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The upper and lower solutions method is used to study the p-Laplacian fractional boundary value
problem D

γ

0+(φp(Dα
0+u(t))) = f(t, u(t)), 0 < t < 1, u(0) = 0, u(1) = au(ξ), Dα

0+u(0) = 0, and
Dα

0+u(1) = bDα
0+u(η), where 1 < α, γ � 2, 0 � a, b � 1, 0 < ξ, η < 1. Some new results on

the existence of at least one positive solution are obtained. It is valuable to point out that the
nonlinearity f can be singular at t = 0, 1 or u = 0.

1. Introduction

It is well know that the upper and lower solutions method is a powerful tool for proving
the existence results for boundary value problem. It has been used to deal with many
multipoint boundary value problem of integer ordinary differential equations (see, e.g., [1–3]
and references therein).

Recently, boundary value problems of nonlinear fractional differential equations have
aroused considerable attention. Many people pay attention to the existence and multiplicity
of solutions or positive solutions for boundary value problems of nonlinear fractional
differential equations by means of some fixed point theorems, such as the Krasnosel’skii
fixed-point theorem, the Leggett-Williams fixed-point theorem, and the Schauder fixed-point
theorem (see [4–8]). To the best of our knowledge, the upper and lower solutions method
is seldom considered in the literatures, and there are few papers devoted to investigate p-
Laplacian fractional boundary value problems.

In this paper, we deal with the following p-Laplacian fractional boundary value
problem:

D
γ

0+

(
φp

(
Dα

0+u(t)
))

= f(t, u(t)), 0 < t < 1,

u(0) = 0, u(1) = au(ξ), Dα
0+u(0) = 0, Dα

0+u(1) = bDα
0+u
(
η
)
,

(1.1)
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where 1 < α, γ � 2, 0 � a, b � 1, 0 < ξ, η < 1, and Dα is the standard Riemann-Liouville
fractional differential operator of order α, φp(s) = |s|p−2s, p > 1, (φp)

−1 = φq, (1/p) + (1/q) =
1. By using upper and lower solutions method, the existence results of at least one positive
solution for the above fractional boundary value problem are established, and an example is
given to show the effectiveness of our results. It is valuable to point out that the nonlinearity
f can be singular at t = 0, 1 or u = 0.

The remaining part of the paper is organized as follows. In Section 2, we will present
some definitions and lemmas. In Section 3, some results are given. In Section 4, we present an
example to demonstrate our results.

2. Basic Definitions and Preliminaries

In this section, we present some necessary definitions and lemmas.

Definition 2.1 (see [9]). The integral

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds, (2.1)

where α > 0, is called the Riemann-Liouville fractional integral of order α.

Definition 2.2 (see [10]). For a function y(t) given in the interval [0,∞), the expression

Dα
0+y(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α−1y(s)ds, (2.2)

where n = [α] + 1, and [α] denotes the integer part of number α, is called the Riemann-
Liouville fractional derivative of order α.

Remark 2.3. From the definition of the Riemann-Liouville fractional derivative, we quote for
μ > −1, then

Dα
0+t

μ =
Γ
(
1 + μ

)

Γ
(
1 + μ − α

) tμ−α. (2.3)

In particular,Dα
0+t

α−m = 0, m = 1, 2, . . . ,N,whereN is the smallest integer greater than
or equal to α.

Lemma 2.4 (see [4]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0
that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CNtα−N, (2.4)

for some Ci ∈ R, i = 1, 2, . . .N, whereN is the smallest integer greater than or equal to α.



Abstract and Applied Analysis 3

Lemma 2.5 (see [6]). Let y ∈ C[0, 1] and 1 < α � 2, the unique solution of

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = 0, u(1) = au(ξ),
(2.5)

is

u(t) =
∫1

0
G(t, s)y(s)ds, (2.6)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[t(1 − s)]α−1 − atα−1(ξ − s)α−1 − (t − s)α−1
(
1 − aξα−1

)

(
1 − aξα−1

)
Γ(α)

, 0 � s � t � 1, s � ξ,

[t(1 − s)]α−1 − (t − s)α−1
(
1 − aξα−1

)

(
1 − aξα−1

)
Γ(α)

, 0 < ξ � s � t � 1,

[t(1 − s)]α−1 − atα−1(ξ − s)α−1
(
1 − aξα−1

)
Γ(α)

, 0 � t � s � ξ � 1,

[t(1 − s)]α−1
(
1 − aξα−1

)
Γ(α)

, 0 � t � s � 1, ξ � s.

