) = Qn,gY
′
g(to) +Qn,vY

′
v(to) +Qn,pY

′
p(to),

...

X(r−1)(to) = Qn,gY
(r−1)
g (to) +Qn,vY

(r−1)
v (to) +Qn,pY

(r−1)
p (to).

(3.44)

Theorem 3.10. The analytic solution of (3.2) is given by

X(t) = Qn,gYg(t) +Qn,vYv(t) +Qn,pLR
κ

⊕

j=1

r−1
⊕

k=0

eJjk(λjk)(t−to)R−1Z(to) (3.45)

for Yv(t) = Yvg+1(t) ⊕ · · · ⊕ Yvi(t) ⊕ · · · ⊕ Yvm−r (t), where Yvi(t) = [yλ,j] λ=1,2,...,vi,j=1,2,...,l , for i =
g + 1, . . . , m − r and

yλ,j(t) =
∫

· · ·
∫

yλ+1,j(t)dt · · ·dt
︸ ︷︷ ︸

r-times

+
r

∑

ξ=1

cλ,r−ξ+1
tξ−1

(ξ − 1)!
. (3.46)

(Note that cλ,r−ξ+1 should be uniquely determined via the given initial conditions.)
The matrix Yg(t) is arbitrarily chosen. Moreover

L =
[

Ip O · · · O
]

∈ Mp,pr, R ∈ Mpr (3.47)

such that J = R−1AR, where J ∈ Mpr is the Jordan Canonical form of matrix A, and

Z(to) =
[

YT
p (to) Y ′Tp (to) · · · Y

(r−1)
p

T
(to)

]T
∈ Mpr,l. (3.48)
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Proof. Using the results of Lemma 3.1, Propositions 3.2–3.8, Remarks 3.4 and 3.7 and (3.10)
then we obtain

X(t) = QY (t) =
[

Qn,g Qn,v Qn,u Qn,p Qn,q

]

·
[

YT
g (t) YT

v (t) O
T
u YT

p (t) O
T
q

]T

= Qn,gYg(t) +Qn,vYv(t) +Qn,pYp(t).

(3.49)

Finally, (3.45) is derived.

The next remark connects the solution with the set of initial condition for the system
(1.3).

Remark 3.11. If ˜Qn,p is the existing left inverse of Qn,p, then considering also (3.10)

Z(to) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Yp(to)

Y ′p(to)

...

Y
(r−1)
p (to)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜Qp,nXp(to)

˜Qp,nX
′
p(to)

...

˜Qp,nX
(r−1)
p (to)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜Qp,n

˜Qp,n

. . .

˜Qp,n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Xp(to)

X′p(to)

...

X
(r−1)
p (to)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= ˜QΨ(to).

(3.50)

Finally, the solution (3.45) is given by

X(t) = Qn,gYg(t) +Qn,vYv(t) +Qn,pLR
κ

⊕

j=1

r−1
⊕

k=0

eJjk(λjk)(t−to)R−1
˜QΨ(to), (3.51)

where Ψ(to) =
[

XT
p (to) X

′T
p (to) ··· X

(r−1)
p

T
(to)

]T ∈ Mpr,l and ˜Qn,p is the existing left inverse of Qn,p.

The following two expressions, that is, (3.52) and (3.54) are based on Lemmas 2.3 and
2.4. Thus, two new analytical formulas are derived which are practically very useful. Their
proofs are straightforward exercise of Lemmas 2.3, 2.4, and (3.51).

Proposition 3.12. Considering the results of Lemma 2.3, one obtains the expression

X(t) = Qn,gYg(t) +Qn,vYv(t)

+Qn,pLR

⎡

⎣

⎛

⎝

l
⊕

j=0

r−1
⊕

k=0

eλjk(t−to)Iτjk

⎞

⎠

⊕

⎛

⎝

κ
⊕

j=l+1

r−1
⊕

k=0

dj
⊕

z j=1

(dk1k2)zj

⎞

⎠

⎤

⎦R−1
˜QΨ(to),

(3.52)
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where

dk1k2 =

⎧

⎪

⎨

⎪

⎩

eλjk(t−to)
(t − to)k2−k1

(k2 − k1)!
, 1 ≤ k1 ≤ k2 ≤ zj ,

0, otherwise
(3.53)

for j = l + 1, l + 2, . . . , κ, and zj = 1, 2, . . . , dj .

