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The criteria for extreme point and rotundity of Musielak-Orlicz-Bochner function spaces equipped
with Orlicz norm are given. Although criteria for extreme point of Musielak-Orlicz function spaces
equipped with the Orlicz norm were known, we can easily deduce them from our main results.

1. Introduction

Let (X, ‖ · ‖) be a real Banach space. S(X) and B(X) denote the unit sphere and unit ball,
respectively. By X∗ denote the dual space of X. Let N,R, and R+ denote the set natural
number, reals, and nonnegative reals, respectively.

A point x ∈ A is said to be extreme point of A if 2x = y + z and y, z ∈ A imply y = z.
The set of all extreme points of A is denoted by ExtA. If ExtB(X) = S(X), then X is said to be
rotund. A point x ∈ S(X) is said to be strongly extreme point if for any {xn}∞n=1, {yn}∞n=1 ∈ X
with ‖xn‖ → 1, ‖yn‖ → 1, and x = (1/2)(xn + yn), there holds ‖xn − yn‖ → 0 (n → ∞). If
the set of all strongly extreme points of B(X) is equal to S(X), then X is said to be midpoint
local uniform rotund.

The notion of extreme point plays an important role in some branches of mathematics.
For example, the Krein-Milman theorem, Choquet integral representation theorem, Rainwa-
ter theorem on convergence in weak topology, Bessaga-Pelczynski theorem, and Elton test
unconditional convergence are strongly connected with this notion. In [1], using the principle
of locally reflexivity, a remarkable theorem describing connections between extreme points of
S(X) and strongly extreme points of S(X) is proved. Namely, a Banach space X is midpoint
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local uniformly rotund if and only if every point of S(X) is an extreme point in X∗∗. Another
proof of this theorem based on Goldstein’s theorem is given in [2]. Analyzing the proof of
this fact one can easily see its local version, namely, if x ∈ S(X) is a strongly extreme point in
X, then κ(x) is an extreme point in X∗∗, where κ is the mapping of canonical embedding of X
into X∗∗.

The criteria for extreme point and rotundity in the classical Musielak-Orlicz function
spaces have been given in [3] already. However, because of the complication of Musielak-
Orlicz-Bochner function spaces equipped with Orlicz norm, at present, the criteria for
extreme point and rotundity have not been discussed yet. The aim of this paper is to
give criteria for extreme point and rotundity of Musielak-Orlicz-Bochner function spaces
equipped with Orlicz norm. By the result of this paper, it is easy to see that the result of
[3] is true.

Let (T,
∑
, μ) be nonatomic measurable space. Suppose that a functionM : T×[0,∞) →

[0,∞] satisfies the following conditions:

(1) for μ-a.e, t ∈ T ,M(t, 0) = 0, limu→∞M(t, u) = ∞ and M(t, u′) < ∞ for some u′ > 0;

(2) for μ-a.e, t ∈ T ,M(t, u) is convex on [0,∞) with respect to u;

(3) for each u ∈ [0,∞),M(t, u) is a μ-measurable function of t on T .

Let p(t, u) denote the right derivative of M(t, ·) at u ∈ R+ (where if M(t, u) = ∞, let p(t, u) =
∞) and let q(t, ·) be the generalized inverse function of p(t, ·) defined on R+ by

q(t, v) = sup
u≥0

{
u ≥ 0 : p(t, u) ≤ v

}
. (1.1)

Then N(t, v) =
∫v
0 q(t, s)ds for any v ∈ R and μ-a.e. t ∈ T . It is well known that there holds

the Young inequality uv ≤ M(t, u) + N(t, v) for μ-a.e. t ∈ T . And uv = M(t, u) + N(t, u) ⇔
u = q(t, v) or v = q(t, u). Let

e(t) = sup{u > 0 : M(t, u) = 0}, E(t) = sup{u > 0 : M(t, u) < ∞}. (1.2)

For fixed t ∈ T and v ≥ 0, if there exists ε ∈ (0, 1) such that

M(t, v) =
1
2
M(t, v + ε) +

1
2
M(t, v − ε) < ∞, (1.3)

then we call v a nonstrictly convex points of M with respects to t. The set of all nonstrictly
convex point of M with respect to t is denoted by Kt.

For fixed t ∈ T , if Kt = Φ, then we call that M(t, u) is strictly convex with respect u
for t.