(2.7)

Lemma 2.6. Let y ∈ C[0, 1], 1 < α, γ � 2, 0 < ξ, η < 1, 0 � a, and b � 1. The fractional boundary
value problem

D
γ

0+

(
φp

(
Dα

0+u(t)
))

= y(t), 0 < t < 1,

u(0) = 0, u(1) = au(ξ), Dα
0+u(0) = 0, Dα

0+u(1) = bDα
0+u
(
η
)
,

(2.8)

has a unique solution

u(t) =
∫1

0
G(t, s)φq

(∫1

0
H(s, τ)y(τ)dτ

)

ds, (2.9)
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where

H(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[t(1 − s)]γ−1 − b1t
γ−1(η − s

)γ−1 − (t − s)γ−1
(
1 − b1η

γ−1)

(
1 − b1ηγ−1)Γ

(
γ
) , 0 � s � t � 1, s � η,

[t(1 − s)]γ−1 − (t − s)γ−1
(
1 − b1η

γ−1)

(
1 − b1ηγ−1)Γ

(
γ
) , 0 < η � s � t � 1,

[t(1 − s)]γ−1 − b1t
γ−1(η − s

)γ−1
(
1 − b1ηγ−1)Γ

(
γ
) , 0 � t � s � η � 1,

[t(1 − s)]γ−1
(
1 − b1ηγ−1)Γ

(
γ
) , 0 � t � s � 1, η � s,

(2.10)

b1 = bp−1 and G(t, s) is defined by (2.7).

Proof. At first, by Lemma 2.4, the (2.8) is equivalent to the integral equation

φp

(
Dα

0+u(t)
)
= I

γ

0+y(t) + C1t
γ−1 + C2t

γ−2, C1, C1 ∈ R, (2.11)

that is,

φp

(
Dα

0+u(t)
)
=
∫ t

0

(t − τ)γ−1

Γ
(
γ
) y(τ)dτ + C1t

γ−1 + C2t
γ−2. (2.12)

By the boundary conditions Dα
0+u(0) = 0, Dα

0+u(1) = bDα
0+u(η),we have

C2 = 0, C1 = −
∫1

0

(1 − τ)γ−1

Γ
(
γ
)(
1 − b1ηγ−1)y(τ)dτ +

∫η

0

b1
(
η − τ

)γ−1

Γ
(
γ
)(
1 − b1ηγ−1)y(τ)dτ. (2.13)

Therefore, the solution u(t) of boundary value problem (2.8) satisfies

φp

(
Dα

0+u(t)
)
=
∫ t

0

(t − τ)γ−1

Γ
(
γ
) y(τ)dτ −

∫1

0

tγ−1(1 − τ)γ−1

Γ
(
γ
)(
1 − b1ηγ−1)y(τ)dτ

+
∫η

0

b1t
γ−1(η − τ

)γ−1

Γ
(
γ
)(
1 − b1ηγ−1)y(τ)dτ

= −
∫1

0
H(t, τ)y(τ)dτ.

(2.14)
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Consequently,Dα
0+u(t)+φq(

∫1
0 H(t, τ)y(τ)dτ) = 0. So, fractional boundary value problem (2.8)

is equivalent to the following problem:

Dα
0+u(t) + φq

(∫1

0
H(t, τ)y(τ)dτ

)

= 0, 0 < t < 1,

u(0) = 0, u(1) = au(ξ).

(2.15)

Lemma 2.5 implies that fractional boundary value problem (2.8) has a unique solution

u(t) =
∫1

0
G(t, s)φq

(∫1

0
H(s, τ)y(τ)dτ

)

ds. (2.16)

The proof is completed.

Lemma 2.7. Let 0 � a, b � 1, 0 < ξ, η < 1, 1 < α, and γ � 2. The functions G(t, s) and H(t, s)
defined by (2.7) and (2.10), respectively, are continuous on [0, 1] × [0, 1] and satisfy

(1) G(t, s) � 0,H(t, s) � 0, for t, s ∈ [0, 1];

(2) G(t, s) � G(s, s),H(t, s) � H(s, s) for t, s ∈ [0, 1];

(3) G(t, s)/G(1, s) � tα−1, for t, s ∈ (0, 1).

