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By using the Leray-Schauder fixed point theorem and differential inequality techniques, several
new sufficient conditions are obtained for the existence and global exponential stability of almost
periodic solutions for shunting inhibitory cellular neural networks with discrete and distributed
delays. The model in this paper possesses two characters: nonlinear behaved functions and all
coefficients are time varying. Hence, our model is general and applicable to many known models.
Moreover, our main results are also general and can be easily deduced to many simple cases,
including some existing results. An example and its simulation are employed to illustrate our
feasible results.

1. Introduction

Consider the following shunting inhibitory cellular neural networks (SICNNs) with discrete
and distributed delays (mixed delays):

x′ij(t) = −aij
(
t, xij(t)

)
+

∑

Bkl∈Nr(i,j)

Bklij (t)fij(xkl(t − τkl(t)))xij(t)

+
∑

Ckl∈Nr(i,j)

Ckl
ij (t)

∫ t

−∞
kij(t − s)gij(xkl(s))dsxij(t) + Iij(t),

(1.1)



2 Abstract and Applied Analysis

where i = 1, 2, . . . , n, j = 1, 2, . . . , m. Cij(t) denotes the cell at the (i, j) position of the lattice at
time t, the r-neighborhood Nr(i, j) of Cij(t) is

Nr

(
i, j
)
=
{
Ckl(t) : max

(
|k − i|,

∣
∣l − j

∣
∣) ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n

}
. (1.2)

xij(t) is the activity of the cell Cij(t), Iij(t) is the external input to Cij(t), aij(t, xij(t)) represents
an appropriately behaved function of the cell Cij(t) at time t; Bklij (t) and Ckl

ij (t) are the
connection or coupling strength of postsynaptic activity of the cell transmitted to the cell
Cij(t) depending upon discrete delays and distributed delays, respectively; the activation
functions fij(·) and gij(·) are continuous representing the output or firing rate of the cell
Ckl(t); τij(t) represent axonal signal transmission delays; Bklij (t), C

kl
ij (t), fij(·), gij(·), Iij(t), τij(t)

are all continuous almost periodic functions.
Since Bouzerdoum and Pinter described SICNNs as a new cellular neural networks

[1–3], SICNNs have been extensively studied and found many important applications
in different areas such as psychophysics, speech, perception, robotics, adaptive pattern
recognition, vision, and image processing. There have been some results on the existence
of periodic and almost solutions for SICNNs with discrete or distributed delays (distributed
delay was first introduced in [4]) [5–21]. We find that all the behaved functions in the models
in [5–21] are linear. Actually, aij(t, xij(t)) may be nonlinear. Moreover, we find that the models
in [5–20] are special cases of (1.1). For example, let aij(t, xij(t)) = aij(t)xij(t), then Ckl

ij (t) ≡ 0

in [5], Bklij (t) ≡ 0 in [7], Ckl
ij (t) ≡ 0 in [8], aij(t), Ckl

ij (t) are constants and Bklij (t) ≡ 0 in [9],

aij(t), Bklij (t), τkl(t) are constants, and Ckl
ij (t) ≡ 0 in [10, 11]. To the best of our knowledge, few

authors have considered the existence and global exponential stability of almost periodic
solutions for SICNNs with nonlinear behaved functions, periodic coefficients and mixed
delays. Obviously, (1.1) is general and is worth to continue to investigate its dynamical
properties such as existence and global exponential stability of almost periodic solutions.

The main purpose of this paper is to get sufficient conditions on the existence and
global exponential stability of almost periodic solutions for SICNNs (1.1) by using the
Leray-Schauder fixed point theorem and differential inequality techniques. Our results are
general and possess infinitely adjustable real parameters and can be deduced to many simple
results, including some existing results as special cases. Therefore, our results provide a wider
application criteria for neural networks.

The remaining part of this paper is organized as follows. We first state some useful
definitions and lemmas in Section 2. In Section 3, we study the existence of almost periodic
solutions of system (1.1) by using the Leray-Schauder’s fixed point theorem. In Section 4, by
using Lemma 2.7, we will derive sufficient conditions for the global exponential stability of
the almost periodic solution of system (1.1). A useful corollary is also obtained. An illustrative
example and its simulation are given in Section 5.

2. Preliminaries

For convenience, we denote

x =
{
xij(t)

}
= (x11(t), x12(t), . . . , x1m(t), . . . , xn1(t), xn2(t), . . . , xnm(t))

T . (2.1)
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Definition 2.1. The continuous function xij(t) : R → R is called almost periodic on R, if for
any ε > 0, it is possible to find a real number l = l(ε) > 0 such that, for any interval with
length l, there exists a number τ = τ(ε) in this interval such that |xij(t+ τ)−xij(t)| < ε, for any
t ∈ R.

Definition 2.2 (see [22, page 21]). Let E be a Banach space, D an open subset in E and f(t, x) ∈
C(R×D,E). For ∀x ∈ D, f(t, x) is called uniformly almost periodic about t, if for any ε > 0 and
any compact subset S ⊂ D, there exists a real number l = l(ε,S) > 0 such that, for any interval
with length l, there exists a number τ = τ(ε,S) in this interval such that ‖f(t+τ, x)−f(t, x)‖ <
ε, for any (t, x) ∈ R × S.

The initial condition ϕ = {ϕij(s)} of (1.1) is of the form

xij(s) = ϕij(s), s ∈ (−∞, 0], (2.2)

where ϕij(s), i = 1, 2, . . . , n, j = 1, . . . , m, are continuous almost periodic solutions.

Definition 2.3. Let x∗(t) be an almost periodic solution of (1.1) with initial value ϕ∗. If there
exist constants α > 0 and P > 1 such that for every solution x(t) of (1.1) with initial value ϕ

∣∣∣xij(t) − x∗ij(t)
∣∣∣ ≤ P

∥∥ϕ − ϕ∗
∥∥e−αt, ∀t > 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m, (2.3)

where ‖ϕ−ϕ∗‖ = max(i,j)sups≤0{|ϕij(s)−ϕ∗ij(s)|}. Then x∗(t) is said to be globally exponentially
stable.

