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We present the normal and osculating planes of the curves parameterized by a compact subinterval
of a time scale.

1. Introduction

Concept of calculus on time scales (or measure chains) was initiated by Hilger and Aulbach
[1, 2] in order to unify discrete and continuous analyses. This theory is appealing because it
provides a useful tool for modeling dynamical processes. Since a time-scale is a closed subset
of the reals [3], curves may have scattered points in multidimensional time scale spaces.
Therefore, Δ-differentiation plays a major role in investigation of curves parameterized by
an arbitrary time scale.

The results in this paper were motivated by geometric interpretation of the results
presented in [4].

In this paper, we consider planes whose normal is Δ-differentiable vector that is each
component of the vector is Δ-differentiable (i.e., normal planes) and which contain first and
second order Δ-differentiable vectors (i.e., osculating planes). In this study we present the
normal and osculating planes of the curves parameterized by a compact subinterval of a time
scale. Since we need vector valued functions to study Δ-differentiable vectors of curves, we
first define the concept of vector valued functions on time scales in Section 2. In [5] Guseinov
and Özylmaz introduced the tangent line for Δ-regular curves in 3-dimensional time scales;
then in [4] Bohner and Guseinov obtained the equation of such tangent line. The tangent
line can also be studied in the concept of partial Δ-differentiation. In Section 3, we obtain
the equations of tangent vectors of planar curves by using partial Δ-differentiation. Then we
derive the equation of the normal plane for a Δ-regular curve. In Section 4, we present the
basic theorem to construct osculating plane of a curve and obtain the equation of this plane
by using first- and-second order Δ-derivatives.
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We refer the reader to resources such as [3, 4, 6, 7] and [8, 9] for more detailed
discussions on the calculus of time scales and on the differential geometry of curves,
respectively.

2. Vector-Valued Functions on Time Scales

Let n be fixed. Let Ti denote a time scale for each i ∈ {1, 2, . . . , n}. Let us set

Λn = T1 × T2 × · · · × Tn = {t = (t1, . . . , tn) : ti ∈ Ti ∀i ∈ {1, 2, . . . , n}}. (2.1)

We call Λn an n-dimensional time scale. Λn is also a complete metric space with

d
(
x, y
)
=

(
n∑

i

∣∣xi − yi

∣∣2
)1/2

for x, y ∈ Λn. (2.2)

Let a time-scale parameter t vary in an interval [a, b]. If to each value t ∈ [a, b]
we assign a vector r(t), then we say that a vector-valued function r(t) with argument
t ∈ [a, b] is given. Assume that coordinates x1, x2, . . . , xn are fixed; then the representation
of vector-valued function r(t) is equivalent to the representation of scalar functions
x1(t), x2(t), . . . , xn(t); that is, r(t) = {x1(t), . . . , xn(t)}.

Definition 2.1. A vector r0 is called the limit of the vector-valued function r(t) as t → t0 if the
length of the vector r(t) − r(t0) tends to zero as t → t0. Here we write

lim
t→ t0

r(t) = r(t0). (2.3)

It is clear that the vector-valued function r(t) has a limit if and only if each one of the functions
x1(t), . . . , xn(t) has a limit as t → t0.

Definition 2.2. Δ-Derivative of a vector-valued function can be obtained by Δ-differentiating
components x1(t), . . . , xn(t) of r(t); that is,

rΔ(t) =
{
xΔ
1 (t), . . . , x

Δ
n (t)
}
. (2.4)

Precisely, for the Δ-derivative rΔ(t) of the vector-valued function r(t), we call the limit

lim
s→ t

r(σ(t)) − r(s)
σ(t) − s

. (2.5)

If this limit exists, then r(t) is called Δ-differentiable.
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Proposition 2.3. Let r1(t) and r2(t) be vector-valued functions. Then

(i) (r1(t) + r2(t))
Δ = rΔ1 (t) + rΔ2 (t),

(ii) (r1r2)
Δ = rΔ1 r2 + rσ1 r

Δ
2 .

The Δ-differentiation of the inner products and vector products of vector-valued
functions, is computed by the consecutive differentiation of the cofactors.