Proof. The proofs of part (1) and part (2) can be obtained in [6]. Here, we only prove part (3).
If 0 < s � t < 1, s � ξ, then

G(t, s)
G(1, s)

=
[t(1 − s)]α−1 − atα−1(ξ − s)α−1 − (t − s)α−1

(
1 − aξα−1

)

aξα−1(1 − s)α−1 − a(ξ − s)α−1

= tα−1 · (1 − s)α−1 − a(ξ − s)α−1 − (1 − (s/t))α−1
(
1 − aξα−1

)

aξα−1(1 − s)α−1 − a(ξ − s)α−1
� tα−1.

(2.17)

If 0 < ξ � s � t < 1, then

G(t, s)
G(1, s)

=
[t(1 − s)]α−1 − (t − s)α−1

(
1 − aξα−1

)

aξα−1(1 − s)α−1

= tα−1 · (1 − s)α−1 − (1 − (s/t))α−1
(
1 − aξα−1

)

aξα−1(1 − s)α−1
� tα−1.

(2.18)

If 0 < t � s � ξ < 1, then

G(t, s)
G(1, s)

=
[t(1 − s)]α−1 − atα−1(ξ − s)α−1

aξα−1(1 − s)α−1 − a(ξ − s)α−1

= tα−1 · (1 − s)α−1 − a(ξ − s)α−1

aξα−1(1 − s)α−1 − a(ξ − s)α−1
� tα−1.

(2.19)
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If 0 < t � s < 1, ξ � s, then

G(t, s)
G(1, s)

=
[t(1 − s)]α−1

aξα−1(1 − s)α−1
= tα−1 · (1 − s)α−1

aξα−1(1 − s)α−1
� tα−1. (2.20)

The above inequalities imply that part (3) of Lemma 2.7 holds.

From Lemmas 2.5 and 2.7, it is easy to obtain the following lemma.

Lemma 2.8. Let 0 � a � 1, 0 < ξ < 1, 1 < α � 2. If y(t) ∈ C[0, 1], and y(t) � 0, then fractional
boundary value problem (2.5) has a unique solution u(t) � 0, t ∈ [0, 1].

Let E = {u : u, φp(Dα
0+u) ∈ C2[0, 1]}. Now one introduces the following definitions about the

upper and lower solutions of fractional boundary value problem (1.1).

Definition 2.9. A function α(t) is called a lower solution of fractional boundary value problem
(1.1), if α(t) ∈ E and α(t) satisfies

D
γ

0+

(
φp

(
Dα

0+α(t)
))

� f(t, α(t)), 0 < t < 1, 1 < α, γ � 2,

α(0) � 0, α(1) � aα(ξ),

Dα
0+α(0) � 0, Dα

0+α(1) � bDα
0+α
(
η
)
.

(2.21)

Definition 2.10. A function β(t) is called an upper solution of fractional boundary value
problem (1.1), if β(t) ∈ E and β(t) satisfies

D
γ

0+

(
φp

(
Dα

0+β(t)
))

� f
(
t, β(t)

)
, 0 < t < 1, 1 < α, γ � 2,

β(0) � 0, β(1) � aβ(ξ),

Dα
0+β(0) � 0, Dα

0+β(1) � bDα
0+β
(
η
)
.

(2.22)

3. Main Result

In this section, our objective is to give and prove our main results.
For the sake of simplicity, we assume that

(H1) f(t, u) ∈ C[(0, 1) × (0,+∞), [0,+∞)] and f(t, u) is nonincreasing relative to u;

(H2) For any constant μ > 0, 0 <
∫1
0 H(s, s)f(s, μsα−1)ds < +∞;

(H3) There exist a continuous function m(t) and a positive number λ such that m(t) �
λtα−1, t ∈ [0, 1], and

∫1

0
G(t, s)φq

(∫1

0
H(s, τ)f(τ,m(τ))dτ

)

ds = n(t) � m(t),

∫1

0
G(t, s)φq

(∫1

0
H(s, τ)f(τ, n(τ))dτ

)

ds � m(t).