Another expression for the exponential matrix of Jordan block, see (2.18), is provided
by the following lemma.

Proposition 3.13. Considering the results of Lemma 2.4, one obtains the expression

X(t) = Qn,gYg(t) +Qn,vYv(t)

+Qn,pLR

⎡

⎣

⎛

⎝

l
⊕

j=0

r−1
⊕

k=0

eλjk(t−to)Iτjk

⎞

⎠

⊕

⎛

⎝

κ
⊕

j=l+1

r−1
⊕

k=0

dj
⊕

zj=1

zj−1
∑

i=0

fi(t − to)
[

Jzj
(

λjk
)

]i

⎞

⎠

⎤

⎦

× R−1
˜QΨ(to),

(3.54)

where the fk(t − to),s satisfy the following system of zj (for zj = 1, 2, . . . , dj) equations:

zj−1
∑

i=k

(

i

k

)

ai−kj fi(t − to) =
(t − to)k

k!
eλjkt, k = 1, 2, . . . , zj (3.55)

and [Jzj (λjk)]
i = [β(i)

k1k2
]
zj
, for 1 ≤ k1, k2 ≤ zj where β(i)k1k2

=
(

i

k2−k1

)

a
i−(k2−k1)
j .

Analyzing more the results of this section, see Theorem 3.10 and Lemma 2.3 and 2.4,
we can present briefly a symbolical algorithm for the solution of system (1.3).

Symbolical Algorithm

Step 1. Determine the pencil sF −G.

Step 2. Calculate the expressions (3.3). Thus, we have to find the f.e.d, i.e.d., r.m.i, c.m.i, and
so forth, (i.e., the complex Kronecker form sFk −Gk of the singular pencil sF −G here; it should
be noticed that this step is not an easy task; some parts are still under research).

Step 3. Using the results of Step 2, determine the matrices Λv,λv, ΛT
u , λTu , Ip, Jp,Hq and Iq.
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Step 4. Determine Qn,g,Qn,v, Qn,p, L, R (using the Jordan canonical form of matrix A), ˜Q and
Ψ(to) (see Remark 3.9).

Step 5. Considering the transformation (3.10), that is, X(t) = QY (t), we obtain (3.54). Then
the following.

Substep 5.1. Choose an arbitrary matrix Yg(t).

Substep 5.2. Determine the matrix Yv(t), that is,

Yv(t) = Yvg+1(t) ⊕ . . . ⊕ Yvi(t) ⊕ . . . ⊕ Yvm−r (t), (3.56)

where Yvi(t) = [yλ,j]λ=1,2,...,vi,j=1,2,...,l , for i = g + 1, . . . , m − r and

yλ,j(t) =
∫

· · ·
∫

yλ+1,j(t)dt · · ·dt
︸ ︷︷ ︸

r-times

+
r

∑

ξ=1

cλ,r−ξ+1
tξ−1

(ξ − 1)!
. (3.57)

Step fta

Following the results of Lemma 4, determine

κ
⊕

j=1

r−1
⊕

k=0

eJjk(λjk)(t−to) =

⎛

⎝

l
⊕

j=0

r−1
⊕

k=0

eλjk(t−to)Iτjk

⎞

⎠

⊕

⎛

⎝

κ
⊕

j=l+1

r−1
⊕

k=0

dj
⊕

zj=1

(dk1k2)zj

⎞

⎠, (3.58)

where

dk1k2 =

⎧

⎪

⎨

⎪

⎩

eλjk(t−to)
(t − to)k2−k1

(k2 − k1)!
, 1 ≤ k1 ≤ k2 ≤ zj ,

0, otherwise
(3.59)

for j = l + 1, l + 2, . . . , κ, and zj = 1, 2, . . . , dj .