Moreover, for a given Banach space (X, ‖ · ‖), we denote by XT the set of all strongly
μ-measurable functions from T to X, and for each u ∈ XT , define the modular of u by

ρM(u) =
∫

T

M(t, ‖u(t)‖)dt. (1.4)
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Put

L0
M(X) =

{
u ∈ XT : ρM(λu) < ∞ for some λ > 0

}
. (1.5)

Then the Musielak-Orlicz-Bochner function space

‖u‖0 = inf
k>0

1
k

[
1 + ρM(ku)

]
(1.6)

is Banach space. If X = R, L0
M(R) is said to be Musielak-Orlicz function space. Set

K(u) =
{

k > 0 :
1
k

(
1 + ρM(ku)

)
= ‖u‖0

}

. (1.7)

In particular, the set K(u) can be nonempty. To show that, we give a proposition.

Proposition 1.1. If limu→∞(M(t, u)/u) = ∞ μ-a.e. t ∈ T , then K(u)/=φ for any u ∈ L0
M(X).

Proof. For any u ∈ L0
M(X), there exists a > 0 such that μT0 > 0, where T0 = {t ∈ T : ‖u(t)‖ ≥ a}.

It is easy to see that T0 = ∪∞
n=1Gn, where

Gn =

{

t ∈ T0 :
M(t, v)

v
≥ 3‖u‖0

a · μT0 , v ≥ n

}

. (1.8)

Noticing that G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂ · · · , then limn→∞μGn = μT0. Hence there exists n1 such
that μGn1 > (1/2)μT0. This means that if k > n1/a, we have

1
k

[

1 +
∫

T

M(t, k‖u(t)‖)dt
]

≥
∫

Gn1

M(t, k‖u(t)‖)
k

dt ≥
∫

Gn1

M(t, ka)
k

dt

= a

∫

Gn1

M(t, ka)
ka

dt ≥ a

∫

Gn1

M(t, n1)
n1

dt ≥ a
3‖u‖0
a · μT0 · μGn1 >

3
2
‖u‖0.

(1.9)

This implies that if (1/kn)(1+ρM(knu)) → ‖u‖0(n → ∞), then sequence {kn}∞n=1 is bounded.
Without loss of generality, we may assume that kn → k0. Without loss of generality, we may
assume that k1 ≤ k2 ≤ · · · kn ≤ · · · ≤ k0 or k1 ≥ k2 ≥ · · · kn ≥ · · · ≥ k0. If k1 ≤ k2 ≤ · · · kn ≤ · · · ≤
k0, by Levi theorem, we have

lim
n→∞

1
kn

[
1 + ρM(knu)

]
= lim

n→∞
1
kn

+ lim
n→∞

∫

T

M(t, ‖knu(t)‖)
kn

dt

=
1
k0

+
∫

T

M(t, ‖k0u(t)‖)
k0

dt

=
1
k0

[
1 + ρM(k0u)

]
.

(1.10)
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If k1 ≥ k2 ≥ · · · kn ≥ · · · ≥ k0, by dominated convergence theorem, we have

lim
n→∞

1
kn

[
1 + ρM(knu)

]
= lim

n→∞
1
kn

+ lim
n→∞

∫

T

M(t, ‖knu(t)‖)
kn

dt

=
1
k0

+
∫

T

M(t, ‖k0u(t)‖)
k0

dt

=
1
k0

[
1 + ρM(k0u)

]
.

(1.11)

Therefore (1/kn)[1 + ρM(knu)] → (1/k0)[1 + ρM(k0u)] (n → ∞), namely, (1/k0)[1 +
ρM(k0u)] = ‖u‖0. This implies k0 ∈ K(u).

2. Main Results

In order to obtain the main theorems of this paper, we first give some lemmas.

Lemma 2.1. If K(u) = φ, then ‖u‖0 = ∫T A(t) · ‖u(t)‖dt , where A(t) = limu→∞(M(t, u)/u).