(3.1)
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We define P =: {u ∈ C[0, 1] : there exists a number λu > 0 such that u(t) � λut
α−1, t ∈

[0, 1]}. And define an operator T by

Tu(t) =
∫1

0
G(t, s)φq

(∫1

0
H(s, τ)f(τ, u(τ))dτ

)

ds, ∀u ∈ P. (3.2)

Theorem 3.1. Suppose that conditions (H1) ∼ (H3) are satisfied, then the boundary value problem
(1.1) has at least one positive solution ρ(t), which satisfies ρ(t) � μtα−1 for some positive number μ.

Proof. We will divide our proof into four steps.

Step 1. We prove that T(P) ⊆ P .
Firstly, from Lemma 2.7 and conditions (H1)∼(H2), for any u ∈ P , there exists λu > 0,

such that

∫1

0
H(s, τ)f(τ, u(τ))dτ �

∫1

0
H(τ, τ)f

(
τ, λuτ

α−1
)
dτ < +∞. (3.3)

Thus,

Tu(t) =
∫1

0
G(t, s)φq

(∫1

0
H(s, τ)f(τ, u(τ))dτ

)

ds

�
∫1

0
G(s, s)ds · φq

(∫1

0
H(τ, τ)f

(
τ, λuτ

α−1
)
dτ

)

< +∞.

(3.4)

Secondly, it follows from Lemma 2.7 that

Tu(t) =
∫1

0

G(t, s)
G(1, s)

G(1, s)φq

(∫1

0
H(s, τ)f(τ, u(τ))dτ

)

ds

� tα−1
∫1

0
G(1, s)φq

(∫1

0
H(s, τ)f(τ, u(τ))dτ

)

ds

= λTut
α−1, ∀t ∈ [0, 1].

(3.5)

Consequently, T is well defined and T(P) ⊆ P.
In the meanwhile, by direct computations, we can obtain

D
γ

0+

(
φp

(
Dα

0+(Tu)(t)
))

= f(t, u(t)), 0 < t < 1, 1 < α, γ � 2, (3.6)

(Tu)(0) = 0, (Tu)(1) = a(Tu)(ξ),

Dα
0+(Tu)(0) = 0, Dα

0+(Tu)(1) = bDα
0+(Tu)

(
η
)
.

(3.7)
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Step 2. We will prove that the functions α(t) = Tn(t), β(t) = Tm(t) are lower and upper
solutions of fractional boundary value problem (1.1), respectively.

From (H1), we know that T is nonincreasing relative to u. Combining (H3), we have

m(t) � n(t) = Tm(t), Tn(t) � n(t) = Tm(t), t ∈ [0, 1]. (3.8)

Therefore, α(t) � β(t).
By Step 1, we know α(t), β(t) ∈ P. And by (3.6)∼(3.8), we obtain

D
γ

0+

(
φp

(
Dα

0+(α)(t)
)) − f(t, α(t)) � D

γ

0+

(
φp

(
Dα

0+(Tn)(t)
)) − f(t, n(t)) = 0,

α(0) = 0, α(1) = aα(ξ), Dα
0+α(0) = 0, Dα

0+α(1) = bDα
0+α
(
η
)
,

D
γ

0+

(
φp

(
Dα

0+

(
β
)
(t)
)) − f

(
t, β(t)

)
� D

γ

0+

(
φp

(
Dα

0+(Tm)(t)
)) − f(t,m(t)) = 0,

β(0) = 0, β(1) = aβ(ξ), Dα
0+β(0) = 0, Dα

0+β(1) = bDα
0+β
(
η
)
,

(3.9)

that is, α(t) and β(t) are lower and upper solutions of fractional boundary value problem
(1.1), respectively.

Step 3. We will show that the fractional boundary value problem

D
γ

0+

(
φp

(
Dα

0+u(t)
))

= g(t, u(t)), 0 < t < 1, 1 < α, γ � 2,

u(0) = 0, u(1) = au(ξ), Dα
0+u(0) = 0, Dα

0+u(1) = bDα
0+u
(
η
)
,

(3.10)

has a positive solution, where

g(t, u(t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(t, α(t)) if u(t) < α(t),

f(t, u(t)) if α(t) � u(t) � β(t),

f
(
t, β(t)

)
if u(t) > β(t).