Step ftb

Following the results of Lemma 5, determine

κ
⊕

j=1

r−1
⊕

k=0

eJjk(λjk)(t−to) =

⎛

⎝

l
⊕

j=0

r−1
⊕

k=0

eλjk(t−to)Iτjk

⎞

⎠ ⊕

⎛

⎝

κ
⊕

j=l+1

r−1
⊕

k=0

dj
⊕

zj=1

zj−1
∑

i=0

fi(t − to)
[

Jzj
(

λjk
)

]i

⎞

⎠,

(3.60)
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where fk(t − to),s satisfy the following system of zj (for zj = 1, 2, . . . , dj) equations:

zj−1
∑

i=k

(

i

k

)

ai−kj fi(t − to) =
(t − to)k

k!
eλjkt, k = 1, 2, . . . , zj , (3.61)

and [Jzj (λjk)]
i = [β(i)

k1k2
]
zj

, for 1 ≤ k1, k2 ≤ zj , and β
(i)
k1k2

=
(

i

k2−k1

)

a
i−(k2−k1)
j .

Example 3.14 (with consistent initial condition). Consider the 2nd order system

FẌ(t) = GX(t), (3.62)

where F,G ∈ M(11 × 12; R), and X ∈ C∞(R,M(12 × 5; R)), with

F =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 −1 0 −1 0 −1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 −1 0 0 1 1 0 0 0 0 0 0

0 0 −1 1 −1 0 1 1 0 0 0 0

0 −1 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 −1 −1 0 0 1 0 0 0

0 −1 0 0 0 1 0 0 0 1 0 0

0 −1 0 0 1 1 −1 0 0 0 0 1

0 1 0 0 0 −1 0 0 0 −1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ M11,12,

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 −1 −2 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 −1 0 0 0 1 0 1 0 0 0 0

0 0 0 0 −1 0 0 0 1 1 0 0

0 −1 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 1 −1

0 1 0 0 0 −1 0 0 0 −1 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ M11,12,

(3.63)

with known consistent initial conditions X(to), X′(to).



18 Abstract and Applied Analysis

From the singularity of sF −G, there exist nonsingular matrices

P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ M11, Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ M12

(3.64)

Then, using (3.3), we obtain

PFQ = Fk = O1,2 ⊕Λ3 ⊕ΛT
2 ⊕ I2 ⊕H2,

PGQ = Gk = O1,2 ⊕ λ3 ⊕ λT2 ⊕ J2 ⊕ I2,
(3.65)

where Λ2,λ2, ΛT
2 , λT2 , I2, J2, and H2 are given by

Λ3 =
[

I3
...0
]

=

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤

⎥

⎥

⎥

⎦

∈ M3,4, λ3 =
[

H3
...ε3

]

=

⎡

⎢

⎢

⎢

⎣

0 0 1 0

0 0 0 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

∈ M2,3,

ΛT
2 =

⎡

⎢

⎢

⎢

⎣

eT2

· · ·

H2

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 0

0 1

0 0

⎤

⎥

⎥

⎥

⎦

∈ M3,2, λT2 =

⎡

⎢

⎢

⎢

⎣

0T

· · ·

I2

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0 0

1 0

0 1

⎤

⎥

⎥

⎥

⎦

∈ M3,2,

I2 =

⎡

⎣

1 0

0 1

⎤

⎦, J2(1) =

⎡

⎣

1 1

0 1

⎤

⎦, H2 =

⎡

⎣

0 1

0 0

⎤

⎦.

(3.66)
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Considering the transformation (3.10), that is, X(t) = QY (t), we obtain the results of
Lemma 2.3 (see also J, below):

X(t) = Q12,g=2Yg=2(t) +Q12,v=2Yv=2(t) +Q12,p=2LR

⎡

⎣

2
⊕

j=1

2
⊕

zj=1

(dk1k2)zj

⎤

⎦R−1
˜QΨ(to), (3.67)

where

Q12,g=2 =

[

1 1 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

]

,

Q12,v=2 =

[

0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

]

,

Q12,p=2 =

[

0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0

]

.