Lemma 2.4 (see [22, page 136]). Suppose that f(t, x) is uniformly continuous on R× S, where S is
any compact set on R

n, and that there exists a nonsingular matrix P(t) ∈ C1, such that

(a) there exists a constant ρ satisfies ‖P(t)‖ < ρ, for all t ∈ R,

(b) the eigenvalues λi(t), i = 1, 2, . . . , n, of P(t) satisfy |λi(t)| ≥ ϑ > 0, where ϑ is a constant,
and there are k negative eigenvalues, n − k nonnegative eigenvalues,

(c) all the eigenvalues λi(t, x), i = 1, 2, . . . , n, of the following symmetric matrix:

M(t, x) = P(t)f(t, x) + fT (t, x)P(t) + Ṗ(t) (2.4)

satisfy

λi(t, x) ≤ −δ < 0, ∀‖x‖ ≤ R0, (2.5)

where δ, R0 are constants.

Then, for any fixed φ(t) ∈ C(R,Rn) and any t ∈ R satisfying ‖φ(t)‖ < R0, the linear differential
equation

ẋ = f
(
t, φ(t)

)
x (2.6)
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admits an exponential dichotomy on R:

∣
∣
∣Xφ(t)QφX

−1
φ (s)

∣
∣
∣ ≤M

√
ρ

ϑ
e−(δ/2ρ)(t−s), t ≥ s,

∣∣
∣Xφ(t)

(
I −Qφ

)
X−1
φ (s)

∣∣
∣ ≤M

√
ρ

ϑ
e−(δ/2ρ)(t−s), s ≥ t,

(2.7)

where Xφ(t) is fundamental solution matrix of (2.6) satisfying Xφ(0) = In×n, In×n is the identity
matrix, Qφ is a constant projection, the constantM has no relationship with φ(t).

Lemma 2.5 (see [22, page 139]). Suppose that the n × n matrix function f(t, x) and the n-
dimensional vector function g(t, x) are uniformly almost periodic on R × R

n, and that there exists
real symmetric nonsingular matrix P(t) satisfying the conditions (a)–(c) in Lemma 2.4, then,

ẋ = f
(
t, φ
)
x + g

(
t, φ
)

(2.8)

has a unique almost periodic solution x(t), where φ ∈ C(R,Rn) is almost periodic function and

x(t) =
∫ t

−∞
Xφ(s)QφX

−1
φ (s)g

(
s, φ(s)

)
ds −

∫+∞

t

Xφ(s)
(
I −Qφ

)
X−1
φ (s)g

(
s, φ(s)

)
ds. (2.9)

Lemma 2.6 (Leray-Schauder). Let E be a Banach space, and let the operator Φ : E → E be
completely continuous. If the set {‖x‖ | x ∈ E, x = λΦx, 0 < λ < 1} is bounded, then Φ has a
fixed point in T, where

T = {x | x ∈ E, ‖x‖ ≤ R}, R = sup{‖x‖ | x = λΦx, 0 < λ < 1}. (2.10)

Lemma 2.7 (see [23]). Let a ≥ 0, bk ≥ 0(k = 1, 2, . . . , m), the following inequality holds

a
m∏

k=1

b
qk
k ≤

1
r

m∑

k=1

qkb
r
k +

1
r
ar, (2.11)

where qk > 0, (k = 1, 2, . . . , m) is some constants,
∑m

k=1 qk = r − 1, and r > 1.

Obviously, inequality (2.11) also holds for a ≥ 0, bk ≥ 0, r = 1, and qk = 0, k =
1, 2, . . . , m. Hence, we always assume that a ≥ 0, bk ≥ 0, r ≥ 1, and qk ≥ 0, k = 1, 2, . . . , m
in (2.11) in the later sections of this paper.

Furthermore, throughout this paper, we assume that

(H1) aij(t, u) ∈ C(R2,R) is continuous almost periodic about the first argument
and, there exists a positive continuous almost periodic function μij(t) such that
∂aij(t, u)/∂u ≥ μij(t), u ∈ R, and aij(t, 0) = 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m,

(H2) there exist nonnegative constants Mij and Nij , i = 1, 2, . . . , n, j = 1, 2, . . . , m, such
that

∣∣fij(u)
∣∣ ≤Mij,

∣∣gij(u)
∣∣ ≤Nij , ∀u ∈ R; (2.12)
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(H3) the delay kernels kij : [0,+∞) → R are continuous, integrable and there are positive
constants kij such that

∫+∞

0

∣
∣kij(s)

∣
∣ds ≤ kij , i = 1, 2, . . . , n, j = 1, 2, . . . , m; (2.13)

(H4) there exists a constant α0 > 0 such that

∫+∞

0

∣
∣kij(s)

∣
∣eα0sds < +∞, i = 1, 2, . . . , n, j = 1, 2, . . . , m. (2.14)

(H5) the following inequality holds:

max
(i,j)

sup
t∈R

⎧
⎨

⎩

∑
Bkl∈Nr(i,j)

∣∣∣Bklij (t)
∣∣∣Mij +

∑
Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t)

∣∣∣kijNij

μij(t)

⎫
⎬

⎭
= η < 1; (2.15)

(H6) there are nonnegative constants αij , βij such that

αij = sup
u/=v

∣∣∣∣∣
fij(u) − fij(v)

u − v

∣∣∣∣∣
, βij = sup

u/=v

∣∣∣∣∣
gij(u) − gij(v)

u − v

∣∣∣∣∣
(2.16)

for all u, v ∈ R, u /=v, i = 1, 2, . . . , n, j = 1, 2, . . . , m.