(3.11)

Thus, we consider the operator A : C[0, 1] → C[0, 1] defined as follows:

Au(t) =
∫1

0
G(t, s)φq

(∫1

0
H(s, τ)g(τ, u(τ))dτ

)

ds, (3.12)

where G(t, s) is defined as (2.7), H(t, s) is defined as (2.10). It is clear that Au � 0, for all u ∈
P , and a fixed point of the operator A is a solution of the fractional boundary value problem
(3.10).
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Since α(t) ∈ P , there exists a positive number λα such that α(t) � λαt
α−1, t ∈ [0, 1]. It

follows from (H2) that

∫1

0
H(τ, τ)g(τ, α(τ))dτ �

∫1

0
H(τ, τ)f(τ, α(τ))dτ

�
∫1

0
H(τ, τ)f

(
τ, λατ

α−1
)
dτ < +∞.

(3.13)

Consequently, for all u(t) ∈ C[0, 1], we have

Au(t) =
∫1

0
G(t, s)φq

(∫1

0
H(s, τ)g(τ, u(τ))dτ

)

ds

�
∫1

0
G(s, s)φq

(∫1

0
H(τ, τ)g(τ, u(τ))dτ

)

ds

�
∫1

0
G(s, s)ds · φq

(∫1

0
H(τ, τ)f(τ, α(τ))dτ

)

< +∞,

(3.14)

which implies that the operator A is uniformly bounded.
On the other hand, since G(t, s) is continuous on [0, 1] × [0, 1], it is uniformly

continuous on [0, 1] × [0, 1]. So, for fixed s ∈ [0, 1] and for any ε > 0, there exists a constant
δ > 0, such that any t1, t2 ∈ [0, 1] and |t1 − t2| < δ,

|G(t1, s) −G(t2, s)| < ε

φ
(∫1

0 (τ, τ)f
(
τ, λατα−1

)
dτ
) . (3.15)

Then, for all u(t) ∈ C[0, 1],

|Au(t2) −Au(t1)| �
∫1

0
|G(t2, s) −G(t1, s)|φq

(∫1

0
H(τ, τ)g(τ, u(τ))dτ

)

ds

�
∫1

0
|G(t2, s) −G(t1, s)|φq

(∫1

0
H(τ, τ)f(τ, α(τ))dτ

)

ds

�
∫1

0
|G(t2, s) −G(t1, s)|ds · φq

(∫1

0
H(τ, τ)f

(
τ, λατ

α−1
)
dτ

)

< ε,

(3.16)

that is to say, A is equicontinuous. Thus, from the Arzela-Ascoli Theorem, we know that A is
a compact operator. By the Schauder’s fixed-point theorem, the operator A has a fixed point;
that is, the fractional boundary value problem (3.10) has a positive solution.
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Step 4. We will prove that fractional boundary value problem (1.1) has at least one positive
solution.

Suppose that ρ(t) is a solution of (3.10), we only need to prove that α(t) � ρ(t) �
β(t), t ∈ [0, 1].

Let ρ(t) be a solution of (3.10). We have

ρ(0) = 0, ρ(1) = aρ(ξ), Dα
0+ρ(0) = 0, Dα

0+ρ(1) = bDα
0+ρ
(
η
)
. (3.17)

In addition, the function f(t, u) is nonincreasing in u, we know that

f
(
t, β(t)

)
� g
(
t, ρ(t)

)
� f(t, α(t)), t ∈ [0, 1]. (3.18)

It follows from (3.8) and (H3) that

f(t, n(t)) � g
(
t, ρ(t)

) ≤ f(t,m(t)), t ∈ [0, 1]. (3.19)

By (3.6) and m(t) ∈ P, we obtain

D
γ

0+

(
φp

(
Dα

0+β(t)
))

= D
γ

0+

(
φp

(
Dα

0+(Tm)(t)
))

= f(t,m(t)), t ∈ [0, 1]. (3.20)

Together with (3.7), (3.17)−(3.20), we obtain

D
γ

0+

(
φp

(
Dα

0+β(t)
)) −D

γ

0+

(
φp

(
Dα

0+ρ(t)
))

= f(t,m(t)) − g
(
t, ρ(t)

)
� 0, t ∈ [0, 1],

(
β − ρ

)
(0) = 0,

(
β − ρ

)
(1) = a

(
β − ρ

)
(ξ),

Dα
0+

(
β − ρ

)
(0) = 0, Dα

0+

(
β − ρ

)
(1) = bDα

0+

(
β − ρ

)(
η
)
.