(3.68)

(i) Yg=2(t) ∈ M2,5 is an arbitrarily chosen matrix.
(ii) Yv=2(t) ∈ M2,5 with Y2(t) = [yλ,j]λ=1,2,j=1,2,...,5 , and

yλ,j(t) =
∫∫

yλ+1,j(t)dt dt +
2

∑

ξ=1

cλ,3−ξ
tξ−1

(ξ − 1)!
. (3.69)

(iii)

L =
[

I2 O2
]

=

[

1 0 0 0

0 1 0 0

]

∈ M2,4. (3.70)

(iv)

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
4

1
4

1
4
−1

4

0 −1
2

0
1
2

−1
4

0
1
4

0

0
1
2

0
1
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, R−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2 1 −2 0

0 −1 0 1

2 1 2 0

0 1 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

J = R−1AR =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 0 0

0 −1 0 0

0 0 1 1

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(3.71)



20 Abstract and Applied Analysis

(We have only two eigenvalues, λ1 = −1 and λ2 = 1.)
(v)

˜QΨ(to) =

⎡

⎣

˜Qp=2,12

˜Qp=2,12

⎤

⎦

[

Xp(to)

X′p(to)

]

, (3.72)

where X(to), X′(to) are known, and

˜Qp=2,12 =

[

0 1 0 0 − 1 − 1 0 0 1 0 0 0

0 − 1 0 0 0 1 0 0 0 1 0 0

]

. (3.73)

(vi) With

2
⊕
j=1

2
⊕
zj=1

(dk1k2)zj =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

e−(t−to) e−(t−to) (t − to) 0 0

0 e−(t−to) 0 0

0 0 e(t−to) e(t−to) (t − to)
0 0 0 e(t−to)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3.74)

Combining the above arithmetic results, the analytic solution of system (3.62) is given
by considering (3.58).

4. Solution Space Form of Nonconsistent Initial Conditions

In this short section, we would like to describe briefly the impulse behaviour of the solution
of the original system (1.3), at time to, see also [11–13]. In that case, we reformulate
Proposition 3.6, so that the impulse solution is finally obtained. Note that in this part of
the paper the condition that X ∈ C∞(F,M(m × l; F)) does not hold anymore, since we are
interesting for solutions with impulsive behaviour (again F can be either R or C).

Moreover, we assume that the space of nonconsistent initial conditions is denoted by
C∗0, which is called also redundancy space. Then, considering also Lemma 3.1, and especially
(3.7) and (3.9), we have the nonconsistent initial condition that is

Y
(k)
uj (to)/=Yuj ,o, for j = h + 1, h + 2, . . . , m − r,

Y
(k)
qz (to)/=Yqz,o, for z = 1, 2, . . . , σ,

(4.1)

for k = 0, 1, . . . , r − 1.
In order to be able to find a solution, we use the classical method of Laplace

transformation. This method has been applied several times in descriptor system theory; see
for instance, [4, 5, 11].
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Proposition 4.1. The analytic solution of the system (3.27) is given by

Yuj (t) = −
r−1
∑

k=0

uj−2
∑

ζ=0

δ(rζ+r−1−k)(t)Hζ+1
uj Y

(k)
uj ,o, (4.2)

where δ and δ(k) are the delta function of Dirac and its derivatives, respectively.

Proof. Let us start by observing that—as it is well known—there exists a uj ∈ N such that
H

uj
uj = O, that is, the index of nilpotency equals uj of Huj .

Moreover, system (3.27) can be rewritten as follows; see also proof of Proposition 3.6,

⎡

⎣

eTujY
(r)
uj (t)

HujY
(r)
uj (t)

⎤

⎦ =

[

0T

Yuj (t)

]

⇐⇒

⎧

⎨

⎩

eTuj Y
(r)
uj (t) = 0t,

HujY
(r)
uj (t) = Yuj (t).

(4.3)

Where by taking the Laplace transformation of HujY
(r)
uj (t) = Yuj (t), the following expression

derives:

HujI
{

Y
(r)
uj (t)

}

= I
{

Yuj (t)
}

, (4.4)

and by defining I{Yuj (t)} = Xuj (s), we obtain

(

srHuj − Iuj
)

Xuj (s) = Huj

r−1
∑

k=0

sr−1−kY
(k)
uj ,o. (4.5)

Since uj is the index nilpotency of Huj , it is known that

(

srHuj − Iuj
)−1

= −
uj−1
∑

ζ=0

(

srHuj

)ζ
, (4.6)

where H0
uj = Iuj ; see, for instance [4, 10]. Thus, substituting the above expression into (4.5),

the following equation is being taken:

Xuj (s) = −
r−1
∑

k=0

uj−2
∑

ζ=0

srζ+r−1−kH
ζ+1
uj Y

(k)
uj ,o. (4.7)
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Since I{δ(k)(t)} = sk, (4.7) is transformed into (4.8):

Xuj (s) = −
r−1
∑

k=0

uj−2
∑

ζ=0

I
{

δ(rζ+r−1−k)
}

(t)Hζ+1
uj Y

(k)
uj ,o. (4.8)

Now, by applying the inverse Laplace transformation into (4.8), the equation (4.2) is derived.