Proof. By proof of Proposition 1.1, we know that if K(u) = φ, then there exists {kn}∞n=1 such
that (1/kn)(1 + ρM(knu)) → ‖u‖0 and kn → ∞ as n → ∞. Without loss of generality, we
may assume that k1 ≤ k2 ≤ · · · kn ≤ · · · . By Levi theorem, we have

‖u‖0 = lim
n→∞

1
kn

(

1 +
∫

T

M(t, kn‖u(t)‖)dt
)

= lim
n→∞

1
kn

(

1 +
∫

{t∈T :‖u(t)‖/= 0}
M(t, kn‖u(t)‖)dt

)

= lim
n→∞

1
kn

+ lim
n→∞

∫

{t∈T :‖u(t)‖/= 0}

M(t, kn‖u(t)‖)
kn‖u(t)‖ · ‖u(t)‖dt

=
∫

{t∈T :‖u(t)‖/= 0}
lim
n→∞

M(t, kn‖u(t)‖)
kn‖u(t)‖ · ‖u(t)‖dt

=
∫

{t∈T :‖u(t)‖/= 0}
A(t) · ‖u(t)‖dt

=
∫

T

A(t) · ‖u(t)‖dt.

(2.1)

Hence the conclusion of the lemma is true.
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Lemma 2.2. If the set K(u) consists of one element from (0,+∞), then ‖u‖0 < ∫T A(t) · ‖u(t)‖dt .

Proof. Pick k1 > k2 > 0; then we have

ρM
(
k1uχEn

) ≥
∫

T

k1
∥
∥u(t)χEn(t)

∥
∥ · p(t,∥∥k2u(t)χEn(t)

∥
∥
)
dt − ρN

(
p
(
k2uχEn

))
,

ρM
(
k2uχEn

)
=
∫

T

k2
∥
∥u(t)χEn(t)

∥
∥ · p(t,∥∥k2u(t)χEn(t)

∥
∥
)
dt − ρN

(
p
(
k2uχEn

))
,

(2.2)

where

En =
{
t ∈ T : k2‖u(t)‖ ≤ n, p(t, ‖k2u(t)‖) ≤ n

}
. (2.3)

It follows that

1
k1

[
1 + ρM

(
k1uχEn

)] − 1
k2

[
1 + ρM

(
k2uχEn

)]

=
k1 − k2
k1k2

(

−1 + k2
k1 − k2

[
ρM
(
k1uχEn

) − ρM
(
k2uχEn

)] − ρM
(
k2uχEn

)
)

≥ k1 − k2
k1k2

(

−1 + k2
k1 − k2

∫

T

(k1 − k2)
∥
∥u(t)χEn(t)

∥
∥ · p(t,∥∥k2u(t)χEn(t)

∥
∥
)
dt

−ρM
(
k2uχEn

)
)

=
k1 − k2
k1k2

(
ρN
(
p
(
k2uχEn

)) − 1
)
.

(2.4)

Let n → ∞; then we obtain

1
k1

[
1 + ρM

(
k1uχE

)] ≥ k1 − k2
k1k2

(
ρN
(
p
(
k2uχE

)) − 1
)
+

1
k2

[
1 + ρM

(
k2uχE

)]
, (2.5)

where

E =
{
t ∈ T : p(t, ‖k2u(t)‖) < ∞}. (2.6)
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If p(t, ‖k2u(t)‖) = ∞, thenM(t, k1‖u(t)‖) ≥ M(t, k2‖u(t)‖) = ∞. Hence we have

1
k1

[
1 + ρM(k1u)

] ≥ k1 − k2
k1k2

(
ρN
(
p(k2u)

) − 1
)
+

1
k2

[
1 + ρM(k2u)

]
. (2.7)

Moreover, there exists k0 ∈ R+ such that ρN(p(ku)) ≥ 1, whenever k ≥ k0. This means that
function F(k) = (1/k)[1 + ρM(ku)] is nondecreasing, when n is large enough. Pick sequence
{kn}∞n=1 such that 0 < k1 < k2 · · · < kn < · · · . By Levi theorem, we have

∫

T

A(t) · ‖u(t)‖dt =
∫

T

lim
n→∞

M(t, kn‖u(t)‖)
kn‖u(t)‖ · ‖u(t)‖dt

= lim
n→∞

∫

T

M(t, kn‖u(t)‖)
kn‖u(t)‖ · ‖u(t)‖dt

= lim
n→∞

1
kn

∫

T

M(t, kn‖u(t)‖)dt

= lim
n→∞

1
kn

[

1 +
∫

T

M(t, kn‖u(t)‖)dt
]

>
1
l

[

1 +
∫

T

M(t, l‖u(t)‖)dt
]

= ‖u‖0,

(2.8)

where {l} = K(u). Hence the conclusion of the lemma is true.

Lemma 2.3 (see [3]). Let L0
M(R) be rotund, then M(t, u) is strictly convex with respect to u for

almost all t ∈ T .