(3.21)

Let z(t) = φp(Dα
0+β(t)) − φp(Dα

0+ρ(t)),we obtain

D
γ

0+

(
φp

(
Dα

0+β(t)
)) −D

γ

0+

(
φp

(
Dα

0+ρ(t)
))

� f
(
t, β(t)

) − g
(
t, ρ(t)

)
� 0, t ∈ [0, 1] (3.22)

and z(0) = 0, z(1) − φp(b)z(η) = 0.
By Lemma 2.8, we know z(t) � 0, t ∈ [0, 1], which implies that

φp

(
Dα

0+β(t)
)

� φp

(
Dα

0+ρ(t)
)
, t ∈ [0, 1]. (3.23)

Since φp is monotone increasing, we have Dα
0+β(t) � Dα

0+ρ(t), that is, D
α
0+(β − ρ)(t) � 0. By

Lemma 2.8 and (3.21), we have (β − ρ)(t) � 0. Therefore, β(t) � ρ(t), t ∈ [0, 1].
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In the similar way, we can prove that α(t) � ρ(t), t ∈ [0, 1]. Consequently, ρ(t) is a
positive solution of fractional boundary value problem (1.1). This completes the proof.

Theorem 3.2. If f(t, u) ∈ C([0, 1] × [0,+∞), [0,+∞)) is nonincreasing relative to u and f(t, u)
does not vanish identically for any u > 0, then the fractional boundary value problem (1.1) has at least
one positive solution ρ(t), which satisfies ρ(t) � μtα−1 for some positive number μ.

The proof is similar to Theorem 3.1, we omit it here.

4. Example

Example 4.1. As an example, we consider the fractional boundary value problem

D4/3
0+

(
φp

(
D3/2

0+ u(t)
))

= t2 +
1√
u
, 0 < t < 1,

u(0) = 0, u(1) =
1
3
u

(
1
2

)
, D3/2

0+ u(0) = 0, D3/2
0+ u(1) =

1
2
D3/2

0+ u

(
2
3

)
.

(4.1)

Proof. It is clear that (H1) holds. For any λ > 0,

∫1

0
H(τ, τ)f

(
τ, λτ ((3/2)−1)

)
dτ =

∫1

0
H(τ, τ)

(
τ2 +

1√
λτ1/4

)
dτ < +∞, (4.2)

which implies that (H2) holds.
For 0 < r < 1, f(t, u) = t2 + (1/

√
u) � t2 + (1/

√
ru) � r−1/2f(t, u). Let a(t) = t1/2, by

(3.5), we have

b(t) =: Ta(t) =
∫1

0
G(t, s)φq

(∫1

0
H(s, τ)f(τ, a(τ))dτ

)

ds ∈ P, (4.3)

and Tb(t) = T2a(t) ∈ P, that is, there exist positive numbers λ1, λ2, such that Ta(t) � λ1a(t),
T2a(t) � λ2a(t).

Choose a positive number λ0 � {1, λ1, λ4/32 } and combining the monotonicity of T , we
have

T(λ0a(t)) � Ta(t) � λ1a(t) � λ0a(t),

T2(λ0a(t)) � λ1/40 T2a(t) � λ1/40 λ2a(t) � λ0a(t).
(4.4)
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Taking m(t) = λ0t
1/2, then,

n(t) = Tm(t) =
∫1

0
G(t, s)φq

(∫1

0
H(s, τ)f

(
τ, λ0τ

1/2
)
dτ

)

ds

� λ0t
1/2 = m(t),

Tn(t) = T2m(t) =
∫1

0
G(t, s)φq

(∫1

0
H(s, τ)f

(
τ, T
(
λ0τ

1/2
))

dτ

)

ds

� λ0t
1/2 = m(t),

(4.5)

that is to say, the condition (H3) holds. Theorem 3.1 implies that the fractional boundary
value problem (4.1) has at least one positive solution.
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