Remark 4.2. The analytic solution of the subsystem (3.7) is given by

Yu(t) = Yuh+1(t) ⊕ · · · ⊕ Yuj (t) ⊕ · · · ⊕ Yun−r (t), (4.9)

where the results of Proposition 4.1 are also considered.

Similarly to Proposition 4.1, we can prove the following proposition.

Proposition 4.3. The analytic solution of the system (3.9) is given by

Yq(s) = −
r−1
∑

k=0

q∗−2
∑

z=0

δ(rz+r−1−k)(t)Hz+1
q Y

(k)
q,o . (4.10)

Theorem 4.4. The analytic solution of (1.3) is given by

X(t) = Qn,gYg(t) +Qn,vYv(t) +Qn,uYu(t) +Qn,pLR
κ
⊕
j=0

r−1
⊕
k=0

eJjk(λjk)(t−to)R−1Z(to)

−Qn,q

r−1
∑

k=0

q∗−2
∑

z=0

δ(rz+r−1−k)(t)Hz+1
q Y

(k)
q,o .

(4.11)

The matrix Yg(t) is arbitrarily chosen. For Yv(t) = Yvg+1(t) ⊕ · · · ⊕ Yvi(t) ⊕ · · · ⊕ Yvm−r (t) where
Yvi(t) = [yλ,j]λ=1,2,...,vi,j=1,2,...,l , for i = g + 1, . . . , m − r, and

yλ,j(t) =
∫

· · ·
∫

yλ+1,j(t)dt · · ·dt
︸ ︷︷ ︸

r-times

+
r

∑

ξ=1

cλ,r−ξ+1
tξ−1

(ξ − 1)!
. (4.12)

For

Yu(t) = Yuh+1(t) ⊕ · · · ⊕ Yuj (t) ⊕ · · · ⊕ Yun−r (t), (4.13)

where Yuj (t) = −
∑r−1

k=0
∑uj−2

ζ=0 δ(rζ+r−1−k)(t)Hζ+1
uj Y

(k)
uj ,o.

Moreover L = [Ip O · · · O] ∈ Mp,pr; R ∈ Mpr such that J = R−1AR, where J ∈ Mpr is
the Jordan Canonical form of matrix A, and

Z(to) =
[

Yt
q(to) Y ′tq(to) · · · Y

(r−1)t
p (to)

]t
∈ Mpr,l. (4.14)
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Proof. Combining the results of Theorem 3.10 and the above discussion, the solution is
provided by (4.11).

Remark 4.5. For t > to, it is obvious that (3.45) is satisfied. Thus, we should stress that the
system (1.3) has the above impulse behaviour at time instant where a nonconsistent initial
value is assumed, while it returns to smooth behaviour at time instant to.

5. Conclusions

In this paper, we study the class of LTI descriptor (singular) matrix descriptor differential
equations of higher order whose coefficients are rectangular constant matrices. By taking into
consideration that the relevant pencil is singular, we get affected by the Kronecker canonical
form in order to decompose the differential system into five subsystems. Afterwards, we
provide analytical formulas for this general class of Apostol-Kolodner type of equations when
we have consistent and nonconsistent initial conditions.

As a future research, we would like to compare more our results with those of the
preceding papers of Kolodner [9], Ben Taher and Rachidi [8, 14], and Geerts [12, 13].
Analytically, following the work in [9], we want to investigate whether it is possible to apply
our results to find the dynamical solution of LTI matrix descriptor (singular) differential
systems. Moreover, it also our wish to apply some combinatorial method for computing the
matrix powers and exponential, as it is appeared in [8]. Finally, it is worth to extend the results
of Geerts [13] to the general class of LTI matrix descriptor (regular and singular) differential
systems.
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