3. Existence of Almost Periodic Solutions

Let ξij , i = 1, 2, . . . , n, j = 1, 2, . . . , m be constants. Make the following transformation:

xij = ξijyij(t), i = 1, 2, . . . , n, j = 1, 2, . . . , m, (3.1)

then (1.1) can be reformulated as

y′ij(t) = −ξ
−1
ij aij

(
t, ξijyij(t)

)
+

∑

Bkl∈Nr(i,j)

Bklij (t)fij
(
ξklykl(t − τkl(t))

)
yij(t)

+
∑

Ckl∈Nr(i,j)

Ckl
ij (t)

∫ t

−∞
kij(t − s)gij

(
ξklykl(s)

)
dsyij(t) + ξ−1

ij Iij(t).
(3.2)
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System (3.2) can be rewritten as

y′ij(t) = −dij
(
t, yij(t)

)
yij(t) +

∑

Bkl∈Nr(i,j)

Bklij (t)fij
(
ξklykl(t − τkl(t))

)
yij(t)

+
∑

Ckl∈Nr(i,j)

Ckl
ij (t)

∫ t

−∞
kij(t − s)gij

(
ξklykl(s)

)
dsyij(t) + ξ−1

ij Iij(t),
(3.3)

where dij(t, yij(t)) � (∂aij(t, z)/∂z)|z=eij , eij is between 0 and ξijyij(t), eij ∈ R. By (H1), we
know that aij(t, ξijyij) is strictly monotone increasing about yij . Hence, dij(t, yij(t)) is unique
for any yij(t). Obviously, dij(t, yij(t)) is continuous almost periodic about the first argument
and dij(t, yij(t)) ≥ μij(t).

Take X = {φ = {φij(t)} | φij : R → R is an almost periodic function, i = 1, . . . , n,
j = 1, . . . , m}. Then X is a Banach space with the norm

∥∥φ
∥∥ = max

(i,j)

{∣∣φij
∣∣

0

}
,

∣∣φij
∣∣

0 = sup
t∈R

∣∣φij(t)
∣∣, i = 1, . . . , n, j = 1, . . . , m. (3.4)

For for all φ ∈ X, we consider the following auxiliary equation:

y′ij(t) = −dij
(
t, φij(t)

)
yij(t) +

∑

Bkl∈Nr(i,j)

Bklij (t)fij
(
ξklφkl(t − τkl(t))

)
φij(t)

+
∑

Ckl∈Nr(i,j)

Ckl
ij (t)

∫ t

−∞
kij(t − s)gij

(
ξklφkl(s)

)
dsφij(t) + ξ−1

ij Iij(t).
(3.5)

From (H1), we know that

dij
(
t, yij

)
, i = 1, 2, . . . , n, j = 1, 2, . . . , m, (3.6)

are uniformly almost periodic functions on R × R. Since μij(t), i = 1, 2, . . . , n, j = 1, 2, . . . , m,
are positive continuous almost periodic functions, there exists a positive constant δ such that

dij
(
t, φij(t)

)
≥ μij(t) ≥ δ > 0. (3.7)

Hence, the conditions in Lemma 2.5 are satisfied (take P(t) = Inm×nm).
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According to the fact that Bklij (t), φij(t), C
kl
ij (t), Iij(t) are almost periodic functions, in

view of Lemma 2.5, we know that system (3.5) has a unique almost periodic solution

yφ(t) =

{∫ t

−∞
e−
∫ t
sdij (u,φij (u))du

×

⎡

⎣
∑

Bkl∈Nr(i,j)

Bklij (s)fij
(
ξklφkl(s − τkl(s))

)
φij(s)

+
∑

Ckl∈Nr(i,j)

Ckl
ij (s)

∫ s

−∞
kij(s − u)gij

(
ξklφkl(u)

)
duφij(s) + ξ−1

ij Iij(s)

⎤

⎦ds

⎫
⎬

⎭
.

(3.8)

Set a mapping Φ : X → X by setting

(
Φφ
)
(t) = yφ(t), ∀φ ∈ X. (3.9)

Before using Lemma 2.6 to obtain conditions of the existence of almost periodic
solution for (1.1), we have to prove the following lemma.

Lemma 3.1. Suppose that (H1)–( H5) hold. Then Φ : X → X is completely continuous.

Proof. Under our assumptions, it is clear that the operator Φ is continuous. Next, we show
that Φ is compact.

For any constant D > 0, let Ω = {φ | φ ∈ X, ‖φ‖ < D}. Then, for any φ ∈ Ω, we have

∥∥(Φφ
)∥∥=max

(i,j)
sup
t∈R

{∣∣∣∣∣

∫ t

−∞
e−
∫ t
sdij (u,φij (u))du

×

⎡

⎣
∑

Bkl∈Nr(i,j)

Bklij (s)fij
(
ξklφkl(s − τkl(s))

)
φij(s)

+
∑

Ckl∈Nr(i,j)

Ckl
ij (s)

∫s

−∞
kij(s−u)gij

(
ξklφkl(u)

)
duφij(s) + ξ−1

ij Iij(s)

⎤

⎦ds

∣∣∣∣∣∣

⎫
⎬

⎭
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≤ max
(i,j)

sup
t∈R

⎧
⎨

⎩

∫ t

−∞
e−
∫ t
sμij (u)du

⎡

⎣

⎛

⎝
∑

Bkl∈Nr(i,j)

∣
∣
∣Bklij (s)

∣
∣
∣Mij +

∑

Ckl∈Nr(i,j)

∣
∣
∣Ckl

ij (s)
∣
∣
∣kijNij

⎞

⎠

×
∣
∣φij(s)

∣
∣ + ξ−1

ij

∣
∣Iij(s)

∣
∣

⎤

⎦ds

⎫
⎬

⎭

≤ max
(i,j)

sup
t∈R

{∫ t

−∞
e−
∫ t
sμij (u)duμij(s)ds

}

η
∥
∥φ
∥
∥ + max

(i,j)

⎧
⎨

⎩
Iij

ξijμ
ij

⎫
⎬

⎭
< ηD + max

(i,j)

⎧
⎨

⎩
Iij

ξijμ
ij

⎫
⎬

⎭
,

(3.10)

where Iij = maxt∈R|Iij(t)|, μ
ij
= inft∈Rμij(t). Hence, Φ(Ω) is uniformly bounded.

