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LetA denote the operator generated in L2(R+) by the Sturm-Liouville problem: −y′′ + q(x)y = λ2y,
x ∈ R+ = [0,∞), (y′/y)(0) = (β1λ + β0)/(α1λ + α0), where q is a complex valued function and
α0, α1, β0, β1 ∈ C, with α0β1 − α1β0 /= 0. In this paper, using the uniqueness theorems of analytic
functions, we investigate the eigenvalues and the spectral singularities of A. In particular, we
obtain the conditions on q under which the operator A has a finite number of the eigenvalues
and the spectral singularities.

1. Introduction

Let L denote the non-self-adjoint Sturm-Liouville operator generated in L2(R+) by the
differential expression

l
(
y
)
= −y′′ + q(x)y, x ∈ R+ (1.1)

and the boundary condition y(0) = 0, where q is a complex valued function. The spectral
analysis of L with continuous and discrete spectrum was studied by Naı̆mark [1]. In this
article, the spectrum of Lwas investigated and shown that it is composed of the eigenvalues,
the continuous spectrum and the spectral singularities.The spectral singularities of L are poles
of the resolvent which are imbedded in the continuous spectrum and are not the eigenvalues.
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If the function q satisfies the Naı̆mark condition, that is,

∫∞

0
eεx

∣
∣q(x)

∣
∣dx < ∞ (1.2)

for some ε > 0, then L has a finite number of the eigenvalues and spectral singularities with
finite multiplicities.

The results of Naı̆mark were extended to the Sturm-Liouville operators on the entire
real axis by Kemp [2] and to the differential operators with a singularity at the zero point
by Gasymov [3]. The spectral analysis of dissipative Sturm-Liouville operators with spectral
singularities was considered by Pavlov [4]. A very important development in the spectral
analysis of L was made by Lyance [5, 6]. He showed that the spectral singularities play
an important role in the spectral theory of L. He also investigated the effect of the spectral
singularities in the spectral expansion. The spectral singularities of the non-self-adjoint
Sturm-Liouville operator generated in L2(R+) by (1.1) and the boundary condition

∫∞

0
K(x)y(x)dx + αy′(0) − βy(0) = 0, (1.3)

in whichK ∈ L2(R+) is a complex valued function and α, β ∈ C,was studied in detail by Krall
[7–9].

Some problems of spectral theory of differential and difference operators with spectral
singularities were also investigated in [10–16]. Note that, the boundary conditions used in [1–
17] are independent of spectral parameter. In recent years, various problems of the spectral
theory of regular Sturm-Liouville problem whose boundary conditions depend on spectral
parameter have been examined in [18–22].

Let us consider the boundary value problem

−y′′ + q(x)y = λ2y, x ∈ R+, (1.4)

y′

y
(0) =

β1λ + β0
α1λ + α0

, (1.5)

where q is a complex valued function and α0, α1, β0, β1 are complex numbers such that α0β1 −
α1β0 /= 0. ByAwewill denote the operator generated in L2(R+) by (1.4) and (1.5). In this paper
we discuss the discrete spectrum of A and prove that the operator A has a finite number of
eigenvalues and spectral singularities and each of them is of finite multiplicity if

lim
x→∞

q(x) = 0,
∫∞

0
eεx

δ∣∣q′(x)
∣∣dx < ∞ (1.6)

for some ε > 0 and 1/2 ≤ δ < 1. We also show that the analogue of the Naı̆mark condition for
A is the form

lim
x→∞

q(x) = 0,
∫∞

0
eεx

∣∣q′(x)
∣∣dx < ∞ (1.7)

for some ε > 0.
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2. Jost Solution of (1.4)

We will denote the solution of (1.4) satisfying the condition

lim
x→∞

y(x, λ)e−iλx = 1, λ ∈ C+ := {λ : λ ∈ C, Imλ ≥ 0}, (2.1)

by e(x, λ). The solution e(x, λ) is called the Jost solution of (1.4). Under the condition

∫∞

0
x
∣
∣q(x)

∣
∣dx < ∞, (2.2)

the Jost solution has a representation

e(x, λ) = eiλx +
∫∞

x

K(x, t)eiλtdt (2.3)

for λ ∈ C+, where the kernel K(x, t) satisfies

K(x, t) =
1
2

∫∞

(x+t)/2
q(ξ)dξ +

1
2

∫ (x+t)/2

x

∫ t+ξ−x

t+x−ξ
K
(
ξ, η

)
q(ξ)dη dξ

+
1
2

∫∞

(x+t)/2

∫ t+ξ−x

ξ

K
(
ξ, η

)
q(ξ)dη dξ.