Proposition 2.4. Let r1(t) and r2(t) be vector-valued functions, let × be Euclidean vector product, ·
and let Euclidean inner product. Then

(i) (r1 · r2)Δ = rΔ1 · r2 + rσ1 · rΔ2 ,
(ii) (r1 × r2)

Δ = rΔ1 × r2 + rσ1 × rΔ2 = rΔ1 × rσ2 + r1 × rΔ2 .

Definition 2.5 (Taylor’s expansion for vector-valued functions). Assume that n times Δ-
derivative of the vector-valued function r(t) exist and are rd-continuous, then we can write
Taylor’s expansions for the components; x1(t), . . . , xn(t) as

x1(t) = h0(t, t0)x1(t0) + h1(t, t0)xΔ
1 (t0) + h2(t, t0) xΔ2

1 (t0) + · · · + o1
(
gn(t, t0)

)

...

xn(t) = h0(t, t0) xn(t0) + h1(t, t0)xΔ
n (t0) + h2(t, t0)xΔ2

n (t0) + · · · + on
(
gn(t, t0)

)
,

(2.6)

where h0(r, s) ≡ 1, hk+1(r, s) =
∫ r
s hk(τ, s)Δτ for k ∈ N0, and

gn(t, t0) =
∫ρn−1(t)

t0

hn−1(t, σ(τ))xΔn

i (τ)Δτ (2.7)

for i = {1, . . . , n}.

This system of three equations can be written as

r(t) = h0(t, t0)r(t0) + h1(t, t0)rΔ(t0) + h2(t, t0)rΔ
2
(t0) + · · · + o

(
gn(t, t0)

)
, (2.8)

where o(gn(t, t0)) denotes a vector whose length is an infinitesimal since limt→ t0gn(t, t0) = 0.

Remark 2.6. There exists one essential difference between Taylor’s expansions of vector-
valued function and scalar function. If we consider Taylor’s expansion for a scalar function
f(t), then we have

o
(
gn(t, t0)

)
= fΔk+1

(ξ)hk+1(t, t0), (2.9)

where ξ is a point between ρn−1(t) and t0. For a vector-valued function we cannot write
similar formula for the corresponding infinitesimal vector, because in general for different
components of the vector o(gn(t, t0)) the corresponding points ξ are different. However, it is
more important to note that the length of the vector o(gn(t, t0)) is an infinitesimal with respect
to gn(t, t0).
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3. Tangent Line to a Curve

Let T be a time scale.

Definition 3.1. A Δ-regular curve Γ is defined as a mapping

x = f1(t), y = f2(t), z = f3(t), t ∈ [a, b] (3.1)

of the segment [a, b] ⊂ T, a < b, to the space R
3, where f1, f2, f3 are real-valued functions

defined on [a, b] and Δ-differentiable on [a, b]κ with rd-continuous Δ-derivatives and

∣
∣
∣fΔ

1 (t)
∣
∣
∣
2
+
∣
∣
∣fΔ

2 (t)
∣
∣
∣
2
+
∣
∣
∣fΔ

3 (t)
∣
∣
∣
2
/= 0. (3.2)

Definition 3.2. A line L0 passing through the point P0 is called the delta tangent line to the
curve Γ at the point P0 if the following held.

(i) L0 passes also through the point Pσ
0 = (x(σ(t0)), y(σ(t0)), z(σ(t0))).

(ii) If Po is not an isolated point of the curve Γ, then

lim
P →P0
P /=P0

d(P,L0)
d(P, P0)

, (3.3)

where P is the moving point of the curve Γ, d(P,L0) is the distance from the point P to the
line L0, and d(P, P0) is the distance from the point P to the point Pσ

0 .

Theorem 3.3. For any point P0 of the curve Γ there exists the tangent to Γ at P0 and the directing
vector of the tangent isΔ-differential of its position vector function rΔ(t0), where r(t0) = P0 for t0 ∈ T.

Proof. This theorem can be proven as in [5], Theorem 3.3.