By the definition of Φ, we get

(
Φφ
)′
ij(t) =

d
dt

(∫ t

−∞
e−
∫ t
sdij (u,φij (u))du

×

⎡

⎣
∑

Bkl∈Nr(i,j)

Bklij (s)fij
(
ξklφkl(s − τkl(s))

)
φij(s)

+
∑

Ckl∈Nr(i,j)

Ckl
ij (s)

∫ s

−∞
kij(s − u)gij

(
ξklφkl(u)

)
duφij(s) + ξ−1

ij Iij(s)

⎤

⎦ds

⎞

⎠

= −dij
(
t, φij(t)

)(
Φφij

)
(t) +

∑

Bkl∈Nr(i,j)

Bklij (t)fij
(
ξklφkl(t − τkl(t))

)
φij(t)

+
∑

Ckl∈Nr(i,j)

Ckl
ij (t)

∫ t

−∞
kij(t − s)gij

(
ξklφkl(s)

)
dsφij(t) + ξ−1

ij Iij(t).

(3.11)

Since dij(t, φij(t)), i = 1, 2, . . . , n, j = 1, 2, . . . , m, are uniformly almost periodic functions on
R ×Ω, there exists a positive constant Θ such that

∣∣dij
(
t, φij(t)

)∣∣ ≤ Θ, for t ∈ R, φij(t) ∈ Ω, i = 1, 2, . . . , n, j = 1, 2, . . . , m. (3.12)
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Hence,

∥
∥
∥
(
Φφ
)′
ij(t)
∥
∥
∥ ≤ Θ

⎛

⎝ηD + max
(i,j)

⎧
⎨

⎩
Iij

ξijμ
ij

⎫
⎬

⎭

⎞

⎠

+ max
(i,j)

⎧
⎨

⎩

∑

Bkl∈Nr(i,j)

B
kl

ij MijD +
∑

Ckl∈Nr(i,j)

C
kl

ij kijNijD + ξ−1
ij Iij

⎫
⎬

⎭
,

(3.13)

where B
kl

ij = supt∈R|Bklij (t)|, C
kl

ij = supt∈R|Ckl
ij (t)|. So, Φ(Ω) ⊆ X is a family of uniformly

bounded and equicontinuous subsets. By using the Arzela-Ascoli theorem, Φ : X → X is
compact. Therefore, Φ : X → X is completely continuous. This completes the proof.

Theorem 3.2. Suppose that (H1)–(H5) hold. Let ξij , i = 1, 2, . . . , n, j = 1, 2, . . . , m, be constants.
Then system (1.1) has an almost periodic solution x∗(t) with ‖x∗‖ ≤ max(i,j){ξij}R̃ � R0, where

R̃ =
max(i,j)

{
Iij/ξijμ

ij

}

1 − η .
(3.14)

Proof. Let φ ∈ X. From Lemma 3.1, we get that Φ : X → X is completely continuous.
Consider the following operator equation:

φ = λΦφ, λ ∈ (0, 1). (3.15)

If φ is a solution of (3.15), we obtain

∥∥φ
∥∥ ≤
∥∥Φφ

∥∥ ≤ θ
∥∥φ
∥∥ + max

(i,j)

⎧
⎨

⎩
Iij

ξijμ
ij

⎫
⎬

⎭
. (3.16)

This and (H5) imply that

∥∥φ
∥∥ ≤ R̃. (3.17)

In view of Lemma 2.6, we obtain that Φ has a fixed point φ∗(t) with ‖φ∗‖ ≤ R̃. From (3.5) and
(3.8), we know that φ∗ satisfies (3.3) and (3.2). Hence, system (3.2) has an almost periodic
solution φ∗(t) = {φ∗ij(t)} with ‖φ∗‖ ≤ R̃. It follows from (3.1) that x∗(t) = {x∗ij(t)} = {ξijφ

∗
ij(t)}

is one almost periodic solution of (1.1) with

‖x∗‖ ≤ max
(i,j)

{
ξij
}
R̃ � R0. (3.18)

This completes the proof.
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4. Stability of Almost Periodic solution

In this section, we prove that, under suitable conditions, the almost periodic solution obtained
in Theorem 3.2 is globally exponentially stable.

Theorem 4.1. Assume that (H1)–(H4) and (H6) hold and

(H7) there are constants os, εs, ls, γs, δs, ds ∈ R, q ≥ 1, ps ≥ 0, σ > 0, ξij > 0, s = 1, 2, . . . , m′+
1, i = 1, 2, . . . , n, j = 1, 2, . . . , m, such that

Λ = max
(i,j)

sup
t∈R

⎧
⎨

⎩

⎛

⎝−qμij(t) + q
∑

Bkl∈Nr(i,j)

∣
∣
∣Bklij (t)

∣
∣
∣Mij + q

∑

Ckl∈Nr(i,j)

∣
∣
∣Ckl

ij (t)
∣
∣
∣kijNij

+
∑

Bkl∈Nr(i,j)

m′∑

s=1

ps
∣∣∣Bklij (t)

∣∣∣
qos
α
qεs
ij R

qls
0 +

∑

Ckl∈Nr(i,j)

m′∑

s=1

ps
∣∣∣Ckl

ij (t)
∣∣∣
qγs
β
qδs
ij R

qds
0

⎞

⎠ξij

+
∑

Bkl∈Nr(i,j)

∣∣∣Bklij (t)
∣∣∣
qom′+1

α
qεm′+1
ij R

qlm′+1
0 ξkl

+
∑

Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t)

∣∣∣
qγm′+1

β
qδm′+1
ij R

qdm′+1
0 k

q

ijξkl

⎫
⎬

⎭
≤ −σ < 0,

(4.1)

where, om′+1 +
∑m′

s=1 osps = εm′+1 +
∑m′

s=1 εsps = lm′+1 +
∑m′

s=1 lsps = γm′+1 +
∑m′

s=1 γsps =
δm′+1 +

∑m′

s=1 δsps = dm′+1 +
∑m′

s=1 dsps = 1,
∑m′

s=1 ps = q − 1.