(2.4)

Moreover, K(x, t) is continuously differentiable with respect to its arguments and

|K(x, t)| ≤ c

∫∞

(x+t)/2

∣∣q(ξ)
∣∣dξ, (2.5)

|Kx(x, t)|, |Kt(x, t)| ≤ 1
4

∣∣∣∣q
(
x + t

2

)∣∣∣∣ + c

∫∞

(x+t)/2

∣∣q(ξ)
∣∣dξ, (2.6)

where c > 0 is a constant [23, Chapter 3].
The solution e(x, λ) is analytic with respect to λ in C+ := {λ : λ ∈ C, Imλ > 0} and

continuous on the real axis.
LetAC(R+) denote the class of complex valued absolutely continuous functions inR+.

In the sequel we will need the following.
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Lemma 2.1. If

q ∈ AC(R+), lim
x→∞

q(x) = 0,
∫∞

0
x2∣∣q′(x)

∣
∣dx < ∞, (2.7)

then Kxt(x, t) := (∂2/∂t∂x)K(x, t) exists and

Kxt(x, t) = −1
8
q′
(
x + t

2

)
− 1
4
K

(
x + t

2
,
x + t

2

)
q

(
x + t

2

)

− 1
2

∫ (x+t)/2

x

[Kt(ξ, t + x − ξ) +Kt(ξ, t − x + ξ)]q(ξ)dξ

− 1
2

∫∞

(x+t)/2
Kt(ξ, t − x + ξ)q(ξ)dξ.

(2.8)

The proof of the lemma is the direct consequence of (2.4).
From (2.5)–(2.8) we find that

|Kxt(0, t)| ≤ c

[∣∣∣∣q
(
t

2

)∣∣∣∣ +
∣∣∣∣q

′
(
t

2

)∣∣∣∣ +
∫∞

t/2

∣∣q(ξ)
∣∣dξ

]
, (2.9)

where c > 0 is a constant.

3. The Green Function and the Continuous Spectrum

Let ϕ(x, λ) denote the solution of (1.4) subject to the initial conditions ϕ(0, λ) = α0 +
α1λ, ϕ

′(0, λ) = β0 + β1λ. Therefore ϕ(x, λ) is an entire function of λ.
Let us define the following functions:

D±(λ) = (α0 + α1λ)ex(0,±λ) −
(
β0 + β1λ

)
e(0,±λ) λ ∈ C±, (3.1)

where C± = {λ : λ ∈ C, ± Imλ ≥ 0}. It is obvious that the functions D+ and D− are analytic in
C+ and C− := {λ : λ ∈ C, Imλ < 0}, respectively and continuous on the real axis.

Let

G(x, t;λ) =

⎧
⎨

⎩

G+(x, t;λ), λ ∈ C+,

G−(x, t;λ), λ ∈ C−
(3.2)

be the Green function of A (obtained by the standard techniques), where

G±(x, t;λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−e(x,±λ)ϕ(t, λ)
D±(λ)

, 0 ≤ t ≤ x,

−e(t,±λ)ϕ(x, λ)
D±(λ)

, x ≤ t < ∞.

(3.3)
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We will denote the continuous spectrum of A by σc. Using (3.1)–(3.3) in a way similar to
Theorem 2 [17, page 303], we get the following:

σc = R. (3.4)

4. The Discrete Spectrum of the Operator A

Let us denote the eigenvalues and the spectral singularities of the operator A by σd and σss

respectively. From (2.3) and (3.1)–(3.4) it follows that

σd = {λ : λ ∈ C+, D+(λ) = 0} ∪ {λ : λ ∈ C−, D−(λ) = 0},
σss = {λ : λ ∈ R∗, D+(λ) = 0} ∪ {λ : λ ∈ R∗, D−(λ) = 0},

(4.1)

where R∗ = R − {0}.