Theorem 2.4. Let L0
M(X) be Musielak-Orlicz-Bochner function spaces, then u ∈ S(L0

M(X)) is an
extreme point of B(L0

M(X)) if and only if

(a) the set K(u) consists of one element from (0,+∞);

(b) v,w ∈ XT with u = λv + (1 − λ)w and ‖u(t)‖ = ‖v(t)‖ = ‖w(t)‖μ-a.e that on T implies
v = w, where λ ∈ (0, 1);

(c) μ{t ∈ T : k‖u(t)‖ ∈ Kt} = 0, where k ∈ K(u).

Proof. Necessity. (a1) Suppose that u is an extreme point of the unit ball B(L0
M) andK(u) = φ,

then ‖u‖0 = ∫T A(t) · ‖u(t)‖dt by Lemma 2.1. Decompose T into T1 and T2 such that
∫
T1

A(t) ·
‖u(t)‖dt =

∫
T2

A(t) · ‖u(t)‖dt . Pick ε ∈ (0, 1). Put

u1(t) = (u(t) + εu(t))χT1 + (u(t) − εu(t))χT2 ,

u2(t) = (u(t) − εu(t))χT1 + (u(t) + εu(t))χT2 .
(2.9)
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Obviously, u = (1/2)(u1 + u2) and u1 /=u2. Moreover, we have

‖u1‖0 ≤
∫

T

A(t) · ‖u1(t)‖dt

=
∫

T1

A(t) · ‖u(t) + εu(t)‖dt +
∫

T2

A(t) · ‖u(t) − εu(t)‖dt

=
∫

T1

A(t) · ‖u(t)‖dt +
∫

T1

εA(t) · ‖u(t)‖dt +
∫

T2

A(t) · ‖u(t)‖ dt

−
∫

T2

εA(t) · ‖u(t)‖dt

=
∫

T1

A(t) · ‖u(t)‖dt +
∫

T2

A(t) · ‖u(t)‖dt

=
∫

T

A(t) · ‖u(t)‖dt

= 1.

(2.10)

Similarly, we have ‖u2‖0 ≤ 1. Hence u1, u1 ∈ B(L0
M(X)). Therefore u ∈ S(L0

M(X)) is not an
extreme point of B(L0

M(X)), a contradiction. Hence K(u)/=φ. Suppose that ‖u‖0 =
∫
T A(t) ·

‖u(t)‖dt . Similarly, we get a contradiction.
The necessity of (b) is obvious.
(c) Set

H1 = {t ∈ T : u(t) = 0, e(t) > 0},

H2 = {t ∈ T : 2M(t, k‖u(t)‖) = M(t, k‖u(t)‖ + ε) +M(t, k‖u(t)‖ − ε), ‖u(t)‖/= 0},
(2.11)

where {k} ∈ K(u). Suppose that (c) does not hold. Then μH1 > 0 or μH2 > 0.
If μH1 > 0, then for any x ∈ S(X), by setting

(v(t), w(t)) =

⎧
⎪⎨

⎪⎩

(
1
2k

e(t)x,− 1
2k

e(t)x
)

, t ∈ H1,

(u(t), u(t)), t ∈ T \H1

(2.12)

we have u/=w and u = (1/2)(v +w). Moreover, we have

‖v‖0 ≤ 1
k

(
1 + ρM(ku)

)

=
1
k

(

1 +
∫

H1

M

(

t, k

∥
∥
∥
∥

1
2k

e(t)
∥
∥
∥
∥

)

dt +
∫

T\H1

M(t, k‖u(t)‖)dt
)

=
1
k

(

1 +
∫

T\H1

M(t, k‖u(t)‖)dt
)

≤ ‖u‖0.

(2.13)
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Similarly, we have ‖w‖0 ≤ 1. Hence v,w ∈ B(L0
M(X)). Therefore u ∈ S(L0

M(X)) is not
an extreme point of B(L0

M(X)), a contradiction.
If μH2 > 0, it is easy to see that H2 ⊂ ∪∞

n=1{t ∈ T : ‖u(t)‖/= 0,M(t, k‖u(t)‖) =
(1/2)M(t, (1 + 1/n)k‖u(t)‖) + (1/2)M(t, (1 − 1/n)k‖u(t)‖)}, where {k} ∈ K(u). Then there
exists n0 ∈ N such that