Then (1.1) has unique almost periodic solution, which is globally exponentially stable.

Proof. Obviously, that (H7) holds implies that (H5) holds. By Theorem 3.2, there exists an
almost periodic solution x∗(t) of (1.1) with initial value ϕ∗(t) and ‖x∗‖ ≤ R0. Suppose that
x(t) is an arbitrary solution of (1.1) with initial value ϕ(t). Set z(t) = x(t) − x∗(t). Then, from
(1.1), we have

z′ij(t) = −
[
aij
(
t, xij(t)

)
− aij

(
t, x∗ij(t)

)]

+
∑

Bkl∈Nr(i,j)

Bklij (t)
(
fij(xkl(t − τkl(t)))xij(t) − fij

(
x∗kl(t − τkl(t))

)
x∗ij(t)

)

+
∑

Ckl∈Nr(i,j)

Ckl
ij (t)

(∫ t

−∞
kij(t − s)gij(xkl(s))dsxij(t) −

∫ t

−∞
kij(t − s)gij

(
x∗kl(s)

)
dsx∗ij(t)

)

,

i = 1, 2, . . . , n, j = 1, 2, . . . , m.
(4.2)
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Set

Γij(λ, t) =

⎛

⎝λ − qμij(t) + q
∑

Bkl∈Nr(i,j)

∣
∣
∣Bklij (t)

∣
∣
∣Mij + q

∑

Ckl∈Nr(i,j)

∣
∣
∣Ckl

ij (t)
∣
∣
∣kijNij

+
∑

Bkl∈Nr(i,j)

m′∑

s=1

ps
∣
∣
∣Bklij (t)

∣
∣
∣
qos
α
qεs
ij R

qls
0 +

∑

Ckl∈Nr(i,j)

m′∑

s=1

ps
∣
∣
∣Ckl

ij (t)
∣
∣
∣
qγs
β
qδs
ij R

qds
0

⎞

⎠ξij

+
∑

Bkl∈Nr(i,j)

∣
∣
∣Bklij (t)

∣
∣
∣
qom′+1

α
qεm′+1
ij R

qlm′+1
0 eλτkl(t)ξkl

+
∑

Ckl∈Nr(i,j)

∣
∣
∣Ckl

ij (t)
∣
∣
∣
qγm′+1

β
qδm′+1
ij R

qdm′+1
0

(∫+∞

0

∣
∣kij(s)

∣
∣e(λ/q)sds

)q
ξkl,

i = 1, 2, . . . , n, j = 1, 2, . . . , m.

(4.3)

Clearly, Γij(λ, t), i = 1, 2, . . . , n, j = 1, 2, . . . , m, are continuous functions about λ and almost
periodic about t on R.

From (H7), we get

Γij(0, t) ≤ Λ ≤ −σ < 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m. (4.4)

In addition to

∂Γij(λ, t)
∂λ

= ξij +
∑

Bkl∈Nr(i,j)

∣∣∣Bklij (t)
∣∣∣
qom′+1

α
qεm′+1
ij R

qlm′+1
0 τkl(t)eλτkl(t)ξkl

+
∑

Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t)

∣∣∣
qγm′+1

β
qδm′+1
ij R

qdm′+1
0

(∫+∞

0

∣∣kij(s)
∣∣se(λ/q)sds

)q
ξkl > 0

(4.5)

and Γij(+∞, t) = +∞ for ∀t ∈ R, we obtain that Γij(λ, t), i = 1, 2, . . . , n, j = 1, 2, . . . , m,
are strictly monotone increasing functions about λ. Therefore, for any i ∈ {1, 2, . . . , n},
j ∈ {1, 2, . . . , m}, there is unique real number λij0 such that

sup
t∈R

Γij
(
λ
ij

0 , t
)
= 0. (4.6)

In view of (4.4), we have λij0 > 0. Let θ = min{λ11
0 , λ

12
0 , . . . , λ

nm
0 }, we obtain

sup
t∈R

Γij(θ, t) ≤ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m. (4.7)
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Now, we choose a positive constant d such that qdξij ≥ 1, i = 1, 2, . . . , n, j = 1, 2, . . . , m. It is
obvious that

|zi(t)|q ≤
∥
∥ϕ − ϕ∗

∥
∥q ≤ qdξi

∥
∥ϕ − ϕ∗

∥
∥qe−θt, for ∈ (−∞, 0], i = 1, 2, . . . , n, (4.8)

where ‖ϕ − ϕ∗‖ is defined as that in Definition 2.3.
Let Vij(t) = (1/q)eθt|zij(t)|q, i = 1, 2, . . . , n, j = 1, 2, . . . , m. In view of (4.2) and (2.11),

for t ≥ 0, we obtain

d+Vij(t)
dt

= eθt
∣∣zij(t)

∣∣q−1

× sgn zij

{

−
[

aij
(
t, xij(t)

)
− aij

(
t, x∗ij(t)

)]

+
∑

Bkl∈Nr(i,j)

Bklij (t)
(
fij(xkl(t − τkl(t)))xij(t) − fij

(
x∗kl(t − τkl(t))

)
x∗ij(t)

)

+
∑

Ckl∈Nr(i,j)

Ckl
ij (t)

(∫ t

−∞
kij(t − s)gij(xkl(s))dsxij(t)

−
∫ t

−∞
kij(t − s)gij

(
x∗kl(s)

)
dsx∗ij(t)

)}

+
1
q
θeθt
∣∣zij(t)

∣∣q

≤ eθt
∣∣zij(t)

∣∣q−1

×

⎧
⎨

⎩
−μij(t)

∣∣zij(t)
∣∣ +

∑

Bkl∈Nr(i,j)

∣∣∣Bklij (t)
∣∣∣

×
(∣∣fij(xkl(t − τkl(t)))

∣∣∣∣zij(t)
∣∣ +
∣∣fij(xkl(t − τkl(t))) − fij

(
x∗kl(t − τkl(t))

)∣∣
∣∣∣x∗ij(t)

∣∣∣
)

+
∑

Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t)