Let three functions x : T → R, y : T → R, and z : T → R be given. Let us set
x(T) := T1, y(T) = T2, and z(T) = T3. We will assume that T1, T2, and T3 are time scales.
Denote by σ1 Δ1, σ2 Δ2, σ3 Δ3 the forward jump operators and delta operators for T1, T2, and
T3, respectively.

Under the above assumptions, let functions φ : T × T × T → R and ϕ : T × T × T → R

be given.
Consider a space curve given by two equations.

φ
(
x, y, z

)
= 0,

ϕ
(
x, y, z

)
= 0.

(3.4)
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If x = x(t), y = y(t), z = z(t) is the position vector of the considered curve, then, substituting
these three functions into (3.4), we obtain two equalities:

φ
(
x(t), y(t), z(t)

)
= 0,

ϕ
(
x(t), y(t), z(t)

)
= 0.

(3.5)

If the functions φ and ϕ are σ1-completely differentiable, then, Δ-differentiation of these two
equalities leads

∂φ

Δ1x
xΔ +

∂φσ1

Δ2y
yΔ +

∂φσ1

Δ3z
zΔ = 0,

∂ϕ

Δ1x
xΔ +

∂ϕσ1

Δ2y
yΔ +

∂ϕσ1

Δ3z
zΔ = 0.

(3.6)

If φ and ϕ are σ2-completely differentiable, then Δ-differentiation of (3.5) leads us to obtain
the following two equations:

∂φσ2

Δ1x
xΔ +

∂φ

Δ2y
yΔ +

∂φσ2

Δ3z
zΔ = 0,

∂ϕσ2

Δ1x
xΔ +

∂ϕ

Δ2y
yΔ +

∂ϕσ2

Δ3z
zΔ = 0.

(3.7)

If φ and ϕ are σ3-completely differentiable, then Δ-differentiation of (3.5) leads us to obtain
the following two equations:

∂φσ3

Δ1x
xΔ +

∂φσ3

Δ2y
yΔ +

∂φ

Δ3z
zΔ = 0,

∂ϕσ3

Δ1x
xΔ +

∂ϕσ3

Δ2y
yΔ +

∂ϕ

Δ3z
zΔ = 0.

(3.8)

Other combinations of σi-completely differentiability of φ and ϕ can be shown similarly. The
components {xΔ, yΔ, zΔ} of the tangent vector satisfy the system consisting of two equations:
(3.6), (3.7), and (3.8).

Assume that φ is σ1-completely differentiable planar curve given by the equations
φ(x, y) = 0, z = 0 satisfying the condition (∂φ/Δ1x)

2 + (∂φσ1/Δ2y)
2
/= 0; then the components

of the tangent vector rΔ = {xΔ, yΔ} are the solution of the linear equation

∂φ

Δ1x
xΔ +

∂φσ1

Δ2y
yΔ = 0. (3.9)
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Therefore, {xΔ, yΔ} = μ{−∂φσ1/Δ2y, ∂φ/Δ1x}, and the equation of tangent is

x̃ − x0

−∂φ(σ1(x0), y0
)
/Δ2y

=
ỹ − y0

∂φ
(
x0, y0

)
/Δ1x

. (3.10)

If planar curve φ is σ2-completely differentiable, then equation of tangent plane becomes

(x̃ − x0)
−(∂φ(x0, y0

)
/Δ2y

) =

(
ỹ − y0

)

∂φ
(
x0, σ2

(
y0
))
/Δ1x

. (3.11)

Definition 3.4. Let Γ be a smooth and completely differentiable space curve. The plane passing
through points P0 ∈ Γ and orthogonal to the vector tangent to Γ at P0 is called the plane normal
to Γ at P0.

Denote by r̂ the position vector of the normal plane. Since this plane is orthogonal to
the vector rΔ and contains the point with position vector r̂ − r(t0), the equation of the normal
plane is

(r̂ − r(t0)) · rΔ(t0) = 0. (3.12)

The vectors orthogonal to the tangent are called the vectors normal to Γ.