H =
{

t ∈ T : u(t)/= 0,

M(t, k‖u(t)‖) = 1
2
M

(

t,

(

1 +
1
n0

)

k‖u(t)‖
)

+
1
2
M

(

t,

(

1 − 1
n0

)

k‖u(t)‖
)

< ∞
}

(2.14)

is not a noll set. Decompose H into E and F such that
∫
E p(t, (1/n0)k‖u(t)‖)dt =∫

F p(t, (1/n0)k‖u(t)‖)dt. Define

(v(t), w(t)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((

1 +
1
n0

)

u(t),
(

1 − 1
n0

)

u(t)
)

, t ∈ E,

((

1 − 1
n0

)

u(t),
(

1 +
1
n0

)

u(t)
)

, t ∈ F,

(u(t), u(t)), t ∈ T \ (E ∪ F).

(2.15)

Then u/=w and u = (1/2)(v +w). Furthermore, we have

‖v‖0 ≤ 1
k

(
1 + ρM(kv)

)

=
1
k

(

1 +
∫

T\(E∪F)
M(t, k‖u(t)‖)dt +

∫

E

M

(

t,

(

1 +
1
n0

)

k‖u(t)‖
)

dt

+
∫

F

M

(

t,

(

1 − 1
n0

)

k‖u(t)‖
)

dt

)

=
1
k

(

1 +
∫

T\(E∪F)
M(t, k‖u(t)‖)dt +

∫

E

M(t, k‖u(t)‖)dt

+
∫

E

p

(

t,
1
n0

k‖u(t)‖
)

dt +
∫

F

M(t, k‖u(t)‖)dt −
∫

F

p

(

t,
1
n0

k‖u(t)‖
)

dt

)

=
1
k

(

1 +
∫

T\(E∪F)
M(t, k‖u(t)‖)dt +

∫

E

M(t, k‖u(t)‖)dt +
∫

F

M(t, k‖u(t)‖)dt
)

=
1
k

(
1 + ρM(ku)

)

= ‖u‖0 = 1.

(2.16)
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Similarly, we have ‖w‖0 ≤ 1. Hence v,w ∈ B(L0
M(X)). Therefore u ∈ S(L0

M(X)) is not an
extreme point, a contradiction. Hence (c) is true.

(a2) If K(u)/=φ and u ∈ S(L0
M(X)) is an extreme point, suppose that there exists

k1, k2 ∈ K(u) satisfying k1 /= k2. Define k = k1k2/(k1 + k2),

2 = ‖u‖0 + ‖u‖0

=
k1 + k2
k1k2

[

1 +
k2

k1 + k2
ρM(k1u) +

k1
k1 + k2

ρM(k2u)
]

=
k1 + k2
k1k2

[

1 +
k2

k1 + k2

∫

T

M(t, ‖k1u(t)‖)dt + k1
k1 + k2

∫

T

M(t, ‖k2u(t)‖)dt
]

≥ k1 + k2
k1k2

[

1 +
∫

T

M

(

t,
k2

k1 + k2
‖k1u(t)‖ + k1

k1 + k2
‖k2u(t)‖

)

dt

]

=
k1 + k2
k1k2

[

1 +
∫

T

M

(

t,

∥
∥
∥
∥
2k1k2
k1 + k2

u(t)
∥
∥
∥
∥

)

dt

]

= 2
1
2k
[
1 + ρM(2ku)

]

≥ 2‖u‖0

= 2.

(2.17)

This implies that

‖u‖0 = 1
2k
[
1 + ρM(2ku)

]
(2.18)

(i.e., 2k ∈ K(u)),

k2
k1 + k2

M(t, k1‖u(t)‖) + k1
k1 + k2

M(t, k2‖u(t)‖) = M(t, 2k‖u(t)‖). (2.19)

Since k1‖u(t)‖/= k2‖u(t)‖ on {t ∈ T : ‖u(t)‖/= 0}, then 2k‖u(t)‖ ∈ Kt on {t ∈ T : ‖u(t)‖/= 0}, a
contradiction. Therefore (a) is true.
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Sufficiency. We first prove that for u, u1, u2 ∈ S(L0
M(X))with u = (1/2)(u1 + u2) at least

one of the sets K(u1) or K(u2) is nonempty. Suppose that K(u1) = φ and K(u2) = φ. Hence
we have

1 =
∥
∥
∥
∥
1
2
(u1 + u2)

∥
∥
∥
∥

0

<

∫

T

A(t) ·
∥
∥
∥
∥
1
2
(u1(t) + u2(t))