∣∣∣

(∫ t

−∞

∣∣kij(t − s)
∣∣∣∣gij(xkl(s))

∣∣ds
∣∣zij(t)

∣∣

+
∫ t

−∞

∣∣kij(t − s)
∣∣∣∣gij(xkl(s))−gij

(
x∗kl(s)

)∣∣ds
∣∣∣x∗ij(t)

∣∣∣

)}

+
1
q
θeθt
∣∣zij(t)

∣∣q
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≤ eθt
∣
∣zij(t)

∣
∣q−1

×

⎧
⎨

⎩
−μij(t)

∣
∣zij(t)

∣
∣ +

∑

Bkl∈Nr(i,j)

∣
∣
∣Bklij (t)

∣
∣
∣
(
Mij

∣
∣zij(t)

∣
∣ + αijR0|zkl(t − τkl(t))|

)

+
∑

Ckl∈Nr(i,j)

∣
∣
∣Ckl

ij (t)
∣
∣
∣

(

kijNij

∣
∣zij(t)

∣
∣ + βijR0

∫ t

−∞

∣
∣kij(t − s)

∣
∣|zkl(s)|ds

)⎫⎬

⎭

+
1
q
θeθt
∣
∣zij(t)

∣
∣q

≤

⎛

⎝θ − qμij(t) + q
∑

Bkl∈Nr(i,j)

∣∣∣Bklij (t)
∣∣∣Mij + q

∑

Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t)

∣∣∣kijNij

+
∑

Bkl∈Nr(i,j)

m′∑

s=1

ps
∣∣∣Bklij (t)

∣∣∣
qos
α
qεs
ij R

qls
0 +

∑

Ckl∈Nr(i,j)

m′∑

s=1

ps
∣∣∣Ckl

ij (t)
∣∣∣
qγs
β
qδs
ij R

qds
0

⎞

⎠Vij(t)

+
∑

Bkl∈Nr(i,j)

∣∣∣Bklij (t)
∣∣∣
qom′+1

α
qεm′+1
ij R

qlm′+1
0 eθτkl(t)Vkl(t − τkl(t))

+
∑

Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t)

∣∣∣
qγm′+1

β
qδm′+1
ij R

qdm′+1
0

(∫ t

−∞

∣∣kij(t − s)
∣∣e(θ/q)(t−s)Vkl(s)1/qds

)q

.

(4.9)

We now prove that the following statement is true:

Vij(t) =
1
q
eθt
∣∣zij(t)

∣∣q ≤ dξij
∥∥φ − φ∗

∥∥q, i = 1, 2, . . . , n, j = 1, 2, . . . , m, ∀t > 0. (4.10)

Contrarily, there must exist some i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}, and t̃ > 0, such that

Vij
(
t̃
)
= dξij

∥∥φ − φ∗
∥∥q,

d+Vij
(
t̃
)

dt
> 0, Vkl(t) ≤ dξkl

∥∥φ − φ∗
∥∥q, (4.11)
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for all t ∈ (−∞, t̃], k = 1, 2, . . . , n, l = 1, 2, . . . , m. Together with (4.9), (4.11), and (4.7), we
obtain

0 <
d+Vij

(
t̃
)

dt

≤ d
∥
∥φ − φ∗

∥
∥q

⎧
⎨

⎩

⎛

⎝θ − qμij
(
t̃
)
+ q

∑

Bkl∈Nr(i,j)

∣
∣
∣Bklij
(
t̃
)∣∣
∣Mij + q

∑

Ckl∈Nr(i,j)

∣
∣
∣Ckl

ij

(
t̃
)∣∣
∣kijNij

+
∑

Bkl∈Nr(i,j)

m′∑

s=1

ps
∣
∣
∣Bklij (t̃)

∣
∣
∣
qos
α
qεs
ij R

qls
0 +

∑

Ckl∈Nr(i,j)

m′∑

s=1

ps
∣
∣
∣Ckl

ij (t̃)
∣
∣
∣
qγs
β
qδs
ij R

qds
0

⎞

⎠ξij

+
∑

Bkl∈Nr(i,j)

∣∣∣Bklij (t̃)
∣∣∣
qom′+1

α
qεm′+1
ij R

qlm′+1
0 eθτkl(t̃)ξkl

+
∑

Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t̃)

∣∣∣
qγm′+1

β
qδm′+1
ij R

qdm′+1
0

(∫+∞

0

∣∣kij(s)
∣∣e(θ/q)sds

)q
ξkl

⎫
⎬

⎭
≤ 0,

(4.12)

which is a contradiction. Hence, (4.10) holds. It follows that

∣∣∣xij(t) − x∗ij(t)
∣∣∣ =
∣∣zij(t)

∣∣ ≤
(
qdξij

)1/q∥∥ϕ − ϕ∗
∥∥e−(θ/q)t, ∀t > 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m.

(4.13)

Let P = max(i,j){(qdξij)1/q + 1}, then

∣∣∣xij(t) − x∗ij(t)
∣∣∣ ≤ P

∥∥ϕ − ϕ∗
∥∥e−(θ/q)t, ∀t > 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m. (4.14)

By means of Definition 2.3, the almost periodic solution x∗(t) of (1.1) is globally exponentially
stable. This completes the proof.

Since Theorem 3.2 is general, the expression of (H7) is complex. In order to check the
applicability of the results easily, we give the following corollary.