Definition 4.1. The multiplicity of a zero of D+ (or D−) in C+ (or C−) is defined as the
multiplicity of the corresponding eigenvalue or spectral singularity of A.

In order to investigate the quantitative properties of the eigenvalues and the spectral
singularities of A we need to discuss the quantative properties of the zeros of D+ and D− in
C+ and C−, respectively. For the sake of simplicity we will consider only the zeros ofD+ in C+.

A similar procedure may also be employed for zeros of D− in C−.
Let us define

M±
1 = {λ : λ ∈ C±, D±(λ) = 0}, M±

2 = {λ : λ ∈ R, D±(λ) = 0}. (4.2)

So we have, by (4.1), that

σd = M+
1 ∪M−

1 , σss = M+
2 ∪M−

2 − {0}. (4.3)

Theorem 4.2. Under the conditions in (2.7):

(i) the discrete spectrum σd is a bounded, at most countable set and its limit points lie on the
bounded subinterval of the real axis;

(ii) the set σss is a bounded and its linear Lebesgue measure is zero.

Proof. From (2.3) and (3.1)we obtain thatD+ is analytic in C+, continuous on the real axis and
has the form

D+(λ) = iα1λ
2 + aλ + b +

∫∞

0
f(t)eiλtdt, (4.4)
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where

a = iα0 − α1K(0, 0) − β1,

b = −(α0 + iβ1
)
K(0, 0) − β0 + iα1Kx(0, 0),

f(t) = −β0K(0, t) − iβ1Kt(0, t) + α0Kx(0, t) + iα1Kxt(0, t).

(4.5)

Using (2.5), (2.6), and (2.9)we get that f ∈ L1(R+). So

D+(λ) = iα1λ
2 + aλ + b + o(1), λ ∈ C+, |λ| −→ ∞. (4.6)

From (4.3), (4.6) and uniqueness theorem for analytic functions [24], we get (i) and (ii).

Theorem 4.3. If

q ∈ AC(R+), lim
x→∞

q(x) = 0,
∫∞

0
x3∣∣q′(x)

∣∣dx < ∞, (4.7)

then

∑

ν

|lν| ln 1
|lν| < ∞, (4.8)

where |lν| is the lengths of the boundary complementary intervals of σss.

Proof. From (2.5), (2.6), (2.9), (4.4) and (4.7) we see that D+ is continuously differentiable on
R. Since the functionD+ is not identically equal to zero, by Beurling’s theoremwe obtain (4.8)
[25].

Theorem 4.4. Under the conditions

q ∈ AC(R+), lim
x→∞

q(x) = 0,
∫∞

0
eεx

∣∣q′(x)
∣∣dx < ∞, ε > 0, (4.9)

the operatorA has a finite number of eigenvalues and spectral singularities and each of them is of finite
multiplicity.

Proof. (2.5), (2.7), (2.9), (4.4) and (4.9) imply that the functionD+ has an analytic continuation
to the half-plane Imλ > −ε/2. Hence the limit points of its zeros on C+ cannot lie in R.
Therefore using Theorem 4.2, we have the finiteness of zeros of D+ in C+. Similarly we find
that the functionD− has a finite number of zeros with finite multiplicity in C−. Then the proof
of the theorem is the direct consequence of (4.3).

Note that the conditions in (4.9) are analogous to the Naı̆mark condition (1.2) for the
operator A.
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It is clear that the condition (4.9) guarantees the analytic continuation of D+ and D−
from the real axis to the lower and the upper half-planes respectively. So the finiteness of
the eigenvalues and the spectral singularities of A are obtained as a result of these analytic
continuations.

Now let suppose that

q ∈ AC(R+), lim
x→∞

q(x) = 0,
∫∞

0
eεx

δ∣∣q′(x)
∣
∣dx < ∞, (4.10)

for some ε > 0 and 1/2 ≤ δ < 1, which is weaker than (4.9). It is obvious that under the
condition (4.10) the function D+ is analytic in C+ and infinitely differentiable on the real
axis. But D+ does not have analytic continuation from the real axis to the lower half-plane.
Similarly, D− does not have analytic continuation from the real axis to the upper half-plane
either. Consequently, under the conditions in (4.10) the finiteness of the eigenvalues and the
spectral singularities of A cannot be shown in a way similar to Theorem 4.4.