∥
∥
∥
∥dt

≤ 1
2

∫

T

A(t) · ‖u1(t)‖dt + 1
2

∫

T

A(t) · ‖u2(t)‖dt

=
1
2
‖u1‖0 + 1

2
‖u2‖0

= 1,

(2.20)

a contradiction. This contradiction shows that K(u1)/=φ or K(u2)/=φ.
Now we will prove that K(u1)/=φ and K(u2)/=φ. Otherwise, we can assume without

loss of generality that K(u1)/=φ and K(u2) = φ. Put

[u1, u) = {(1 − λ)u1 + λu : 0 < λ < 1}, (u, u2] = {(1 − λ)u + λu2 : 0 < λ < 1}. (2.21)

Next we will prove that K(y)/=φ for all y ∈ [u1, u) and K(y) = φ for all y ∈ (u, u2]. Assume
first for the contrary that this is u3 ∈ [u1, u) such that K(u3) = φ. Then there exists λ3 ∈ [0, 1)
such that u3 = (1 − λ3)u1 + λ3u. Since u1 = 2u − u2, we have

u3 = (1 − λ3)(2u − u2) + λ3u = (2 − λ3)u − (1 − λ3)u2. (2.22)

Hence u = (1/(2 − λ3))u3 + ((1 − λ3)/(2 − λ3))u2. Therefore

1 = ‖u‖0 <
∫

T

A(t) ·
∥
∥
∥
∥

1
2 − λ3

u3(t) +
1 − λ3
2 − λ3

u2(t)
∥
∥
∥
∥dt

≤ 1
2 − λ3

∫

T

A(t) · ‖u3(t)‖dt + 1 − λ3
2 − λ3

∫

T

A(t) · ‖u2(t)‖dt

=
1

2 − λ3
‖u3‖0 + 1 − λ3

2 − λ3
‖u2‖0

= 1,

(2.23)

a contradiction.
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Assume now for the contrary that this is u4 ∈ (u, u2] such that K(u4)/=φ. We can find
u5 ∈ (u, u2] such that u = (1/2)(u4 + u5) and u4 /=u5. Therefore there are k4 ≥ 1 and k5 ≥ 1
such that

‖u4‖0 = 1
k4

[
1 + ρM(k4u4)

]
, ‖u5‖0 = 1

k5

[
1 + ρM(k5u5)

]
. (2.24)

By the convexity of the modular ρM we have

ρM

(
2k4k5
k4 + k5

u

)

= ρM

(
k4k5

k4 + k5
(u4 + u5)

)

= ρM

(
k5

k4 + k5
k4u4 +

k4
k4 + k5

k5u5

)

=
∫

T

M

(

t,

∥
∥
∥
∥

k5
k4 + k5

k4u4(t) +
k4

k4 + k5
k5u5(t)

∥
∥
∥
∥

)

dt

≤
∫

T

M

(

t,
k5

k4 + k5
‖k4u4(t)‖ + k4

k4 + k5
‖k5u5(t)‖

)

dt

≤ k5
k4 + k5

∫

T

M(t, ‖k4u4(t)‖)dt + k4
k4 + k5

∫

T

M(t, ‖k5u5(t)‖)dt

=
k5

k4 + k5
ρM(k4u4) +

k4
k4 + k5

ρM(k5u5).

(2.25)

Hence

2 = 2‖u‖0

≤ k4 + k5
k4k5

(

1 + ρM

(
k4k5

k4 + k5
2u
))

≤ k4 + k5
k4k5

(

1 +
k5

k4 + k5
ρM(k4u4) +

k4
k4 + k5

ρM(k5u5)
)

≤ 1
k4

(
1 + ρM(k4u4)

)
+

1
k5

(
1 + ρM(k5u5)

)

= 2.