4. Osculating Plane of a Curve

Let P0 be a point of a curve Γ. Take two points Q1, Q2 ∈ Γ situated right side of Pσ
0 . If the

points Q1 and Q2 tend to Pσ
0 , then the limit position of the plane containing P0, P

σ
0 , Q1, Q2 is

called the osculating plane of Γ at the point P0.

Theorem 4.1. Let Γ be a Δ-regular curve represented as r = r(t). Assume that the vectors rΔ and
rΔ

2
are not collinear at point P0. Then there exists the osculating plane of Γ at P0 and it is spanned by

the vectors rΔ and rΔ
2
.

Proof. If P0 = Pσ
0 , that is, P0 is right-dense point of Γ, then this theorem can be proven as in

differential geometry concept.
Let P0 be a right-scattered point of Γ. Then, the positions vector of →

P0Q1

and →
P0Q2

are

a1 = r(t0 + τ1) − r(t0) and a2 = r(t0 + τ2) − r(t0), respectively. That is, these vectors, if linearly
independent, span the plane E.

This plane is also spanned by the vectors v(i) = ai/τi for i ∈ {1, 2} or by the vectors

v(1), w =
2
(
v(2) − v(1))

τ2 − τ1
. (4.1)

By the means of Taylor’s formula, we have

r(t0 + τi) = h0(t, t0)r(t0) + h1(t, t0)rΔ(t0) + h2(t, t0)rΔ
2
(t0) + o

(
g2(t0)

)
. (4.2)
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Hence, we obtain

v(1) = rΔ(t0) +
τ1
2
rΔ

2
(t0) + o(τ1),

w = rΔ
2
(t0) + o(1).

(4.3)

Consequently, if τi → 0 for i ∈ {1, 2}, then v(1) → rΔ(t0) and w → rΔ
2
(t0).

These vectors, if linearly independent, determine the limiting position of the plane E
passing through the points P0, P

σ
0 , Q1, Q2.

Corollary 4.2. If the vectors rΔ(t0) and rΔ
2
(t0) are collinear, then the limit position of considering

plane is not determined. For instance, take a straight line

r(t) = a + bt, (4.4)

where a, b are constant vectors and t ∈ T. Then

rΔ(t0) = b, rΔ
2
(t0) = 0, (4.5)

so the osculating plane of the straight line is not determined uniquely. If rΔ(t) and rΔ
2
(t) are collinear,

then the corresponding point of Γ is called the straightening point of Γ.

Theorem 4.3. The osculating plane of a planar curve coincides with the plane containing this curve.

Proof. Let us consider the Taylor expansion of the position vector r(t) at the neighborhood of
P0:

r(t0 + τ) = h0(t, t0)r(t0) + h1(t, t0)rΔ(t0) + h2(t, t0)rΔ
2
(t0) + o

(
g2(t, t0)

)
. (4.6)

The curve Γ, determined by the expantion,

r = h0(t, t0)r(t0) + h1(t, t0)rΔ(t0) + h2(t, t0)rΔ
2
(t0) (4.7)

is situated in the osculating plane of Γ at P0; the difference between the position vectors of Γ
and Γ is a sufficiently small vector

r(t0 + τ) − r(τ) = o
(
g2(t, t0)

)
. (4.8)

Hence a sufficiently small neighborhood of P0 on the space curve Γ is near to the planar curve
Γ situated in the osculating plane of Γ at P0.
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Now let us write the equation of the osculating plane of Γ at P0. Let r̂ be the position
vector of the osculating plane. Since rΔ and rΔ

2
span the osculating plane, the vector product

rΔ × rΔ
2
is orthogonal to the osculating plane. The vector r̂ − r(t0) belongs to the osculating

plane; therefore, the inner product of these vectors is equal to zero:

(r̂ − r(t0)) ·
(
rΔ × rΔ

2
)
= 0. (4.9)

With respect to coordinate functions, this equation has the following form:

det

⎛

⎜
⎝

x̂ − x(t0) xΔ xΔ2

ŷ − y(t0) yΔ yΔ2

ẑ − z(t0) zΔ zΔ
2

⎞

⎟
⎠ = 0. (4.10)
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