Let us denote the sets of limit points of M+
1 and M+

2 by M+
3 and M+

4 respectively and
the set of all zeros of D+ with infinite multiplicity in C+ by M+

∞. Analogously define the sets
M−

3 ,M
−
4 and M−

∞.
It is clear from the boundary uniqueness theorem of analytic functions that [24]

M±
1 ∩M±

∞ = ∅, M±
3 ⊂ M±

2 , M±
4 ⊂ M±

2 ,

M±
∞ ⊂ M±

2 , M±
3 ⊂ M±

∞, M±
4 ⊂ M±

∞,
(4.11)

and μ(M±
3 ) = μ(M±

4 ) = μ(M±
∞) = 0, where μ denote the Lebesgue measure on the real axis.

Theorem 4.5. If (4.10) holds, thenM+
∞ = M−

∞ = ∅.

Proof. We will prove that M+
∞ = ∅. The case M−

∞ = ∅ is similar. Under the condition (4.10) D+

is analytic in C+ all of its derivatives are continuous on the real axis and there exists N > 0
such that

∣∣∣∣
dn

dλn
D+(λ)

∣∣∣∣ ≤ Bn, n = 0, 1, 2, . . . , λ ∈ C+, |λ| < 2N,

B0 = 4|α1|N2 + 2|a|N + |b| +
∫∞

0

∣∣f(t)
∣∣dt,

B1 = 4|α1|N + |a| +
∫∞

0
t
∣∣f(t)

∣∣dt,

B2 = 2|α1| +
∫∞

0
t2
∣∣f(t)

∣∣dt,

Bn =
∫∞

0
tn
∣∣f(t)

∣∣dt, n ≥ 3.

(4.12)
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From Theorem 4.2, we get that

∣
∣
∣
∣
∣

∫−N

−∞

ln|D+(λ)|
1 + λ2

dλ

∣
∣
∣
∣
∣
< ∞,

∣
∣
∣
∣

∫∞

N

ln|D+(λ)|
1 + λ2

dλ

∣
∣
∣
∣ < ∞. (4.13)

Let us define the function

T(s) = inf
n

Bns
n

n!
. (4.14)

Since the function D+ is not equal to zero identically, by Pavlov’s theorem [4],

∫h

0
ln T(s)dμ

(
M+

∞,s

)
> −∞ (4.15)

holds, where h > 0 is a constant and μ(M+
∞,s) is the Lebesgue measure of s-neighborhood of

M+
∞. Using (2.5), (2.6), (2.9) and (4.4)we obtain that

Bn ≤ Bdnn!nn(1/δ−1), (4.16)

where B and d are constants depending on ε and δ. Substituting (4.16) in the definition of
T(s)we get

T(s) ≤ B exp
{
−
(
1
δ
− 1

)
e−1d−δ/(1−δ)s−δ/(1−δ)

}
. (4.17)

Now (4.15) and (4.17) imply that

∫h

0
s−δ/(1−δ)dμ

(
M+

∞,s

)
< ∞. (4.18)

Since δ/(1 − δ) ≥ 1, consequently (4.18) holds for arbitrary s if and only if μ(M+
∞,s) = 0 or

M+
∞ = ∅.

Theorem 4.6. Under the condition (4.10) the operator A has a finite number of the eigenvalues and
the spectral singularities and each of them is of a finite multiplicity.

Proof. To be able to prove the theorem we have to show that the functions D+ and D− have
finite number of zeros with finite multiplicities in C+ and C−, respectively. We will prove it
only for D+. The case of D− is similar.

It follows from (4.11) that M+
3 = M+

4 = ∅. So the bounded sets M+
1 and M+

2 have no
limit points, that is, the D+ has only a finite number of zeros in C+. Since M+

∞ = ∅ these zeros
are of a finite multiplicity.

Theorem 4.7. If the condition (2.7) is satisfied then the set σss is of the first category.
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Proof. From the continuity of D+ it is clear that the set M+
2 is closed and is a set of Lebesgue

measure zero which is of type Fσ . According to Martin’s theorem [26] there is measurable set
whose metric density exists and is different from 0 and 1 at every point of M+

2 . So, M
+
2 is of

the first category from the theorem due to Goffman [27]. We also have obviously same things
for M−

2 . Consequently σss is of the first category by (4.3).
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