(2.26)

Consequently, all inequalities from the last three lines are equalities in fact. Therefore
2(k4k5/(k4 + k5)) = k and

M(t, ‖ku(t)‖) = k5
k4 + k5

M(t, ‖k4u4(t)‖) + k4
k4 + k5

M(t, ‖k5u5(t)‖) (2.27)

for μ-a.e t ∈ T . By μ{t ∈ T : k‖u(t)‖ ∈ Kt} = 0, it follows that ‖ku(t)‖ = ‖k4u4(t)‖ = ‖k5u5(t)‖
for μ-a.e t ∈ T . Andwe have ku(t) = (k5/(k4+k5))k4u4(t)+(k4/(k4+k5))k5u5(t) for μ-a.e t ∈ T .
By (b), we have ku = k4u4 = k5u5. Since u4, u5, u ∈ S(L0

M(X)), we get k4 = k5 = k, which gives
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u4 = u5 = u. This contradicts the inequality u4 /=u5. Thus K(y) = φ for any y ∈ (u, u2]. Take
un = (1− 1/n)u+ (1/n)u2 for all n ∈ N. Then un ∈ (u, u2] for all n ∈ N. HenceK(un) = φ, and
consequently ‖un‖0 =

∫
T A(t) · ‖un(t)‖dt for all n ∈ N. Note that ‖un − u‖0 → 0 (n → ∞)

and limn→∞‖un(t)‖ = ‖u(t)‖ for μ-a.e, t ∈ T . Since K(u) = {k}, with 0 < k < ∞, we have

lim
n→∞

‖un‖0 = ‖u‖0 = lim
n→∞

∫

T

A(t) · ‖un(t)‖dt ≥
∫

T

A(t) · ‖u(t)‖dt > ‖u‖0, (2.28)

a contradiction. Therefore K(u1)/=φ and K(u2)/=φ. Now repeating the same procedure as
above, putting u1 and u2 instead of u4 and u5, respectively, we get

k1u1(t) = k2u2(t) = ku(t) (2.29)

for μ-a.e, t ∈ T . Hence, by the fact that u1, u2, u ∈ S(L0
M(X)), we have k1 = k2 = k, and

consequently, u1 = u2 = u. Thus u is an extreme point of B(L0
M(X)).

Corollary 2.5 (see [3]). u ∈ S(L0
M(R)) is an extreme point of B(L0

M(R)) if and only if

(a) the set K(u) consists of one element from (0,+∞);

(b) μ{t ∈ T : k|u(t)| ∈ Kt} = 0, where k ∈ K(u).

Finally, we investigate the rotundity of L0
M(X).

Theorem 2.6. L0
M(X) is rotund if and only if:

(a) for any u ∈ S(L0
M(X)), the set K(u) consists of one element from (0,+∞);

(b) X is rotund;

(c) M(t, u) is strictly convex with respect to u for almost all t ∈ T .

Proof. Sufficiency is obvious by Theorem 2.4.
Necessity. (a) is obvious by (a) of Theorem 2.4. L0

M(R) is isometrically isomorphic to
closed subspace of L0

M(X), thus L0
M(R) is rotund. By Lemma 2.3, (c) is obvious.

If (b) is not true, then there exist x, y, z ∈ S(X) with 2x = y + z and y /= z. Pick h(t) ∈
S(L0

M(X)), then there exists d > 0 such that μH > 0, where H = {t ∈ T : ‖h(t)‖ ≥ d}. Since
h(t) ∈ S(L0

M(X)), then there exists k′ > 0 such that

∫

H

M
(
t, k′‖h(t)‖)dt ≤

∫

T

M
(
t, k′‖h(t)‖)dt < ∞. (2.30)

Set

u(t) = d · x · χH(t), v(t) = d · y · χH(t), w(t) = d · z · χH(t). (2.31)

We have

∫

T

M
(
t, k′‖u(t)‖)dt =

∫

H

M
(
t, k′d

)
dt ≤

∫

H

M(t, k‖h(t)‖)dt < ∞. (2.32)
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This implies that u(t) ∈ L0
M(X). Similarly, we have v(t), w(t) ∈ L0

M(X). It is easy to see that
‖u‖0 = ‖v‖0 = ‖w‖0. Then

∥
∥
∥
∥
∥

u

‖u‖0

∥
∥
∥
∥
∥

0

=

∥
∥
∥
∥
∥

v

‖u‖0

∥
∥
∥
∥
∥

0

=

∥
∥
∥
∥
∥

w

‖u‖0

∥
∥
∥
∥
∥

0

= 1,
u

‖u‖0
=

1
2
· v

‖u‖0
+
1
2
· w

‖u‖0
. (2.33)

However, ‖u(t)‖ = ‖v(t)‖ = ‖w(t)‖ for t ∈ T . By (b) of Theorem 2.4, we have u = w. Hence
v/‖u‖0 = w/‖u‖0. So u is not an extreme point of B(L0

M(X)). Contradicting the rotundity of
L0
M(X).
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