Corollary 4.2. Assume that (H1)–(H4) and (H6) hold. Furthermore, if one of the following conditions
holds
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(A1) there are constants σ > 0, q ≥ 1, ξij > 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m, such that

max
(i,j)

sup
t∈R

⎧
⎨

⎩

⎛

⎝−qμij(t) + q
∑

Bkl∈Nr(i,j)

∣
∣
∣Bklij (t)

∣
∣
∣Mij + q

∑

Ckl∈Nr(i,j)

∣
∣
∣Ckl

ij (t)
∣
∣
∣kijNij

+
(
q − 1

) ∑

Bkl∈Nr(i,j)

∣
∣
∣Bklij (t)

∣
∣
∣ +
(
q − 1

) ∑

Ckl∈Nr(i,j)

∣
∣
∣Ckl

ij (t)
∣
∣
∣

⎞

⎠ξij

+
∑

Bkl∈Nr(i,j)

∣
∣
∣Bklij (t)

∣
∣
∣α

q

ijR
q

0ξkl +
∑

Ckl∈Nr(i,j)

∣
∣
∣Ckl

ij (t)
∣
∣
∣β

q

ijR
q

0k
q

ijξkl

⎫
⎬

⎭
≤ −σ < 0,

(4.15)

(A2) there are constants σ > 0, ξij > 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m, such that

max
(i,j)

sup
t∈R

⎧
⎨

⎩

⎛

⎝−2μij(t) + 2
∑

Bkl∈Nr(i,j)

∣∣∣Bklij (t)
∣∣∣Mij + 2

∑

Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t)

∣∣∣kijNij

+
∑

Bkl∈Nr(i,j)

∣∣∣Bklij (t)
∣∣∣ +

∑

Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t)

∣∣∣

⎞

⎠ξij

+
∑

Bkl∈Nr(i,j)

∣∣∣Bklij (t)
∣∣∣α2

ijR
2
0ξkl +

∑

Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t)

∣∣∣β2
ijR

2
0k

2
ij ξkl

⎫
⎬

⎭
≤ −σ < 0,

(4.16)

(A3) there are constants σ > 0, ξij > 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m, such that

max
(i,j)

sup
t∈R

⎧
⎨

⎩

⎛

⎝−μij(t) +
∑

Bkl∈Nr(i,j)

∣∣∣Bklij (t)
∣∣∣Mij +

∑

Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t)

∣∣∣kijNij

⎞

⎠ξij

+
∑

Bkl∈Nr(i,j)

∣∣∣Bklij (t)
∣∣∣αijR0ξkl +

∑

Ckl∈Nr(i,j)

∣∣∣Ckl
ij (t)

∣∣∣βijR0kijξkl

⎫
⎬

⎭
≤ −σ < 0.

(4.17)

Then (1.1) has exactly one almost periodic solution, which is globally exponentially
stable.

Proof. Let m′ = 1, o1 = o2 = γ1 = γ2 = 1/q, ε1 = l1 = δ1 = d1 = 0, and ε2 = l2 = δ2 = d2 = 1,
i = 1, 2, . . . , n, j = 1, 2, . . . , m, in (H7), respectively, then (H7) turns to (A1).

Let q = 2 and q = 1 in (A1), respectively, then we get (A2) and (A3). This completes the
proof.

Remark 4.3. Corollary 4.2 can still be simplified into many simple results, which include the
results in [7–11]. For example, authors of [9] considered a special case of our model (1.1)
and obtained sufficient conditions of existence and exponential stability of almost periodic
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solutions for their model. Although the results of [9] and ours are completely different, we
claim that the results in [9] are also special cases of the results in this paper. The model
considered in [9] is

x′ij(t) = −aijxij(t) +
∑

Ckl∈Nr(i,j)

Ckl
ij

∫∞

0
kij(s)g(xkl(t − s))dsxij(t) + Iij(t), (4.18)

where aij , Ckl
ij ≥ 0, |g(x)| ≤M, and |g(u) − g(v)| ≤ μ|u − v| for u, v ∈ R. The other arguments

are same as this paper. Obviously, system (4.18) is a special case of system (1.1). The main
theorem in [9] is the following.

Corollary 4.4. Assume that there exist nonnegative constants I, q, and η such that
max(i,j){

∑
Ckl∈Nr(i,j) C

kl
ij kijM/aij} = η < 1, I = max(i,j){Iij/aij}, q = η(1 + μI/(1 − η)M) < 1.

Then system (4.18) has exactly one almost periodic solution, which is globally exponentially stable.

Now we prove that Corollary 4.4 is a special case of Corollary 4.2. Comparing (1.1)
with (4.18), we have μij(t) = aij , |Ckl

ij (t)| = Ckl
ij , |Bklij (t)| = 0, Nij = M. Let ξij = 1, i =

1, 2 . . . , n, j = 1, 2 . . . , m. According to the proof of Theorem 3.2, we haveR0 = I/(1−η). So, q =
η(1+μR0/M) < 1⇔ η((M+μR0)/M) < 1. In view of the condition

∑
Ckl∈Nr(i,j) C

kl
ij kijM/aij ≤

η, we have

∑
Ckl∈Nr(i,j) C

kl
ij kij

aij

(
M + μR0

)
< 1, (4.19)

which is equivalent to

−aij +M
∑

Ckl∈Nr(i,j)

Ckl
ij kij + μR0

∑

Ckl∈Nr(i,j)

Ckl
ij kij < 0. (4.20)

The expression is a special case of (A3) in Corollary 4.2.
Similarly, from Corollary 4.2, we can get the main results of [5, 11] by the condition

(A3) (restrict in the case of periodic system in [5]) and the main results of [10] by condition
(A2). Hence, the results of this paper are useful and important.

Remark 4.5. In (1.1), if fij(u), gij(u), u ∈ R are replaced by fij(t, u), gij(t, u), t, u ∈ R, where
fij(t, u), gij(t, u) are bounded and almost periodic functions about the first argument, then,
by the same methods used in this paper, we can also get some general results similar to
Theorem 4.1 and Corollary 4.2 and extend and improve the main results in [12].

Remark 4.6. Note that condition (H7) in Theorem 4.1 possesses infinitely adjustable real
parameters. This enables neural networks workers to obtain many special conditions on the
existence and global exponential stability of almost periodic solutions and periodic solutions
in the designs and applications of neural networks. We can offer many different corollaries
by changing the parameters in (H7), not only Corollary 4.2. Hence, our results provide many
criteria for neural network’s application.
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5. A Numerical Example

Consider the following SICNNs with mixed delays:

x′ij(t) = −aij
(
t, xij(t)

)
+

∑

Bkl∈Nr(i,j)

Bklij (t)fij(xkl(t − τkl(t)))xij(t)

+
∑

Ckl∈Nr(i,j)

Ckl
ij (t)

∫ t

−∞
kij(t − s)gij(xkl(s))dsxij(t) + Iij(t),

(5.1)

where r = 1, τij(t) = (cos t)2, i, j = 1, 2, 3. Take a11(t) = 6x − cosx + x sin t, a12(t) = 6x +
0.5 sinx + x cos t, a13(t) = 5x + cosx + x sin t, a21(t) = 7x + sinx + x sin t, a22(t) = 7x −
cosx − x sin t, a23(t) = 5x − cosx + x cos t, a31(t) = 6x + sinx + x cos t, a32(t) = 6x + cosx +
x sin t, a33(t) = 6x − sinx + x cos t, fij(x) = gij(x) = 0.1 sinx, kij(t) = e−t sin t, and

⎡

⎢⎢
⎣

B11(t) B12(t) B13(t)

B21(t) B22(t) B23(t)

B31(t) B32(t) B33(t)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0.1 cos t 0.2 sin t 0

0.3 cos t 0 0.3 sin t

0 0.4 cos t 0.2 sin t

⎤

⎥⎥
⎦,

⎡

⎢⎢
⎣

C11(t) C12(t) C13(t)

C21(t) C22(t) C23(t)

C31(t) C32(t) C33(t)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0.2 cos t 0.4 sin t 0.3 cos t

0.6 cos t 0 0.5 sin t

0.5 sin t 0.6 cos t 0.5 sin t

⎤

⎥⎥
⎦,

⎡

⎢⎢
⎣

I11(t) I12(t) I13(t)

I21(t) I22(t) I23(t)

I31(t) I32(t) I33(t)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

2 cos
√

2t sin
√

3t 1 + 2 cos
√

2t

1 + cos
√

2t 2 cos
√

2t 1 − sin
√

3t

2 sin
√

2t 1 − cos
√

3t 3 sin
√

2t

⎤

⎥⎥
⎦.

(5.2)

Then μ11(t) = 5 + sin t, μ12(t) = 5.5 + cos t, μ13(t) = 4 + sin t, μ21(t) = 6 + sin t, μ22(t) =
6− sin t, μ23(t) = 4+cos t, μ31(t) = 5+cos t, μ32(t) = 5+ sin t, μ33(t) = 5+cos t, αij(t) = βij(t) =
Mij =Nij = 0.1.

∑

Bkl∈Nr(1,1)

∣∣∣Bkl11(t)
∣∣∣ = 0.4|cos t| + 0.2|sin t|,

∑

Bkl∈Nr(1,2)

∣∣∣Bkl12(t)
∣∣∣ = 0.4|cos t| + 0.5|sin t|,

∑

Bkl∈Nr(1,3)

∣∣∣Bkl13(t)
∣∣∣ = 0.5|sin t|,

∑

Bkl∈Nr(2,1)

∣∣∣Bkl21(t)
∣∣∣ = 0.4|cos t| + 0.6|sin t|,
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Figure 1: States of networks (5.1) with t ∈ [0, 4].

∑

Bkl∈Nr(2,2)

∣∣∣Bkl22(t)
∣∣∣ = 0.8|cos t| + 0.7|sin t|,

∑

Bkl∈Nr(2,3)

∣∣∣Bkl23(t)
∣∣∣ = 0.7|cos t| + 0.4|sin t|,

∑

Bkl∈Nr(3,1)

∣∣∣Bkl31(t)
∣∣∣ = 0.3|cos t| + 0.4|sin t|,

∑

Bkl∈Nr(3,2)

∣∣∣Bkl32(t)
∣∣∣ = 0.7|cos t| + 0.5|sin t|,

∑

Bkl∈Nr(3,3)

∣∣∣Bkl33(t)
∣∣∣ = 0.4|cos t| + 0.5|sin t|,

∑

Ckl∈Nr(1,1)

∣∣∣Ckl
11(t)

∣∣∣ = 0.8|cos t| + 0.4|sin t|,

∑

Ckl∈Nr(1,2)

∣∣∣Ckl
12(t)

∣∣∣ = 1.1|cos t| + 0.9|sin t|,
∑

Ckl∈Nr(1,3)

∣∣∣Ckl
13(t)

∣∣∣ = 0.3|cos t| + 0.9|sin t|,

∑

Ckl∈Nr(2,1)

∣∣∣Ckl
21(t)

∣∣∣ = 1.4|cos t| + 0.9|sin t|,
∑

Ckl∈Nr(2,2)

∣∣∣Ckl
22(t)

∣∣∣ = 1.7|cos t| + 1.9|sin t|,

∑

Ckl∈Nr(2,3)

∣∣∣Ckl
23(t)

∣∣∣ = 0.9|cos t| + 1.4|sin t|,
∑

Ckl∈Nr(3,1)

∣∣∣Ckl
31(t)

∣∣∣ = 1.2|cos t| + 0.5|sin t|,

∑

Ckl∈Nr(3,2)

∣∣∣Ckl
32(t)

∣∣∣ = 1.2|cos t| + 1.5|sin t|,
∑

Ckl∈Nr(3,3)

∣∣∣Ckl
33(t)

∣∣∣ = 0.6|cos t| + |sin t|.

(5.3)

Take ξij = 1, i, j = 1, 2, 3. Computing by Matlab toolbox, we have η ≈ 0.0721 < 1,
R0 = I13/a13(1 − η) ≈ 1.0777, and Λ ≈ −2.6849 < 0. It is easy to check that all the conditions
needed in Corollary 4.2 with (A3) are satisfied. Therefore, system (5.1) has a unique almost
periodic solution x∗(t) with ‖x∗‖ ≤ 1.0777, which is globally exponentially stable. See Figures
1 and 2.

Remark 5.1. In (5.1), the behaved functions are all nonlinear. So, all the results in [5–20] and
the references therein are inapplicable for (5.1). This means that the results of this paper are
new and useful.
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Figure 2: States of networks (5.1) with t ∈ [0, 40].
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